A Review of High-Power Semiconductor Optical Amplifiers in the 1550 nm Band
<p>Main technical roadmap of high-power SOAs.</p> "> Figure 2
<p>(<b>a</b>) Schematic structure of a tapered SOA. (<b>b</b>) Two-stage amplified optical cavity structure.</p> "> Figure 3
<p>(<b>a</b>) Schematic cross-section of a slab-coupled–optical-wave amplifier (SCOWA) waveguide. (<b>b</b>) Schematic structure of SCOWA Array. (<b>c</b>) Schematic structure of VC-SCOWA.</p> "> Figure 4
<p><b>Figure 4</b>. (<b>a</b>) Schematic structure of a tensile-strained multi-quantum-well (QW) SOA chip. (<b>b</b>) Schematic structure of a tilted SOA.</p> "> Figure 5
<p>Schematic structure of bulk SOA.</p> "> Figure 6
<p>(<b>a</b>) Schematic structure of the GaInNAs–GaInAs MQW-SOA. (<b>b</b>) Schematic structure of the CQD-SOA. (<b>c</b>) Schematic structure of QDs coupled to QWs.</p> "> Figure 7
<p>Schematic structure of the master-oscillator power amplifier (MOPA). (<b>a</b>) Two-segment structure. (<b>b</b>) Three-segment structure.</p> "> Figure 8
<p>Schematic structure of fiber-laser communication.</p> "> Figure 9
<p>Schematic structure of pulsed LiDAR.</p> "> Figure 10
<p>Schematic structure of the ring-laser gyroscope.</p> ">
Abstract
:1. Introduction
2. Theory: Performance Parameters of High-Power Semiconductor Optical Amplifiers
3. Research Progress of High-Power Semiconductor Optical Amplifiers in the 1550 nm Band
3.1. High Power
3.2. Low-Noise Figure (NF)
3.3. Polarization Insensitivity
4. Discussion: Development and Application of High-Power Semiconductor Optical Amplifiers in the 1550 nm Band
4.1. Master-Oscillator Power Amplifier (MOPA)
4.2. Laser Communication
4.3. LiDAR
4.4. Optical Gyroscope
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andreev, V.A.; Burdin, V.A.; Volkov, K.A.; Dashkov, M.V.; Bukashkin, S.A.; Buzov, A.L.; Procopiev, V.I.; Zharkov, A.D. Application of Semiconductor Optical Amplifier for Mobile Radio Communications Networks Based on Radio-Over-Fiber Systems. In Proceedings of the 14th International Conference on Optical Technologies for Telecommunications, Ufa, Russia, 16–18 November 2015. [Google Scholar] [CrossRef]
- Ummy, M.A.; Bikorimana, S.; Dorsinville, R. A Novel Technique for Designing High Power Semiconductor Optical Amplifier (SOA)-Based Tunable Fiber Compound-Ring Lasers Using Low Power Optical Components. Appl. Sci. 2017, 7, 478. [Google Scholar] [CrossRef]
- Liao, Y.; Meng, Z.; Hu, Z.L.; Hu, Y.M. Design of a Low-Noise Er-Doped-Fiber-Amplifier (EDFA) for Fiber Hydrophone System. In Proceedings of the Conference on Advanced Sensor Systems and Applications III, Beijing, China, 12–14 November 2007. [Google Scholar]
- Figueiredo, R.C.; Sutili, T.; Ribeiro, N.S.; Gallep, C.M.; Conforti, E. Semiconductor Optical Amplifier Space Switch with Symmetrical Thin-Film Resistive Current Injection. J. Light. Technol. 2017, 35, 280–287. [Google Scholar] [CrossRef]
- Morito, K.; Tanaka, S.; Tomabechi, S.; Kuramata, A. A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure. IEEE Photonics Technol. Lett. 2005, 17, 974–976. [Google Scholar] [CrossRef]
- Nkanta, J.E.; Maldonado-Basilio, R.; Khan, K.; Benhsaien, A.; Abdul-Majid, S.; Zhang, J.; Hall, T.J. Low polarization-sensitive asymmetric multi-quantum well semiconductor amplifier for next-generation optical access networks. Opt. Lett. 2013, 38, 3165–3168. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawi, A.A.; Almukhtar, A.A.; Dhar, A.; Paul, M.C.; Ahmad, H.; Altuncu, A.; Apsari, R.; Harun, S.W. Gain-flattened hybrid EDFA operating in C+L band with parallel pumping distribution technique. IET Optoelectron. 2020, 14, 447–451. [Google Scholar] [CrossRef]
- Carney, K.; Lennox, R.; Maldonado-Basilio, R.; Philippe, S.; Surre, F.; Bradley, L.; Landais, P. 3.8 dB Noise Figure in Bulk Semiconductor Optical Amplifier. In Proceedings of the 10th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, Japan, 30 June–4 July 2013. [Google Scholar]
- Girard, S.; Vivona, M.; Mescia, L.; Laurent, A.; Ouerdane, Y.; Marcandella, C.; Prudenzano, F.; Boukenter, A.; Robin, T.; Cadier, B.; et al. Radiation Hardening Techniques for Rare-Earth Based Optical Fibers and Amplifiers. In Proceedings of the Conference on Free-Space Laser Communication Technologies XXIV, San Francisco, CA, USA, 24–26 January 2012. [Google Scholar] [CrossRef]
- Chazan, P.; Mayor, J.M.; Morgott, S.; Mikulla, M.; Kiefer, R.; Muller, S.; Walther, M.; Braunstein, J.; Weimann, G. High-power near-diffraction-limited tapered amplifiers at 1064 nm for optical intersatellite communications. IEEE Photonics Technol. Lett. 1998, 10, 1542–1544. [Google Scholar] [CrossRef]
- Ye, J.B.; Liu, T.K.; Stroynowski, R.; Wakeland, B.E.; Xiang, A.C.; Amarasinghe, N.; McWilliams, S.; Masood, T.; Evans, G. Radiation resistance of single-frequency 1310-nm AlGaInAs-InP grating- outcoupled surface-emitting lasers. IEEE Photonics Technol. Lett. 2006, 18, 148–150. [Google Scholar] [CrossRef]
- Cao, C.; Chen, Y.; Li, W.Z.; Zhu, Y.B.; Xin, Y.B.; Miu, L.; Dai, N.L.; Li, J.Y. High-performance irradiation-resistant erbium-ytterbium co-doped optical fiber. Chin. J. Lasers 2022, 49, 2215001. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.S.; Feng, Z.Z.; Cao, Z.; Ma, L.Y. Radiation Damage Characterization of InGaAsP Laser Diodes for Space Laser Communication. Nucl. Phys. Rev. 2015, 32, 249–253. [Google Scholar]
