Revealing Long-Term Indoor Air Quality Prediction: An Intelligent Informer-Based Approach
<p>Diagram of the Informer Architecture.</p> "> Figure 2
<p>The predicted variations of indoor PM values exhibit significant fluctuations, with numerous outliers. Overall, the model closely approximates the true distribution trends in the following ways: (<b>a</b>) The model demonstrates a relatively close fit to the data but fails to predict sudden spikes in certain trends; (<b>b</b>) The model nearly perfectly predicts the data; (<b>c</b>) The model accurately forecasts the overall trends, but lags in predicting specific time steps; (<b>d</b>) The model correctly predicts the trends but encounters significant fluctuations, struggling to handle extreme outlier points.</p> ">
Abstract
:1. Introduction
2. Related Work
- We proposed an informer-based indoor air quality prediction model that not only leverages informer’s advantage in capturing long sequence time dependencies but also has the ability to capture correlations between air quality data indicators, thereby enhancing the accuracy of indoor air quality prediction;
- Through experiments on real datasets, our model demonstrated remarkable performance in predicting indoor PM2.5 concentrations across different prediction timeframes;
- The experiments indicate that our model can accurately predict not only PM2.5 concentrations, but also effectively forecast other air quality data. Furthermore, our model exhibits adaptability to prediction tasks with fewer data dimensions, such as long sequence prediction tasks that do not consider significant spatial dependencies and involve high data correlation.
3. Methodology
3.1. Overview of Informer
3.2. MLP Layer
3.3. Informer Layer
3.4. Evaluation Metrics
4. Experiment
4.1. Dataset and Hyperparameter
4.1.1. Dataset
4.1.2. Experimental Parameter Configuration
4.2. Experimental Results
4.2.1. Performance Comparison
4.2.2. Model Fitting Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samet, J.M.; Dominici, F.; Zeger, S.L.; Schwartz, J.; Dockery, D.W. The National Morbidity, Mortality, and Air Pollution Study. Part I: Methods and methodologic issues. Res. Rep. (Health Eff. Inst.) 2000, 94 Pt 1, 5–14. [Google Scholar] [PubMed]
- Zanobetti, A.; Franklin, M.; Koutrakis, P.; Schwartz, J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ. Health 2009, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- China National Institute of Testing Technology. 2019 White Paper on Indoor Air Pollution in China [EB/OL]. Available online: http://www.sohu.com/a/308600617_821940 (accessed on 18 April 2019).
- Spengler, J.D.; Chen, Q. Indoor air quality factors in designing a healthy building. Annu. Rev. Energy Environ. 2000, 25, 567–600. [Google Scholar] [CrossRef]
- Saini, J.; Dutta, M.; Marques, G. Indoor air quality prediction systems for smart environments: A systematic review. J. Ambient. Intell. Smart Environ. 2020, 12, 433–453. [Google Scholar] [CrossRef]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor air quality. Am. J. Lifestyle Med. 2017, 11, 284–295. [Google Scholar] [CrossRef]
- Boznar, M.; Lesjak, M.; Mlakar, P. A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmos. Environ. Part B. Urban Atmos. 1993, 27, 221–230. [Google Scholar] [CrossRef]
- Sánchez, A.S.; Nieto, P.G.; Fernández, P.R.; Díaz, J.d.C.; Iglesias-Rodríguez, F. Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Math. Comput. Model. 2011, 54, 1453–1466. [Google Scholar] [CrossRef]
- Liu, H.; Yang, C.; Huang, M.; Wang, D.; Yoo, C. Modeling of subway indoor air quality using Gaussian process regression. J. Hazard. Mater. 2018, 359, 266–273. [Google Scholar] [CrossRef]
- Taheri, S.; Razban, A. Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation. Build. Environ. 2021, 205, 108164. [Google Scholar] [CrossRef]
- Mao, W.; Wang, W.; Jiao, L.; Zhao, S.; Liu, A. Modeling air quality prediction using a deep learning approach: Method optimization and evaluation. Sustain. Cities Soc. 2021, 65, 102567. [Google Scholar] [CrossRef]
- Xie, H.; Ma, F.; Bai, Q. Prediction of indoor air quality using artificial neural networks. In Proceedings of the 2009 Fifth International Conference on Natural Computation, Tianjian, China, 14–16 August 2009; Volume 2, pp. 414–418. [Google Scholar]
- Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016, 23, 22408–22417. [Google Scholar] [CrossRef]
- Ong, B.T.; Sugiura, K.; Zettsu, K. Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014; pp. 760–765. [Google Scholar]
- Pardo, E.; Malpica, N. Air quality forecasting in Madrid using long short-term memory networks. In Proceedings of the Biomedical Applications Based on Natural and Artificial Computing: International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, 19–23 June 2017; Proceedings, Part II. Springer International Publishing: Cham, Switzerland, 2017; pp. 232–239. [Google Scholar]
