Monitoring Inattention in Construction Workers Caused by Physical Fatigue Using Electrocardiograph (ECG) and Galvanic Skin Response (GSR) Sensors
<p>Design of the cognitive task.</p> "> Figure 2
<p>Processes of prediction model development.</p> "> Figure 3
<p>Rating of concentration (<b>A</b>), reaction time (<b>B</b>), and task accuracy (<b>C</b>) before and after physical fatigue. ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 4
<p>Confusion matrix and evaluation metrics.</p> "> Figure 5
<p>ROC curves of prediction models.</p> ">
Abstract
:1. Introduction
2. Literature Review
2.1. Physical Fatigue and Inattention
2.2. Attention and Occupational Safety
2.3. Inattention Measurement
3. Methodology
3.1. Experimental Design
3.1.1. Subjects
3.1.2. Apparatus
3.1.3. Experiment Task
3.1.4. Experiment Procedure
3.2. Physiological Signal Preprocessing and Feature Computation
3.3. Statistical Analysis Method
3.4. Prediction Model Development
4. Results
4.1. Subjective Reports and Task Performance
4.2. Statistical Analysis
4.3. Prediction Accuracy and Evaluation of Prediction Models
5. Discussion
5.1. Physiological Parameters and Inattention
5.2. Performance of Supervised Learning Algorithms
6. Conclusions, Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nnaji, C.; Gambatese, J.A. Worker Distraction Impacts on Safety and Work Quality: An Energy Component. In Proceedings of the Construction Research Congress 2016, San Juan, Puerto Rico, 31 May–2 June 2016; pp. 3005–3014. [Google Scholar] [CrossRef]
- Jeelani, I.; Albert, A.; Gambatese, J.A. Why Do Construction Hazards Remain Unrecognized at the Work Interface? J. Constr. Eng. Manag. 2017, 143, 04016128. [Google Scholar] [CrossRef]
- Kazar, G.; Comu, S. Exploring the relations between the physiological factors and the likelihood of accidents on construction sites. Eng. Constr. Archit. Manag. 2022, 29, 456–475. [Google Scholar] [CrossRef]
- Gawron, V.J.; French, J.; Funke, D. An Overview of Fatigue, Stress, Workload, and Fatigue; CRC Press: Boca Raton, FL, USA, 2000; pp. 581–595. [Google Scholar]
- Ibrahim, A.; Nnaji, C.; Namian, M.; Koh, A.; Techera, U. Investigating the impact of physical fatigue on construction workers’ situational awareness. Saf. Sci. 2023, 163, 106103. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiang, T.; Guo, H.; Ma, L.; Guan, Z.; Fang, Y. Impact of physical and mental fatigue on construction workers’ unsafe behavior based on physiological measurement. J. Saf. Res. 2023, 85, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Hanapi, N.M.; Kamal, M.M.M.; Ismail, M.I.; Abdullah, I.A.P. Identifying Root Causes and Mitigation Measures of Construction Fall Accidents. Gading Bus. Manag. J. 2017, 17, 65–79. [Google Scholar]
- Neri, L.; Oberdier, M.T.; van Abeelen, K.C.J.; Menghini, L.; Tumarkin, E.; Tripathi, H.; Jaipalli, S.; Orro, A.; Paolocci, N.; Gallelli, I.; et al. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. Sensors 2023, 23, 4805. [Google Scholar] [CrossRef]
- Saedi, S.; Fini, A.A.F.; Khanzadi, M.; Wong, J.; Sheikhkhoshkar, M.; Banaei, M. Applications of electroencephalography in construction. Autom. Constr. 2022, 133, 103985. [Google Scholar] [CrossRef]
- Prasad, K.M.S.; Ramaiah, G.N.K.; Manjunatha, M.B. Speech features extraction techniques for robust emotional speech analysis/recognition. Indian J. Sci. Technol. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Lecca, L.I.; Fadda, P.; Fancello, G.; Medda, A.; Meloni, M. Cardiac Autonomic Control and Neural Arousal as Indexes of Fatigue in Professional Bus Drivers. Saf. Health Work. 2022, 13, 148–154. [Google Scholar] [CrossRef]