- Che, C.; Liu, Q.F.; Ma, J.; Zhou, Y.P. Displacement damage effects on the characteristics of quantum dot lasers. Acta Phys. Sin. 2013, 62, 094219. [Google Scholar] [CrossRef]
- McCarthy, A.; Ren, X.M.; Della Frera, A.; Gemmell, N.R.; Krichel, N.J.; Scarcella, C.; Ruggeri, A.; Tosi, A.; Buller, G.S. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt. Express 2013, 21, 22098–22113. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.D.; Ho, H.L.; Tsay, H.L.; Lee, Y.L.; Yang, C.A.; Wu, K.W.; Sun, J.L.; Tsai, D.J.; Lin, F.Y. 3D chaos lidar system with a pulsed master oscillator power amplifier scheme. Opt. Express 2021, 29, 27871–27881. [Google Scholar] [CrossRef] [PubMed]
- Quatrevalet, M.; Ai, X.; Perez-Serrano, A.; Adamiec, P.; Barbero, J.; Fix, A.; Tijero, J.M.G.; Esquivias, I.; Rarity, J.G.; Ehret, G. Atmospheric CO2 Sensing with a Random Modulation Continuous Wave Integrated Path Differential Absorption Lidar. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 157–167. [Google Scholar] [CrossRef]
- Bilenca, A.; Alizon, R.; Mikhelashvili, V.; Eisenstein, G.; Schwertberger, R.; Gold, D.; Reithmaier, J.P.; Forchel, A. InAs/InP 1550 nm quantum dash semiconductor optical amplifiers. Electron. Lett. 2002, 38, 1350–1351. [Google Scholar] [CrossRef]
- Tanaka, S.; Uetake, A.; Yamazaki, S.; Ekawa, M.; Morito, K. Polarization-Insensitive GaInNAs–GaInAs MQW-SOA With Low Noise Figure and Small Gain Tilt Over 90-nm Bandwidth (1510–1600 nm). IEEE Photonics Technol. Lett. 2008, 20, 1311–1313. [Google Scholar] [CrossRef]
- Fardi, A.; Baghban, H.; Razaghi, M. Dynamics of pulse amplification in tapered-waveguide quantum-dot semiconductor optical amplifiers. Optik 2020, 207, 164396. [Google Scholar] [CrossRef]
- Tanaka, S.; Tomabechi, S.; Ekawa, M.; Morito, K. A High Saturation Output Power (+22 dBm) Polarization Insensitive Semiconductor Optical Amplifier. In Proceedings of the 18th Annual Meeting of the IEEE-Lasers-and-Electro-Optical-Society, Sydney, Australia, 22–28 October 2005. [Google Scholar]
- Smith, G.M.; Donnelly, J.P.; Missaggia, L.J.; Connors, M.K.; Redmond, S.M.; Creedon, K.J.; Mathewson, D.C.; Swint, R.B.; Sanchez-Rubio, A.; Turner, G.W. Slab-Coupled Optical Waveguide Lasers and Amplifiers. In Proceedings of the High-Power Diode Laser Technology and Applications X, San Francisco, CA, USA, 22–24 January 2012. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of Photonic Devices; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Yamada, M.; Ogita, S.; Yamagishi, M.; Tabata, K.; Nakaya, N.; Asada, M.; Suematsu, Y. Polarization-dependent gain in GaAs/AlGaAs multi-quantum-well lasers: Theory and experiment. Appl. Phys. Lett. 1984, 45, 324–325. [Google Scholar] [CrossRef]
- Huang, D.X. Semiconductor Optical Amplifiers and Their Applications; Science Press: Beijing, China, 2012; pp. 34–43. [Google Scholar]
- Li, X.; Liang, L.; Wang, L.J.; Qin, L.; Chen, Y.Y.; Wang, Y.B.; Song, Y.; Lei, Y.X.; Jia, P.; Zeng, Y.G.; et al. Monolithic Integrated Semiconductor Optical Amplifier With Broad Spectrum, High Power, and Small Linewidth Expansion. IEEE Access 2021, 9, 98863–98873. [Google Scholar] [CrossRef]
- Davila-Rodriguez, J.; Ozdur, I.; Williams, C.; Mandridis, D.; Delfyett, P.J.; Plant, J.J.; Juodawlkis, P.W. Ultralow Noise, Etalon Stabilized, 10 GHz Optical Frequency Comb Based on a Slab-Coupled Waveguide Amplifier. In Proceedings of the Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 1–6 May 2011. [Google Scholar]
- Zhao, H.; Pinna, S.; Song, B.; Megalini, L.; Brunelli, S.T.S.; Coldren, L.A.; Klamkin, J. Indium Phosphide Photonic Integrated Circuits for Free Space Optical Links. IEEE J. Sel. Top. Quantum. Electron. 2018, 24, 1–6. [Google Scholar] [CrossRef]
- Wong, W.P.; Chiang, K.S. Design of waveguide structures for polarization-insensitive optical amplification. IEEE J. Quantum Elect. 2000, 36, 1243–1250. [Google Scholar] [CrossRef]
- Michie, C.; Kelly, A.E.; McGeough, J.; Armstrong, I.; Andonovic, I.; Tombling, C. Polarization-Insensitive SOAs Using Strained Bulk Active Regions. J. Light. Technol. 2006, 24, 3920–3927. [Google Scholar] [CrossRef]
- Huang, L.; Yu, Y.; Tian, P.; Huang, D. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier. Semicond. Sci. Technol. 2009, 24, 015009. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Z.X.; Huang, D.X. Theoretical analysis of a tapered-rib semiconductor optical amplifier. Opt. Commun. 2002, 214, 177–185. [Google Scholar]
- Sujecki, S.; Wykes, J.; Sewell, P.; Vukovic, A.; Benson, T.M.; Larkins, E.C.; Borruel, L.; Esquivias, I. Optical properties of tapered laser cavities. IEEE Proc. Optoelectron. 2003, 150, 246–252. [Google Scholar] [CrossRef]
- Abedi, K.; Mohadesrad, E. Gain Stabilization of a Quantum-Dot Semiconductor Optical Amplifier by Introducing Tapered Waveguide Structure. In Proceedings of the Photonics Global Conference (PGC), Singapore, 13–16 December 2012. [Google Scholar]
