Illumination-Based Color Reconstruction for the Dynamic Vision Sensor
<p>Reconstruction workflow. Left to right: The data are captured with a DVS sensor and a colored light source. Then, an event stream is created from the DVS, which is converted into pseudo-frame representations. Finally, two different color reconstruction approaches can be applied.</p> "> Figure 2
<p>System schematic. The distance from the DVS to the flicker is much shorter than 14<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>″</mo> </mrow> </msup> </semantics></math>. The RGB flicker emits light at a 3 Hz frequency.</p> "> Figure 3
<p>DVS event counts for gray-scale flicker with decreasing gray-scale intensities, left to right. The red dashed lines indicate the peak event count for each gray-scale flicker intensity, showing a correlation between the intensity of the flicker and the number of events recorded.</p> "> Figure 4
<p>Number of DVS events in a frame vs. frame number. The measurements were recorded while RGB flicker changes took place. The integration windows depict the frames with enough events caused by a flicker color change.</p> "> Figure 5
<p><b>Left</b>: X-Rite color matrix. <b>Right</b>: color reconstruction using the 9-flicker (3 colors, 3 intensities) linear approach.</p> "> Figure 6
<p>X-Rite matrix reconstruction with a single intensity flicker. The gray colors are almost indistinguishable and the color fidelity has deteriorated, compared to the three-intensity linear reconstruction.</p> "> Figure 7
<p>Our model’s reconstruction of the 3D scene. <b>Left</b>: The original images, <b>right</b>: our CNN-based model reconstructions. The RMSE score for the top right image is 45 and for the bottom right is 47.</p> "> Figure 8
<p><b>Top</b>: Reconstruction for different ambient light conditions. RGB ground truth is shown in the leftmost picture. <b>Bottom</b>: relative loss for each reconstruction. The loss is calculated in Equation (<a href="#FD8-sensors-23-08327" class="html-disp-formula">8</a>).</p> "> Figure 9
<p>Our CNN-based model reconstruction results for different distances. Distances from left to right: 5.08 cm, 11.176 cm, 17.272 cm, 23.368 cm, 29.464 cm, and 35.56 cm.</p> "> Figure 10
<p>Our neural network normalized the loss across varying numbers of layers. We offer this analysis (without formal proof) as an interpretation of the DVS non-linearity degree.</p> "> Figure 11
<p>Using the DVS response for different flicker intensity levels significantly improved the reconstruction quality. <b>Left</b>: Our CNN-based model reconstruction using 3 different intensities and 3 different colors. <b>Right</b>: The same model’s reconstruction using a single intensity and 3 colors.</p> "> Figure 12
<p><b>Left</b> to <b>Right</b>: X-Rite color matrix, reconstruction by [<a href="#B29-sensors-23-08327" class="html-bibr">29</a>], our linear reconstruction, our CNN reconstruction.</p> "> Figure A1
<p>Example of non-linear behavior in the form of a wavelike ripple of events that should not occur.</p> "> Figure A2
<p>DVS pixel responses for different pixels, showing that the responses are sparse and that not all pixels respond simultaneously.</p> ">
Abstract
:1. Introduction
- A fast, real-time, linear method for reconstructing color from a DVS camera.
- A CNN-based color reconstruction method for DVS.
- Non-linearity analysis of the DVS-flicker system and an investigation of the DVS response to non-continuous light sources.