- LaRocco, J.; Le, M.D.; Paeng, D.-G. A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Front. Neuroinform. 2020, 14, 553352. [Google Scholar] [CrossRef]
- Yamamoto, T. The relationship between central fatigue and Attention Deficit/Hyperactivity Disorder of the inattentive type. Neurochem. Res. 2022, 47, 2890–2898. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.E.; Mather, M. Comparison of two isometric handgrip protocols on sympathetic arousal in women. Physiol. Behav. 2015, 142, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Davey, C.P. Physical Exertion and Mental Performance. Ergonomics 1973, 16, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Wingelaar-Jagt, Y.Q.; Wingelaar, T.T.; Riedel, W.J.; Ramaekers, J.G. Fatigue in Aviation: Safety Risks, Preventive Strategies and Pharmacological Interventions. Front. Physiol. 2021, 12, 712628. [Google Scholar] [CrossRef]
- Huxhold, O.; Li, S.-C.; Schmiedek, F.; Lindenberger, U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 2006, 69, 294–305. [Google Scholar] [CrossRef]
- Labelle, V.; Bosquet, L.; Mekary, S.; Bherer, L. Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain Cogn. 2013, 81, 10–17. [Google Scholar] [CrossRef]
- Park, H.B.; Ahn, S.; Zhang, W. Visual search under physical effort is faster but more vulnerable to distractor interference. Cogn. Res. Princ. Implic. 2021, 6, 17. [Google Scholar] [CrossRef]
- Soetens, E.; Hueting, J.; Wauters, F. Traces of fatigue in an attention task. Bull. Psychon. Soc. 1992, 30, 97–100. [Google Scholar] [CrossRef]
- Posner, M.I.; Snyder, C.R.; Davidson, B.J. Attention and the detection of signals. J. Exp. Psychol. Gen. 1980, 109, 160. [Google Scholar] [CrossRef]
- Wickens, C.D.; Goh, J.; Helleberg, J.; Horrey, W.J.; Talleur, D.A. Attentional models of multitask pilot performance using advanced display technology. In Human Error in Aviation; Routledge: Oxfordshire, UK, 2017; pp. 155–175. [Google Scholar]
- Jeelani, I.; Albert, A.; Han, K.; Azevedo, R. Are Visual Search Patterns Predictive of Hazard Recognition Performance? Empirical Investigation Using Eye-Tracking Technology. J. Constr. Eng. Manag. 2019, 145, 04018115. [Google Scholar] [CrossRef]
- Aroke, O.; Esmaeili, B.; Hasanzadeh, S.; Michael, D.D.; Brock, R. The Role of Work Experience on Hazard Identification: Assessing the Mediating Effect of Inattention under Fall-Hazard Conditions. In Proceedings of the Construction Research Congress 2020, Tempe, AZ, USA, 8–10 March 2020; pp. 509–519. [Google Scholar] [CrossRef]
- Hinze, J. The distractions theory of accident causation. CIB Rep. 1997, 112–121. [Google Scholar]
- Namian, M.; Albert, A.; Feng, J. Effect of Distraction on Hazard Recognition and Safety Risk Perception. J. Constr. Eng. Manag. 2018, 144, 04018008. [Google Scholar] [CrossRef]
- Laeequddin, M.; Waheed, K.A.; Sahay, V. Measuring Mindfulness in Business School Students: A Comparative Analysis of Mindful Attention Awareness Scale and Langer’s Scale. Behav. Sci. 2023, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Huang, Y.; Song, X.; Ye, Q. Development and validation of children’s mind wandering scales. Front. Public Health 2022, 10, 1054023. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.L.; Roberts, D.M.; Barragan, D.; Lee, J.D.; Lerner, N.; Higgins, J.S. Detecting and quantifying mind wandering during simulated driving. Front. Hum. Neurosci. 2017, 11, 406. [Google Scholar] [CrossRef]