- Mesaritakis, C.; Kapsalis, A.; Simos, H.; Simos, C.; Krakowski, M.; Krestnikov, I.; Syvridis, D. Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality. Opt. Lett. 2013, 38, 2404–2406. [Google Scholar] [CrossRef]
- Swertfeger, R.B.; Beil, J.A.; Misak, S.M.; Thomas, J.; Campbell, J.; Renner, D.; Mashanovitch, M.; Leisher, P.O. Direct Observation of the 2D Gain Profile in High Power Tapered Semiconductor Optical Amplifiers. In Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS), Porto, Portugal, 27 February–1 March 2017. [Google Scholar] [CrossRef]
- Tijero, J.M.G.; Borruel, L.; Vilera, M.; Consoli, A.; Esquivias, I. Simulation and Geometrical Design of Multi-Section Tapered Semiconductor Optical Amplifiers at 1.57 μm. In Proceedings of the Conference on Semiconductor Lasers and Laser Dynamics VI, Brussels, Belgium, 14–17 April 2014. [Google Scholar] [CrossRef]
- Tijero, J.M.G.; Borruel, L.; Vilera, M.; Perez-Serrano, A.; Esquivias, I. Analysis of the performance of tapered semiconductor optical amplifiers: Role of the taper angle. Opt. Quantum Electron. 2015, 47, 1437–1442. [Google Scholar] [CrossRef]
- Ogrodowski, L.; Friedmann, P.; Gilly, J.; Kelemen, M.T. Tapered Amplifiers for High-Power MOPA Setups between 750 nm and 2000 nm. In Proceedings of the Conference on Novel In-Plane Semiconductor Lasers XIX, San Francisco, CA, USA, 3–6 February 2020. [Google Scholar] [CrossRef]
- Leisher, P.O.; Campbell, J.; Labrecque, M.; McClune, K.; Cooper, T.; Burke, E.; Talantov, F.; Renner, D.; Johansson, L.; Mashanovitch, M. >3 W Diffraction-Limited 1550 nm Diode Laser Amplifiers for, LIDAR. In Proceedings of the Conference on Components and Packaging for Laser Systems VIII, San Francisco, CA, USA, 22 January–28 February 2022. [Google Scholar] [CrossRef]
- Saini, S.S.; Cho, S.H.; Dagenais, M. Thermal Considerations in High Power Semiconductor Lasers and Semiconductor Optical Amplifiers. In Proceedings of the Conference on Photonics Packaging, Integration, and Interconnects VII, San Jose, CA, USA, 23–25 January 2007; Volume 6478, p. 647805. [Google Scholar] [CrossRef]
- Juodawlkis, P.W.; Plant, J.J.; Loh, W.; Missaggia, L.J.; Jensen, K.E.; O’Donnell, F.J. Packaged 1.5-μm Quantum-Well SOA With 0.8-W Output Power and 5.5-dB Noise Figure. IEEE Photonics Technol. Lett. 2009, 21, 1208–1210. [Google Scholar] [CrossRef]
- Marcatili, E.A.J. Slab-coupled waveguides. Bell Syst. Tech. J. 1974, 53, 645–674. [Google Scholar] [CrossRef]
- Motamedi, A.R.; Ippen, E.P.; Plant, J.J.; Donnelly, J.P.; Juodawlkis, P.W. Nonlinear Absorption and Carrier Dynamics in Slab-Coupled Optical Waveguide Amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Baltimore, MD, USA, 2–4 June 2009. [Google Scholar]
- Juodawlkis, P.W.; Plant, J.J. IEEE Gain-Power Trade-Off in Low-Confinement Semiconductor Optical Amplifiers. In Proceedings of the 7th International Conference on Numerical Simulation of Optoelectronic Devices, Newark, DE, USA, 24–27 September 2007. [Google Scholar]
- Juodawlkis, P.W.; Plant, J.J.; Missaggia, L.J.; Jensen, K.E.; O’Donnell, F.J. Advances in 1.5-μm InGaAsP/InP slab-coupled optical waveguide amplifiers (SCOWAs). In Proceedings of the 20th Annual Meeting of the IEEE-Lasers-and-Electro-Optics-Society, Lake Buena Vista, FL, USA, 21–25 October 2007. [Google Scholar] [CrossRef]
- Juodawlkis, P.W.; Plant, J.J.; Huang, R.K.; Missaggia, L.J.; Donnelly, J.P. High-power 1.5-μm InGaAsP slab-coupled optical waveguide amplifiers and lasers. In Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Tucson, AZ, USA, 27–30 October 2003. [Google Scholar]
- Plant, J.J.; Goyal, A.K.; Oakley, D.C.; Chapman, D.C.; Napoleone, A.; Juodawlkis, P.W. Improving the Efficiency of High-Power Semiconductor Optical Amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, San Jose, CA, USA, 4–9 May 2008. [Google Scholar]
- Juodawlkis, P.W.; Plant, J.J.; Huang, R.K.; Missaggia, L.J.; Donnelly, J.P. High-power 1.5-μm InGaAsP-InP slab-coupled optical waveguide amplifier. IEEE Photonics Technol. Lett. 2005, 17, 279–281. [Google Scholar] [CrossRef]
- Klamkin, J.; Plant, J.J.; Sheehan, M.; Loh, W.; Madison, S.M.; Juodawlkis, P.W. High-Output Saturation Power Variable Confinement Slab-Coupled Optical Waveguide Amplifier. In Proceedings of the Conference on Optical Fiber Communication (OFC)/National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011. [Google Scholar]
- Alizon, R.; Hadass, D.; Mikhelashvili, V.; Eisenstein, G.; Schwertberger, R.; Somers, A.; Reithmaier, J.P.; Forchel, A.; Calligaro, A.; Bansropun, S.; et al. Multiple wavelength amplification in wide band high power 1550 nm quantum dash optical amplifier. Electron. Lett. 2004, 40, 760–761. [Google Scholar] [CrossRef]
- Morito, K.; Tanaka, S. Record high saturation power (+22 dBm) and low noise figure (5.7 dB) polarization-insensitive SOA module. IEEE Photonics Technol. Lett. 2005, 17, 1298–1300. [Google Scholar] [CrossRef]
- Morito, K.; Ekawa, M.; Watanabe, T.; Kotaki, Y. High-output-power polarization-insensitive semiconductor optical amplifier. J. Light. Technol. 2003, 21, 176–181. [Google Scholar] [CrossRef]
- Tanaka, S.; Tomabechi, S.; Uetake, A.; Ekawa, M.; Morito, K. Record high saturation output power (+20 dBm) and low NF (6.0 dB) polarisation-insensitive MQW-SOA module. Electron. Lett. 2006, 42, 1059–1060. [Google Scholar] [CrossRef]