2. Related Work
3. Dynamic Vision Sensor (DVS) and Setup
3.1. DVS Operation Method
3.2. DVS Response Analysis
3.3. Creating Video from Bitstream
3.4. System Setup
4. Method—Linear Approach
4.1. Feature Extraction
LTI Approximation
5. Method-CNN Approach
5.1. CNN Architecture
5.2. Loss Function
5.3. Training
6. Experimental Results
6.1. Linear Approach
6.2. CNN Approach
6.2.1. Robustness
6.2.2. Ablation Study
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gouveia, L.C.P.; Choubey, B. Advances on CMOS image sensors. Sens. Rev. 2016, 36, 231–239. [Google Scholar] [CrossRef]
- Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J. Solid-State Circuits 2008, 43, 566–576. [Google Scholar] [CrossRef]
- Wang, Y.; Du, B.; Shen, Y.; Wu, K.; Zhao, G.; Sun, J.; Wen, H. EV-Gait: Event-Based Robust Gait Recognition Using Dynamic Vision Sensors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Maher, M.; Deweerth, S.; Mahowald, M.; Mead, C. Implementing neural architectures using analog VLSI circuits. IEEE Trans. Circuits Syst. 1989, 36, 643–652. [Google Scholar] [CrossRef]
- Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636. [Google Scholar] [CrossRef]
- Wei, Z. Real-Time Optical Flow Sensor Design and Its Application on Obstacle Detection. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2009. [Google Scholar]
- Lichtsteiner, P. An AER Temporal Contrast Vision Sensor. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2006. [Google Scholar]
- Posch, C.; Matolin, D.; Wohlgenannt, R. An asynchronous time-based image sensor. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 2130–2133. [Google Scholar] [CrossRef]
- Brandli, C.; Berner, R.; Yang, M.; Liu, S.C.; Delbruck, T. A 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision Sensor. IEEE J. Solid-State Circuits 2014, 49, 2333–2341. [Google Scholar] [CrossRef]
- Posch, C.; Matolin, D.; Wohlgenannt, R. A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS. IEEE J. Solid-State Circuits 2011, 46, 259–275. [Google Scholar] [CrossRef]
- Leñero-Bardallo, J.A.; Serrano-Gotarredona, T.; Linares-Barranco, B. A 3.6 μs Latency Asynchronous Frame-Free Event-Driven Dynamic-Vision-Sensor. IEEE J. Solid-State Circuits 2011, 46, 1443–1455. [Google Scholar] [CrossRef]
- Gallego, G.; Delbruck, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Leutenegger, S.; Davison, A.; Conradt, J.; Daniilidis, K.; et al. Event-based Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 154–180. [Google Scholar] [CrossRef]
- Ji, Z.; Hu, W.; Wang, Z.; Yang, K.; Wang, K. Seeing through Events: Real-Time Moving Object Sonification for Visually Impaired People Using Event-Based Camera. Sensors 2021, 21, 3558. [Google Scholar] [CrossRef]
- Zhou, Y.; Gallego, G.; Shen, S. Event-Based Stereo Visual Odometry. IEEE Trans. Robot. 2021, 37, 1433–1450. [Google Scholar] [CrossRef]
- Gehrig, M.; Shrestha, S.B.; Mouritzen, D.; Scaramuzza, D. Event-Based Angular Velocity Regression with Spiking Networks. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4195–4202. [Google Scholar] [CrossRef]
- Pan, L.; Hartley, R.; Scheerlinck, C.; Liu, M.; Yu, X.; Dai, Y. High Frame Rate Video Reconstruction based on an Event Camera. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 2519–2533. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Yuan, L.; Chaney, K.; Daniilidis, K. EV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based Cameras. arXiv 2018, arXiv:1802.06898. [Google Scholar]
- Nozaki, Y.; Delbruck, T. Temperature and Parasitic Photocurrent Effects in Dynamic Vision Sensors. IEEE Trans. Electron Devices 2017, 64, 3239–3245. [Google Scholar] [CrossRef]