- Ke, J.; Zhang, M.; Luo, X.; Chen, J. Monitoring distraction of construction workers caused by noise using a wearable Electroencephalography (EEG) device. Autom. Constr. 2021, 125, 103598. [Google Scholar] [CrossRef]
- Mao, A.H.; Du, Z.H.; Lu, D.Y.; Luo, J. Attention emotion recognition via ECG signals. Quant. Biol. 2022, 10, 276–286. [Google Scholar] [CrossRef]
- Carreiras, C.; Lourenço, A.; Aidos, H.; da Silva, H.P.; Fred, A.L.N. Unsupervised Analysis of Morphological ECG Features for Attention Detection; Springer: Berlin/Heidelberg, Germany, 2016; pp. 437–453. [Google Scholar]
- Berntson, G.G.; Cacioppo, J.T. Heart Rate Variability: Stress and Psychiatric Conditions. Dyn. Electrocardiogr. 2004, 57–64. [Google Scholar] [CrossRef]
- Pham, T.; Lau, Z.J.; Chen, S.H.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Wang, C.-J.; Chen, E.L.; Wu, C.-K.; Yang, Y.K.; Wang, J.-S.; Chung, P.-C. Detecting Sustained Attention during Cognitive Work Using Heart Rate Variability. In Proceedings of the 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Darmstadt, Germany, 15–17 October 2010; pp. 372–375. [Google Scholar]
- Börger, N.; van Der Meere, J.; Ronner, A.; Alberts, E.; Geuze, R.; Bogte, H. Heart Rate Variability and Sustained Attention in ADHD Children. J. Abnorm. Child Psychol. 1999, 27, 25–33. [Google Scholar] [CrossRef]
- Yu, L.; Sun, X.H.; Zhang, K. Driving Distraction Analysis by ECG Signals: An Entropy Analysis. Int. Des. Glob. Dev. 2011, 6775, 258–264. [Google Scholar]
- Deshmukh, S.V.; Dehzangi, O. Characterization and identification of driver distraction during naturalistic driving: An analysis of ECG dynamics. In Advances in Body Area Networks I; Internet of Things; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–13. [Google Scholar]
- Zhao, X.H.; Xu, W.X.; Yao, Y.; Rong, J. Research on psychological reaction of driving distraction based on sample entropy. Lect. Notes Electr. Eng. 2019, 503, 263–271. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef]
- Raskin, D.C. Attention and arousal. In Electrodermal Activity in Psychological Research; Elsevier: Amsterdam, The Netherlands, 1973; pp. 125–155. [Google Scholar]
- Rajendra, V.; Dehzangi, O. Detection of distraction under naturalistic driving using Galvanic Skin Responses. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 157–160. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Shu, W.; Tsen, H.P. Exploring cognitive distraction of galvanic skin response while driving: An artificial intelligence modeling. J. Adv. Inf. Technol. 2020, 11, 35–39. [Google Scholar] [CrossRef]
- Dehzangi, O.; Rajendra, V. Wearable galvanic skin response for characterization and identification of distraction during naturalistic driving. In Advances in Body Area Networks I; Internet of Things; Springer: Berlin/Heidelberg, Germany, 2019; pp. 15–27. [Google Scholar]
- Fenning, R.M.; Baker, J.K.; Baucom, B.R.; Erath, S.A.; Howland, M.A.; Moffitt, J. Electrodermal Variability and Symptom Severity in Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 1062–1072. [Google Scholar] [CrossRef]
- Gowdham, G.; Shetty, A.A.; Hegde, A.; Suresh, L.R. Impact of music distraction on dental anxiety in children having intellectual disability. Int. J. Clin. Pediatr. Dent. 2021, 14, 170–174. [Google Scholar] [CrossRef]
- Lazzaro, I.; Gordon, E.; Li, W.; Lim, C.L.; Plahn, M.; Whitmont, S.; Clarke, S.; Barry, R.J.; Dosen, A.; Meares, R. Simultaneous EEG and EDA measures in adolescent attention deficit hyperactivity disorder. Int. J. Psychophysiol. 1999, 34, 123–134. [Google Scholar] [CrossRef]