- Akiyama, T.; Ekawa, M.; Sugawara, M.; Kawaguchi, K.; Hisao, S.; Kuramata, A.; Ebe, H.; Arakawa, Y. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photonics Technol. Lett. 2005, 17, 1614–1616. [Google Scholar] [CrossRef]
- Eyal, O.; Willinger, A.; Mikhelashvili, V.; Banyoudeh, S.; Schnabel, F.; Sichkovsky, V.; Reithmaier, J.P.; Eisenstein, G. High Performance 1550 nm Quantum Dot Semiconductor Optical Amplifiers Operating at 25–100 Degrees, C. In Proceedings of the Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018. [Google Scholar]
- Yamada, M. Analysis of Intensity and Frequency Noises in Semiconductor Optical Amplifier. IEEE J Quantum Elect. 2012, 48, 980–990. [Google Scholar] [CrossRef]
- Antoniades, N.; Reichmann, K.C.; Iannone, P.P.; Frigo, N.J.; Levine, A.M.; Roudas, I. The Impact of Polarization-Dependent Gain on the Design of Cascaded Semiconductor Optical Amplifier CWDM Systems. IEEE Photonics Technol. Lett. 2006, 18, 2099–2101. [Google Scholar] [CrossRef]
- Philippe, S.; Surre, F.; Carney, K.; Lennox, R.; Bradley, A.L.; Landais, P. Novel Design for Noise Controlled Semiconductor Optical Amplifier. In Proceedings of the 11th International Conference on Transparent Optical Networks, Ponta Delgada, Portugal, 28 June–2 July 2009. [Google Scholar]
- Mazzucato, S.; Carrere, H.; Marie, X.; Amand, T.; Achouche, M.; Caillaud, C.; Brenot, R. Gain, amplified spontaneous emission and noise figure of bulk InGaAs/InGaAsP/InP semiconductor optical amplifiers. IET Optoelectron. 2015, 9, 52–60. [Google Scholar] [CrossRef]
- Yu, S.Q.; Gallet, A.; El Dahdah, N.; Elfaiki, H.; Demirtzioglou, I.; Godard, L.; Brenot, R. Flat Noise Figure Semiconductor Optical Amplifiers. In Proceedings of the European Conference on Optical Communication (ECOC), Bordeaux, France, 13–16 September 2021. [Google Scholar]
- Hasegawa, H.; Funabashi, M.; Yokouchi, N.; Kiyota, K.; Maruyama, K. IEEE Design and Fabrication of Semiconductor Optical Amplifier with Low Noise Figure. In Proceedings of the 15th Optoelectronics and Communications Conference (OECC), Sapporo, Japan, 5–9 July 2010. [Google Scholar]
- Wilkinson, S.; Lingnau, B.; Korn, J.; Scholl, E.; Ludge, K. Influence of Noise on the Signal Quality of Quantum-Dot Semiconductor Optical Amplifiers. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1900106. [Google Scholar] [CrossRef]
- Loh, W.; Plant, J.J.; Klamkin, J.; Donnelly, J.P.; O’Donnell, F.J.; Ram, R.J.; Juodawlkis, P.W. Limitations of Noise Figure in InGaAsP Quantum-Well Semiconductor Optical Amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science Conference (QELS), San Jose, CA, USA, 16–21 May 2010. [Google Scholar]
- Hadass, D.; Bilenca, A.; Alizon, R.; Dery, H.; Mikhelashvili, V.; Eisenstein, G.; Schwertberger, R.; Somers, A.; Reithmaier, J.P.; Forchel, A.; et al. Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: Model and experiments. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 1015–1026. [Google Scholar] [CrossRef]
- Berg, T.W.; Mørk, J. Quantum dot amplifiers with high output power and low noise. Appl. Phys. Lett. 2003, 82, 3083–3085. [Google Scholar] [CrossRef]
- Izadyar, S.M.; Razaghi, M.; Hassanzadeh, A. Quantum dot semiconductor optical amplifier: Investigation of amplified spontaneous emission and noise figure in the presence of second excited state. Opt. Quantum Electron. 2017, 50, 1–13. [Google Scholar] [CrossRef]
- Juodawlkis, P.W.; Plant, J.J.; Loh, W.; Missaggia, L.J.; O’Donnell, F.J.; Oakley, D.C.; Napoleone, A.; Klamkin, J.; Gopinath, J.T.; Ripin, D.J.; et al. High-Power, Low-Noise 1.5-μm Slab-Coupled Optical Waveguide (SCOW) Emitters: Physics, Devices, and Applications. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1698–1714. [Google Scholar] [CrossRef]
- Loh, W.; Plant, J.J.; Klamkin, J.; Donnelly, J.P.; O’Donnell, F.J.; Ram, R.J.; Juodawlkis, P.W. Noise Figure of Watt-Class Ultralow-Confinement Semiconductor Optical Amplifiers. IEEE J. Quantum Electron. 2011, 47, 66–75. [Google Scholar] [CrossRef]
- Saini, S.S.; Bowser, J.; Enck, R.; Luciani, V.; Heim, P.J.S.; Dagenais, M. A Semiconductor Optical Amplifier with High Saturation Power, Low Noise Figure and Low Polarization Dependent Gain over the C-Band. In Proceedings of the 17th Annual Meeting of the IEEE-Lasers-and-Electro-Optics-Society, Rio Grande, PR, USA, 7–11 November 2004. [Google Scholar]
- Lennox, R.; Carney, K.; Maldonado-Basilio, R.; Philippe, S.; Bradley, A.L.; Landais, P. Impact of bias current distribution on the noise figure and power saturation of a multicontact semiconductor optical amplifier. Opt. Lett. 2011, 36, 2521–2523. [Google Scholar] [CrossRef]
- Carney, K.; Lennox, R.; Maldonado-Basilio, R.; Philippe, S.; Surre, F.; Bradley, L.; Landais, P. Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: Simulation and experiment. Opt. Express 2013, 21, 7180–7195. [Google Scholar] [CrossRef] [PubMed]
- Duill, S.P.O.; Landais, P.; Barry, L.P. Estimation of the Performance Improvement of Pre-Amplified PAM4 Systems When Using Multi-Section Semiconductor Optical Amplifiers. Appl. Sci. 2017, 7, 908. [Google Scholar] [CrossRef]