- Hähnel, P.; Mareček, J.; Monteil, J.; O’Donncha, F. Using deep learning to extend the range of air pollution monitoring and forecasting. J. Comput. Phys. 2020, 408, 109278. [Google Scholar] [CrossRef]
- Lai, H.; Bayer-Oglesby, L.; Colvile, R.; Götschi, T.; Jantunen, M.; Künzli, N.; Kulinskaya, E.; Schweizer, C.; Nieuwenhuijsen, M. Determinants of indoor air concentrations of PM2. 5, black smoke and NO2 in six European cities (EXPOLIS study). Atmos. Environ. 2006, 40, 1299–1313. [Google Scholar] [CrossRef]
- Zhao, T.; Xue, H. Regression analysis and indoor air temperature model of greenhouse in northern dry and cold regions. In Proceedings of the Computer and Computing Technologies in Agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, 22–25 October 2010; Selected Papers, Part II 4. Springer: Berlin/Heidelberg, Germany, 2011; pp. 252–258. [Google Scholar]
- Athira, V.; Geetha, P.; Vinayakumar, R.; Soman, K.P. Deepairnet: Applying recurrent networks for air quality prediction. Procedia Comput. Sci. 2018, 132, 1394–1403. [Google Scholar]
- Elhariri, E.; Taie, S.A. H-ahead multivariate microclimate forecasting system based on deep learning. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2–4 February 2019; pp. 168–173. [Google Scholar]
- Ahn, J.; Shin, D.; Kim, K.; Yang, J. Indoor air quality analysis using deep learning with sensor data. Sensors 2017, 17, 2476. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Kim, Y.I.; Lee, W.-S. Development of CO2 Concentration Prediction Tool for Improving Office Indoor Air Quality Considering Economic Cost. Energies 2022, 15, 3232. [Google Scholar] [CrossRef]
- Majdi, A.; Alrubaie, A.J.; Al-Wardy, A.H.; Baili, J.; Panchal, H. A novel method for Indoor Air Quality Control of Smart Homes using a Machine learning model. Adv. Eng. Softw. 2022, 173, 103253. [Google Scholar] [CrossRef]
- Liang, Y.; Xia, Y.; Ke, S.; Wang, Y.; Wen, Q.; Zhang, J.; Zheng, T.; Zimmermann, R. Airformer: Predicting nationwide air quality in china with transformers. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 14329–14337. [Google Scholar]
- Li, Z.; Tong, X.; Ho, J.M.W.; Kwok, T.C.; Dong, G.; Ho, K.-F.; Yim, S.H.L. A practical framework for predicting residential indoor PM2. 5 concentration using land-use regression and machine learning methods. Chemosphere 2021, 265, 129140. [Google Scholar] [CrossRef]
- Mumtaz, R.; Zaidi, S.M.H.; Shakir, M.Z.; Shafi, U.; Malik, M.M.; Haque, A.; Mumtaz, S.; Zaidi, S.A.R. Internet of things (Iot) based indoor air quality sensing and predictive analytic—A COVID-19 perspective. Electronics 2021, 10, 184. [Google Scholar] [CrossRef]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Cincinelli, A.; Martellini, T. Indoor Air Quality and Health. Int. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Erven, T.V.; Harremos, P. Rényi Divergence and Kullback-Leibler Divergence. IEEE Trans. Inf. Theory 2014, 60, 3797–3820. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 19–21 May 2021; Volume 35, pp. 11106–11115. [Google Scholar]
- Chang, F.; Ge, L.; Li, S.Y.; Wu, K.Y.; Wang, Y.Q. Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction. Connect. Sci. 2021, 33, 427–446. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Salem, F.M. Gate-variants of gated recurrent unit (GRU) neural networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.U.; Polosukhin, I. Attention is All you Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
Hyper-Parameter | Value |
---|---|
Learn_rate | 1 × 10−4 |
optimizer | Adam |
Batch | 32 |
attn | 8 |
patience | 3 |
Epoch | 50 |
seq_len | 96 |
label_len | 48 |
Pred_len | 24 |
E_layers | 4 |
D_layers | 2 |
24 h | 12 h | 6 h | ||||
---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | |
DNN | 0.492 | 0.531 | 0.399 | 0.487 | 0.396 | 0.502 |
LSTM | 0.203 | 0.398 | 0.204 | 0.393 | 0.317 | 0.443 |
GRU | 0.143 | 0.301 | 0.197 | 0.391 | 0.213 | 0.387 |
Transformer | 0.097 | 0.224 | 0.167 | 0.313 | 0.209 | 0.381 |
Informer (Our) | 0.017 | 0.023 | 0.160 | 0.157 | 0.227 | 0.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, H.; Luo, J.; Zhang, Y.; Li, S.; Xie, S.; Ma, H.; Zhang, H. Revealing Long-Term Indoor Air Quality Prediction: An Intelligent Informer-Based Approach. Sensors 2023, 23, 8003. https://doi.org/10.3390/s23188003
Long H, Luo J, Zhang Y, Li S, Xie S, Ma H, Zhang H. Revealing Long-Term Indoor Air Quality Prediction: An Intelligent Informer-Based Approach. Sensors. 2023; 23(18):8003. https://doi.org/10.3390/s23188003
Chicago/Turabian StyleLong, Hui, Jueling Luo, Yalu Zhang, Shijie Li, Si Xie, Haodong Ma, and Haonan Zhang. 2023. "Revealing Long-Term Indoor Air Quality Prediction: An Intelligent Informer-Based Approach" Sensors 23, no. 18: 8003. https://doi.org/10.3390/s23188003
APA StyleLong, H., Luo, J., Zhang, Y., Li, S., Xie, S., Ma, H., & Zhang, H. (2023). Revealing Long-Term Indoor Air Quality Prediction: An Intelligent Informer-Based Approach. Sensors, 23(18), 8003. https://doi.org/10.3390/s23188003