- Amir, A.; Taba, B.; Berg, D.; Melano, T.; McKinstry, J.; Di Nolfo, C.; Nayak, T.; Andreopoulos, A.; Garreau, G.; Mendoza, M.; et al. A Low Power, Fully Event-Based Gesture Recognition System. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Lukac, R.; Plataniotis, K. Color filter arrays: Design and performance analysis. IEEE Trans. Consum. Electron. 2005, 51, 1260–1267. [Google Scholar] [CrossRef]
- Dance, C.; Fan, L. Color reconstruction in digital cameras: Optimization for document images. Int. J. Doc. Anal. Recognit. 2005, 7, 138–146. [Google Scholar] [CrossRef]
- Levin, A.; Lischinski, D.; Weiss, Y. Colorization using Optimization. ACM Trans. Graph. 2004, 23, 689–694. [Google Scholar] [CrossRef]
- Karch, B.; Hardie, R. Robust super-resolution by fusion of interpolated frames for color and grayscale images. Front. Phys. 2015, 3, 28. [Google Scholar] [CrossRef]
- Cohen, K.; Kay, T. Multispectral Imaging with Fresnel Lens. arXiv 2023, arXiv:2310.03625. [Google Scholar]
- Zhang, J.; Su, R.; Fu, Q.; Ren, W.; Heide, F.; Nie, Y. A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging. Sci. Rep. 2022, 12, 11905. [Google Scholar] [CrossRef]
- Crombez, N.; Caron, G.; Mouaddib, E. 3D point cloud model colorization by dense registration of digital images. ISPRS-Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, XL-5/W4, 123–130. [Google Scholar] [CrossRef]
- Scheerlinck, C.; Rebecq, H.; Stoffregen, T.; Barnes, N.; Mahony, R.; Scaramuzza, D. CED: Color Event Camera Dataset. arXiv 2019, arXiv:1904.10772. [Google Scholar]
- Xiaodan, J.; Hirakawa, K. Analysis and processing of pixel binning for color image sensor. EURASIP J. Adv. Signal Process. 2012, 2012, 125. [Google Scholar]
- Paul, M.D.; Chenghan, L.; Martel, J.N.P.; Simeon, B.; Luca, L.; Vasyl, M.; David, S.S.B.; Tobi, D. Color temporal contrast sensitivity in dynamic vision sensors. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Reinbacher, C.; Graber, G.; Pock, T. Real-Time Intensity-Image Reconstruction for Event Cameras Using Manifold Regularisation. arXiv 2016, arXiv:1607.06283. [Google Scholar]
- Scheerlinck, C.; Barnes, N.; Mahony, R.E. Continuous-time Intensity Estimation Using Event Cameras. In Asian Conference on Computer Vision; Springer International Publishing: Cham, Switzerland, 2018; pp. 308–324. [Google Scholar]
- Rebecq, H.; Ranftl, R.; Koltun, V.; Scaramuzza, D. Events-to-Video: Bringing Modern Computer Vision to Event Cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Ji, Z.; Zhang, Q.; Lee, K.; Wang, Y.M.; Ryu, H.S.; Ovsiannikov, I. Method and Apparatus for Event Sampling of Dynamic Vision Sensor on Image Formation. U.S. Patent 1,019,866,0B2, May 2019. [Google Scholar]
- Son, B.; Suh, Y.; Kim, S.; Jung, H.; Kim, J.S.; Shin, C.; Park, K.; Lee, K.; Park, J.; Woo, J.; et al. 4.1 A 640 × 480 dynamic vision sensor with a 9 µm pixel and 300 Meps address-event representation. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 66–67. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Chapter 3. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, K.; Hershko, O.; Levy, H.; Mendlovic, D.; Raviv, D. Illumination-Based Color Reconstruction for the Dynamic Vision Sensor. Sensors 2023, 23, 8327. https://doi.org/10.3390/s23198327
Cohen K, Hershko O, Levy H, Mendlovic D, Raviv D. Illumination-Based Color Reconstruction for the Dynamic Vision Sensor. Sensors. 2023; 23(19):8327. https://doi.org/10.3390/s23198327
Chicago/Turabian StyleCohen, Khen, Omer Hershko, Homer Levy, David Mendlovic, and Dan Raviv. 2023. "Illumination-Based Color Reconstruction for the Dynamic Vision Sensor" Sensors 23, no. 19: 8327. https://doi.org/10.3390/s23198327