- Bouzid, B. High-gain and low-noise-figure erbium-doped fiber amplifier employing dual stage quadruple pass technique. Opt. Rev. 2010, 17, 100–102. [Google Scholar] [CrossRef]
- Lavrinovica, I.; Supe, A.; Porins, J. Experimental Measurement of Erbium-Doped Optical Fibre Charecteristics for Edfa Performance Optimization. Latv. J. Phys. Tech. Sci. 2019, 56, 33–41. [Google Scholar] [CrossRef]
- Inoue, T.; Asada, M.; Yasuoka, N.; Kita, T.; Wada, O. Vertical stacking of InAs quantum dots for polarization-insensitive semiconductor optical amplifiers. In Proceedings of the Conference on Quantum Dots 2010 (QD2010), Nottingham, UK, 26–30 April 2010. [Google Scholar] [CrossRef]
- Nkanta, J.E.; Maldonado-Basilio, R.; Abdul-Majid, S.; Zhang, J.; Hall, T.J. Asymmetric MQW Semiconductor Optical Amplifier with Low-Polarization Sensitivity of over 90-nm Bandwidth. In Proceedings of the Photonics West Conference on Broadband Access Communication Technologies VIII, San Francisco, CA, USA, 4–6 February 2014. [Google Scholar] [CrossRef]
- Zali, A.R.; Stabile, R.; Calabretta, N. Low Polarization Dependent MQW Semiconductor Optical Amplifier with Tensile-Strained-Barrier Design for Optical Datacom and Telecom Networks. In Proceedings of the 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020. [Google Scholar]
- Yasuoka, N.; Kawaguchi, K.; Ebe, H.; Akiyama, T.; Ekawa, M.; Morito, K.; Sugawara, M.; Arakawa, Y. Quantum-Dot Semiconductor Optical Amplifiers With Polarization-Independent Gains in 1.5μm Wavelength Bands. IEEE Photonics Technol. Lett. 2008, 20, 1908–1910. [Google Scholar] [CrossRef]
- Hein, S.; Podemski, P.; Sek, G.; Misiewicz, J.; Ridha, P.; Fiore, A.; Patriarche, G.; Hofling, S.; Forchel, A. Columnar Quantum Dashes for Polarization Insensitive Semiconductor Optical Amplifiers. In Proceedings of the 21st International Conference on Indium Phosphide and Related Materials, Newport Beach, CA, USA, 10–14 May 2009. [Google Scholar] [CrossRef]
- Even, J.; Pedesseau, L.; Dore, F.; Boyer-Richard, S. InAs QDs on InP: Polarization insensitive SOA and non-radiative Auger processes. Opt. Quantum Electron. 2009, 40, 1233–1238. [Google Scholar] [CrossRef]
- Kaizu, T.; Kakutani, T.; Akahane, K.; Kita, T. Polarization-insensitive fiber-to-fiber gain of semiconductor optical amplifier using closely stacked InAs/GaAs quantum dots. Jpn. J. Appl. Phys. 2020, 59, 032002. [Google Scholar] [CrossRef]
- Yasuoka, N.; Ebe, H.; Kawaguchi, K.; Ekawa, M.; Sekiguchi, S.; Morito, K.; Wada, O.; Sugawara, M.; Arakawa, Y. Polarization-Insensitive Quantum Dot Semiconductor Optical Amplifiers Using Strain-Controlled Columnar Quantum Dots. J. Light. Technol. 2012, 30, 68–75. [Google Scholar] [CrossRef]
- Farmani, A.; Farhang, M.; Sheikhi, M.H. High performance polarization-independent Quantum Dot Semiconductor Optical Amplifier with 22 dB fiber to fiber gain using Mode Propagation Tuning without additional polarization controller. Opt. Laser Technol. 2017, 93, 127–132. [Google Scholar] [CrossRef]
- Borghesani, A.; Fensom, N.; Scott, A.; Crow, G.; Johnston, L.; King, J. High Saturation Power (>16.5 dBm) and Low Noise Figure (>6 dB) Semiconductor Optical Amplifier for C-Band Operation. In Proceedings of the Optical Fiber Communication Conference, Atlanta, Georgia, 28 March 2003. [Google Scholar]
- Beil, J.A.; Shimomoto, L.; Swertfeger, R.B.; Misak, S.M.; Campbell, J.; Thomas, J.; Renner, D.; Mashanovitch, M.; Leisher, P.O.; Liptak, R.W. Improvements to tapered semiconductor MOPA laser design and testing. In Proceedings of the Conference on High-Power Diode Laser Technology XVI, San Francisco, CA, USA, 29–30 January 2018. [Google Scholar] [CrossRef]
- Perez-Serrano, A.; Vilera, M.; Tijero, J.M.G.; Balle, S.; Esquivias, I. Modeling Three-Section Master Oscillator Power Amplifiers with a Voltage Driven Traveling Wave Model. In Proceedings of the Conference on Lasers and Electro-Optics Europe/European Quantum Electronics Conference, Munich, Germany, 25–29 June 2017. [Google Scholar]
- Hou, L.P.; Haji, M.; Akbar, J.; Marsh, J.H. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier. Opt. Lett. 2012, 37, 4525–4527. [Google Scholar] [CrossRef] [PubMed]
- Faugeron, M.; Krakowski, M.; Robert, Y.; Vinet, E.; Primiani, P.; Goëc, J.P.L.; Parillaud, O.; van Dijk, F.; Vilera, M.; Consoli, A.; et al. Monolithic Master Oscillator Power Amplifier at 1.58 µm for Lidar Measurements. In Proceedings of the International Conference on Space Optics, Canary Islands, Spain, 7–10 October 2014. [Google Scholar] [CrossRef]
- Perez-Serrano, A.; Tijero, J.M.G.; Balle, S.; Esquivias, I. Numerical Analysis of the Modulation Dynamics in an Integrated Three-Section MOPA Using a Voltage Driven Traveling-Wave Model. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–10. [Google Scholar] [CrossRef]
- Vilera, M.; Tijero, J.M.G.; Consoli, A.; Aguilera, S.; Adamiec, P.; Esquivias, I. Emission regimes in a distributed feedback tapered master-oscillator power-amplifier at 1.5 μm. In Proceedings of the Conference on Semiconductor Lasers and Laser Dynamics VI, Brussels, Belgium, 14–17 April 2014. [Google Scholar] [CrossRef]
- Vilera, M.; Perez-Serrano, A.; Tijero, J.M.G.; Esquivias, I. Emission Characteristics of a 1.5-μm All-Semiconductor Tapered Master Oscillator Power Amplifier. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Perez-Serrano, A.; Vilera, M.; Tijero, J.M.G.; Balle, S.; Esquivias, I. A Voltage Driven Traveling-Wave Model for the Simulation of an Integrated Three-Section MOPA Under Static and Modulated Operation. IEEE J. Quantum Elect. 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Vilera, M.; Perez-Serrano, A.; Faugeron, M.; Krakowski, M.; van Dijk, F.; Tijero, J.M.G.; Esquivias, I. Modulation Characteristics of an Integrated Three-Section Master Oscillator Power Amplifier at 1.5 μm. In Proceedings of the Conference on Lasers and Electro-Optics Europe, Munich, Germany, 25–29 June 2017. [Google Scholar]
- Faugeron, M.; Vilera, M.; Perez-Serrano, A.; Tijero, J.M.G.; Esquivias, I.; Krakowski, M.; Van Dip, F. Monolithic Integration of a High Power Semiconductor Master Oscillator Power Amplifier. In Proceedings of the IEEE Photonics Conference, Reston, VA, USA, 4–8 October 2015. [Google Scholar]
- Adamiec, P.; Bonilla, B.; Consoli, A.; Tijero, J.M.G.; Aguilera, S.; Esquivias, I.; Vilera, M.; Javaloyes, J.; Balle, S. Dynamic Response of a Monolithic Master-Oscillator Power-Amplifier at 1.5 μm. In Proceedings of the Conference on Novel In-Plane Semiconductor Lasers XII, San Francisco, CA, USA, 4–7 February 2013. [Google Scholar] [CrossRef]
- Perez-Serrano, A.; Vilera, M.; Javaloyes, J.; Tijero, J.M.G.; Esquivias, I.; Balle, S. Wavelength Jumps and Multimode Instabilities in Integrated Master Oscillator Power Amplifiers at 1.5 μm: Experiments and Theory. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 315–323. [Google Scholar] [CrossRef]
- Faugeron, M.; Vilera, M.; Krakowski, M.; Robert, Y.; Vinet, E.; Primiani, P.; Le Goec, J.P.; Parillaud, O.; Perez-Serrano, A.; Tijero, J.M.G.; et al. High Power Three-Section Integrated Master Oscillator Power Amplifier at 1.5 μm. IEEE Photonics Technol. Lett. 2015, 27, 1449–1452. [Google Scholar] [CrossRef]
- Pham, C.; Van Dijk, F.; Parillaud, O.; Vinet, E.; Robert, Y.; Garcia, M.; Larrue, A.; Faugeron, M.; Rissons, A. Modulation of Master Oscillator Power Amplifier for Free Space Optical Communications at 1.5 μm. In Proceedings of the 31st Annual IEEE Photonics Conference (IPC) of the IEEE-Photonics-Society, Reston, VA, USA, 30 September–4 October 2018. [Google Scholar]
- Pham, C.; Van Dijk, F.; Vinet, E.; Robert, Y.; Parillaud, O.; Garcia, M.; Larrue, A.; Faugeron, M.; Rissons, A. Monolithic InP Master Oscillator Power Amplifier for Free Space Optical Transmissions at 1.5 μm. In Proceedings of the Conference on Free-Space Laser Communication and Atmospheric Propagation XXX, San Francisco, CA, USA, 29–30 January 2018. [Google Scholar] [CrossRef]
- Renaudier, J.; Arnould, A.; Ghazisaeidi, A.; Gac, D.L.; Brindel, P.; Awwad, E.; Makhsiyan, M.; Mekhazni, K.; Blache, F.; Boutin, A.; et al. Recent Advances in 100+nm Ultra-Wideband Fiber-Optic Transmission Systems Using Semiconductor Optical Amplifiers. J. Light. Technol. 2020, 38, 1071–1079. [Google Scholar] [CrossRef]
- Pham, C.; Duport, F.; Brenot, R.; Paret, J.-F.; Garreau, A.; Gomez, C.; Fortin, C.; Mekhazni, K.; van Dijk, F. Modulation of a High Power Semiconductor Optical Amplifier for Free Space Communications. J. Light. Technol. 2020, 38, 1836–1843. [Google Scholar] [CrossRef]
- Lam, C.F.; Akatsu, Y.; Fan, C.; Hanik, N.; Oguchi, K. Semiconductor Optical Amplifier Transceivers for WDM Access Systems. In Proceedings of the Asia-Pacific Optical and Wireless Communications Conference, Wuhan, China, 4–6 November 2003. [Google Scholar] [CrossRef]
- Lee, H.H.; Seo, D.D.; Lee, D.; Han, J.S.; Chung, H.S.; Lee, H.J.; Chu, M.J. Demonstration of 16 × 10 Gb/s WDM transmissions over 5 × 80 km using gain-clamped semiconductor optical amplifiers in combination with distributed Raman fiber amplifiers as inline amplifiers under dynamic add-drop situations. IEEE Photonics Technol. Lett. 2003, 15, 1621–1623. [Google Scholar] [CrossRef]
- Lu, H.-H. 256-QAM WDM system transmitted over 80 km of single-mode fiber using a 1.3-μm semiconductor optical amplifier. Opt. Eng. 2002, 41, 2707. [Google Scholar] [CrossRef]
- Rogowski, T.; Faralli, S.; Bolognini, G.; Di Pasquale, F.; Di Muro, R.; Nayar, B. SOA-Based WDM Metro Ring Networks With Link Control Technologies. IEEE Photonics Technol. Lett. 2007, 19, 1670–1672. [Google Scholar] [CrossRef]
- Ivaniga, T.; Ovsenik, L.; Turan, J. (Eds.) The Four-Channel WDM System Using Semiconductor Optical Amplifier. In Proceedings of the 26th International Conference on Radio Elektronika, Kosice, Slovakia, 19–20 April 2016. [Google Scholar]
- Ghazisaeidi, A. Theory of Coherent WDM Systems Using In-Line Semiconductor Optical Amplifiers. J. Light. Technol. 2019, 37, 4188–4200. [Google Scholar] [CrossRef]
- Koenig, S.; Bonk, R.; Schmuck, H.; Poehlmann, W.; Pfeiffer, T.; Koos, C.; Freude, W.; Leuthold, J. Amplification of advanced modulation formats with a semiconductor optical amplifier cascade. Opt. Express 2014, 22, 17854–17871. [Google Scholar] [CrossRef]
- Niclass, C.; Ito, K.; Soga, M.; Matsubara, H.; Aoyagi, I.; Kato, S.; Kagami, M. Design and characterization of a 256 × 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor. Opt. Express 2012, 20, 11863–11881. [Google Scholar] [CrossRef]
- Schwarz, B. Mapping the world in 3D. Nat. Photonics 2010, 4, 429–430. [Google Scholar] [CrossRef]
- Li, N.; Ho, C.P.; Xue, J.; Lim, L.W.; Chen, G.; Fu, Y.H.; Lee, L.Y.T. A Progress Review on Solid-State LiDAR and Nanophotonics-Based LiDAR Sensors. Laser Photonics Rev. 2022, 16, 2100511. [Google Scholar] [CrossRef]
- Niclass, C.; Inoue, D.; Matsubara, H.; Ichikawa, T.; Soga, M. Development of Automotive LIDAR. Electron. Commun. Jpn. 2015, 98, 28–33. [Google Scholar] [CrossRef]
- Pearson, G.N.; Ridley, K.D.; Willetts, D.V. Chirp-pulse-compression three-dimensional lidar imager with fiber optics. Appl. Opt. 2005, 44, 257–265. [Google Scholar] [CrossRef]
- Nehrir, A.R.; Repasky, K.S.; Carlsten, J.L. Micropulse water vapor differential absorption lidar: Transmitter design and performance. Opt. Express 2012, 20, 25137–25151. [Google Scholar] [CrossRef] [PubMed]
- Fridlander, J.; Sang, F.; Rosborough, V.; Gambini, F.; Suran-Brunelli, S.T.; Chen, J.R.; Numata, K.; Stephen, M.; Coldren, L.A.; Klamkin, J. Dual Laser Indium Phosphide Photonic Integrated Circuit for Integrated Path Differential Absorption Lidar. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–8. [Google Scholar] [CrossRef]
- Liang, M.; Liu, Q.; Hu, W.; Zhu, N.H.; Hofmann, W.H.; He, J.-J. 1550 nm Monolithic MOPA Diode Laser for Lidar Applications. In Proceedings of the Conference on Semiconductor Lasers and Applications IX, Hangzhou, China, 21–23 October 2019; Volume 11182, p. 1118207. [Google Scholar] [CrossRef]
- Haraguchi, E.; Ono, H.; Ando, T. Optical frequency deviation compensation using pulsed serrodyne technique on coherent laser transmitter for wind sensing lidar. Appl. Phys. Express 2019, 12, 052006. [Google Scholar] [CrossRef]
- Esquivias, I.; Consoli, A.; Krakowski, M.; Faugeron, M.; Kochem, G.; Traub, M.; Barbero, J.; Fiadino, P.; Ai, X.; Rarity, J.; et al. High-Brightness All Semiconductor Laser at 1.57 μm for Space-Borne Lidar Measurements of Atmospheric Carbon Dioxide: Device Design and Analysis of Requirements. In Proceedings of the Conference on Laser Sources and Applications II, Brussels, Belgium, 14–17 April 2014. [Google Scholar] [CrossRef]
- Vilera, M.; Perez-Serrano, A.; Faugeron, M.; Tijero, J.M.G.; Krakowski, M.; van Dijk, F.; Esquivias, I. Modulation Performance of Three-Section Integrated MOPAs for Pseudorandom Lidar. IEEE Photonics Technol. Lett. 2017, 29, 1486–1489. [Google Scholar] [CrossRef]
- Canoglu, E.; Gao, Y.; Pan, X.; Dayel, M.; Carney, R.; Boudreau, M.; Yamada, K. Semiconductor Lasers and Optical Amplifiers for LiDAR Photonic Integrated Circuits. In Proceedings of the 27th International Semiconductor Laser Conference (ISLC), Potsdam, Germany, 10–14 October 2021. [Google Scholar] [CrossRef]
- Ramírez, J.M.; Fanneau de la Horie, P.; Provost, J.-G.; Malhouitre, S.; Néel, D.; Jany, C.; Besancon, C.; Vaissiere, N.; Decobert, J.; Hassan, K.; et al. Low-Threshold, High-Power On-Chip Tunable III-V/Si Lasers with Integrated Semiconductor Optical Amplifiers. Appl. Sci. 2021, 11, 1096. [Google Scholar] [CrossRef]
- Cheung, S.; Kawakita, Y.; Shang, K.; Yoo, S.J. Highly efficient chip-scale III-V/silicon hybrid optical amplifiers. Opt. Express 2015, 23, 22431–22443. [Google Scholar] [CrossRef]
- Sato, K.; Kobayashi, N.; Namiwaka, M.; Yamamoto, K.; Kita, T.; Yamada, H.; Yamazaki, H. High Output Power and Narrow Linewidth Silicon Photonic Hybrid Ring-Filter External Cavity Wavelength Tunable Lasers. In Proceedings of the 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014. [Google Scholar] [CrossRef]
- Valicourt, G.D.; Maho, A.; Liepvre, A.L.; Brenot, R.; Velázquez, A.; Chen, Y.K. Novel Bidirectional Reflective Semiconductor Optical Amplifier. In Proceedings of the 21st International Optoelectronics and Communications Conference (OECC)/International Conference on Photonics in Switching (PS), Niigata, Japan, 3–7 July 2016. [Google Scholar]
- Liu, J.F.; Sun, X.C.; Camacho-Aguilera, R.; Kimerling, L.C.; Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 2010, 35, 679–681. [Google Scholar] [CrossRef]
- Liu, A.Y.; Zhang, C.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J.M.; Liu, A.W.K.; Gossard, A.C.; Bowers, J.E. High performance continuous wave 1.3μm quantum dot lasers on silicon. Appl. Phys. Lett. 2014, 104, 041104. [Google Scholar] [CrossRef]
- Davenport, M.L.; Skendzic, S.; Volet, N.; Hulme, J.C.; Heck, M.J.R.; Bowers, J.E. Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 78–88. [Google Scholar] [CrossRef]
- Van Gasse, K.; Wang, R.; Roelkens, G. 27 dB gain III-V-on-silicon semiconductor optical amplifier with > 17 dBm output power. Opt. Express 2019, 27, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Shebl, A.; Othman, A.M.; Mahmoud, A.; Albert, G.; Sabry, Y.M.; Sharaf, K.; Khalil, D. Ring Laser Gyroscope Based on Standard Single-Mode Fiber and Semiconductor Optical Amplifier. In Proceedings of the 33rd National Radio Science Conference (NRSC), Aswan, Egypt, 22–25 February 2016. [Google Scholar]
- Ishida, T.; Tamura, S.; Sunada, S.; Inagaki, K.; Saito, S.; Harayama, T. Improvement of Accuracy of Angular Velocity Detection in Semiconductor Fiber-Optic Ring Laser Gyroscope. In Proceedings of the 19th International Conference on Optical Fibre Sensors, Perth, Australia, 15–18 April 2008. [Google Scholar]
- Udd, E.; Tamura, S.; Inagaki, K.; Noto, H.; Harayama, T. Experimental Investigation of Sagnac Beat Signals Using Semiconductor Fiber-Optic Ring Laser Gyroscope (S-FOG) Based on Semiconductor Optical Amplifier (SOA). In Proceedings of the Conference on Fiber Optic Sensors and Applications V, Boston, MA, USA, 10–12 September 2007. [Google Scholar]
- Marazzi, L.; Boletti, A.; Parolari, P.; Gatto, A.; Brenot, R.; Martinelli, M. Relative intensity noise suppression in reflective SOAs. Opt. Commun. 2014, 318, 186–188. [Google Scholar] [CrossRef]
- Sampson, D.D.; Inagaki, K.; Tamura, S.; Tanaka, T.; Noto, H.; Harayama, T. Earth’s Rotation Rate Detection Using an Extremely Large Semiconductor Fiber Optic Gyroscope Extending over 10,000 m2. In Proceedings of the 19th International Conference on Optical Fibre Sensors, Perth, Australia, 15–18 April 2008. [Google Scholar]
- Liu, X.; Wang, X.; Yu, J.; Gan, R.; Wang, H. Relative Intensity Noise Suppression of Intensity Modulator and Semiconductor Optical Amplifier. In Proceedings of the Eleventh International Conference on Information Optics and Photonics (CIOP 2019), Xi’an, China, 6–9 August 2019. [Google Scholar] [CrossRef]
- Hemmati, H.; Hakimi, F.; Moores, J.D.; Boroson, D.M. RIN-Suppressed Ultralow Noise Interferometric Fiber Optic Gyroscopes (IFOGs) for Improving Inertial Stabilization of Space Telescopes. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXV, San Francisco, CA, USA, 5–7 February 2013. [Google Scholar] [CrossRef]
References | Time | Research Group | Structure | Gain | 3 dB Gain Bandwidth | Saturation Output Power |
---|---|---|---|---|---|---|
Ref. [85] | 2003 | Borghesani, A | Strained MQW | 17 dB | - | 16.5 dBm |
Ref. [53] | 2003 | Morito K | Strained MQW | 19 dB | - | 17 dBm |
Ref. [52] | 2005 | Morito K | Strained MQW | 15 dB | - | 22 dBm |
Ref. [5] | 2005 | Morito K | Strained MQW | 15 dB | 120 nm | 19.6 dBm |
Ref. [55] | 2005 | Akiyama T | Tilted QD | 25 dB | 90 nm | 22 dBm |
Ref. [49] | 2005 | Juodawlkis PW | SCOWA | 13 dB | >115 nm | 31 dBm |
Ref. [54] | 2006 | Morito K | Strained MQW | 10.4 dB | - | 20 dBm |
Ref. [19] | 2008 | Morito K | MQW | 12.6 dB | 90 nm | 12.8 dBm |
Ref. [68] | 2011 | Juodawlkis PW | SCOWA | 12.8 dB | >100 nm | 29 dBm |
Ref. [50] | 2011 | Juodawlkis PW | VC-SCOWA | 21.1 dB | 120 nm | 27.6 dBm |
Ref. [22] | 2012 | Smith GM | SCOWA | - | - | 31.7 dBm |
Ref. [83] | 2012 | Yasuoka N | QD | 8 dB | >80 nm | 18.5 dBm |
Ref. [56] | 2018 | Eyal, O | QD | 20 dB | - | 9.6 dBm |
Ref. [26] | 2021 | Wang LJ | Tapered MQW | 13.8 dB | 70 nm | 27.8 dBm |
Ref. [40] | 2023 | Leisher | Tapered MQW | - | - | >34.7 dBm |
References | Time | Research Group | Structure | Noise Figure |
---|---|---|---|---|
Ref. [85] | 2003 | Borghesani, A | Strained MQW | 6 dB |
Ref. [53] | 2003 | Morito K | Strained MQW | 7 dB |
Ref. [70] | 2004 | Saini SS | Cascade | 5.6 dB |
Ref. [52] | 2005 | Morito K | Strained MQW | 5.7 dB |
Ref. [5] | 2005 | Morito K | Strained MQW | 4.5 dB |
Ref. [55] | 2005 | Akiyama T | Tilted QD | 5 dB |
Ref. [54] | 2006 | Morito K | Strained MQW | 6 dB |
Ref. [19] | 2008 | Morito K | MQW | 6.5 dB |
Ref. [62] | 2010 | Hasegawa H | MQW | 3.7 dB |
Ref. [68] | 2011 | Juodawlkis PW | SCOWA | 5.5 dB |
Ref. [71] | 2011 | Bradley, AL | Cascade | 5 dB |
Ref. [8] | 2013 | Carney K | Cascade | 3.8 dB |
Ref. [60] | 2015 | Mazzucato | Bulk | <5 dB |
Ref. [61] | 2021 | Yu, SQ | MQW | 6.5 dB |
References | Time | Research Group | Structure | Polarization-Dependent Gain |
---|---|---|---|---|
Ref. [85] | 2003 | Borghesani, A | Strained MQW | 0.8 dB |
Ref. [53] | 2003 | Morito K | Strained MQW | 0.2 dB |
Ref. [52] | 2005 | Morito K | Strained MQW | 0.5 dB |
Ref. [54] | 2006 | Morito K | Strained MQW | 0.6 dB |
Ref. [19] | 2008 | Morito K | MQW | 0.8 dB |
Ref. [83] | 2012 | Yasuoka N | QD | 0.4 dB |
Ref. [84] | 2017 | Farmani A | QD | 0.1 dB |
Ref. [78] | 2020 | Zali | Strained MQW | <3 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Yang, C.; Qin, L.; Liang, L.; Lei, Y.; Jia, P.; Chen, Y.; Wang, Y.; Song, Y.; Qiu, C.; et al. A Review of High-Power Semiconductor Optical Amplifiers in the 1550 nm Band. Sensors 2023, 23, 7326. https://doi.org/10.3390/s23177326
Tang H, Yang C, Qin L, Liang L, Lei Y, Jia P, Chen Y, Wang Y, Song Y, Qiu C, et al. A Review of High-Power Semiconductor Optical Amplifiers in the 1550 nm Band. Sensors. 2023; 23(17):7326. https://doi.org/10.3390/s23177326
Chicago/Turabian StyleTang, Hui, Changjin Yang, Li Qin, Lei Liang, Yuxin Lei, Peng Jia, Yongyi Chen, Yubing Wang, Yue Song, Cheng Qiu, and et al. 2023. "A Review of High-Power Semiconductor Optical Amplifiers in the 1550 nm Band" Sensors 23, no. 17: 7326. https://doi.org/10.3390/s23177326
APA StyleTang, H., Yang, C., Qin, L., Liang, L., Lei, Y., Jia, P., Chen, Y., Wang, Y., Song, Y., Qiu, C., Zheng, C., Li, X., Li, D., & Wang, L. (2023). A Review of High-Power Semiconductor Optical Amplifiers in the 1550 nm Band. Sensors, 23(17), 7326. https://doi.org/10.3390/s23177326