- Zhang, M. Association between Fatigue and Safety Performance of Construction Workers. Ph.D. Thesis, Tsinghua University, Beijing, China, 2014. [Google Scholar]
- Aryal, A.; Ghahramani, A.; Becerik-Gerber, B. Monitoring fatigue in construction workers using physiological measurements. Autom. Constr. 2017, 82, 154–165. [Google Scholar] [CrossRef]
- Fang, D.; Jiang, Z.; Zhang, M.; Wang, H. An experimental method to study the effect of fatigue on construction workers’ safety performance. Saf. Sci. 2015, 73, 80–91. [Google Scholar] [CrossRef]
- Xing, X.; Zhong, B.; Luo, H.; Rose, T.; Li, J.; Antwi-Afari, M.F. Effects of physical fatigue on the induction of mental fatigue of construction workers: A pilot study based on a neurophysiological approach. Autom. Constr. 2020, 120, 103381. [Google Scholar] [CrossRef]
- Anwer, S.; Li, H.; Antwi-Afari, M.F.; Umer, W.; Wong, A.Y.L. Cardiorespiratory and Thermoregulatory Parameters Are Good Surrogates for Measuring Physical Fatigue during a Simulated Construction Task. Int. J. Environ. Res. Public Health 2020, 17, 5418. [Google Scholar] [CrossRef] [PubMed]
- Umer, W.; Li, H.; Yantao, Y.; Antwi-Afari, M.F.; Anwer, S.; Luo, X. Physical exertion modeling for construction tasks using combined cardiorespiratory and thermoregulatory measures. Autom. Constr. 2020, 112, 103079. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Eston, R. Use of Ratings of Perceived Exertion in Sports. Int. J. Sports Physiol. Perform. 2012, 7, 175–182. [Google Scholar] [CrossRef]
- Shalev, L.; Ben-Simon, A.; Mevorach, C.; Cohen, Y.; Tsal, Y. Conjunctive Continuous Performance Task (CCPT)—A pure measure of sustained attention. Neuropsychologia 2011, 49, 2584–2591. [Google Scholar] [CrossRef]
- Spapé, M.; Verdonschot, R.; Steenbergen, H. The E-Primer: An Introduction to Creating Psychological Experiments in E-Prime, 2nd ed.; Leiden University Press: Leiden, The Netherlands, 2019. [Google Scholar]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. BME 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Clifford, G.D.; Tarassenko, L. Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans. Biomed. Eng. 2005, 52, 630–638. [Google Scholar] [CrossRef]
- Najafi, T.A.; Affanni, A.; Rinaldo, R.; Zontone, P. Driver Attention Assessment Using Physiological Measures from EEG, ECG, and EDA Signals. Sensors 2023, 23, 2039. [Google Scholar] [CrossRef]
- Xue, Z.R.; Yang, L.N.; Rattadilok, P.; Li, S.S.; Gao, L.Y. Quantifying the Effects of Temperature and Noise on Attention-Level Using EDA and EEG Sensors. Health Inf. Sci. HIS 2019, 11837, 250–262. [Google Scholar]
- Avila, U.R.-D.; Braga, I.C.; Barbosa, C.P.; Leocadio-Miguel, M.A.; Fontanelle-Araujo, J. The Variability of Heart Rate (HRV) as an Objective Measurement of Sustained Attention in the Classroom. Duazary 2019, 16, 395–402. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef]
- Huang, S.T.; Li, J.; Zhang, P.Z.; Zhang, W.Q. Detection of mental fatigue state with wearable ECG devices. Int. J. Med. Inform. 2018, 119, 39–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Kaber, D. Evaluation of Strategies for Integrated Classification of Visual-Manual and Cognitive Distractions in Driving. Hum. Factors 2016, 58, 944–958. [Google Scholar] [CrossRef]
- Esterman, M.; Tamber-Rosenau, B.J.; Chiu, Y.C.; Yantis, S. Avoiding non-independence in fMRI data analysis: Leave one subject out. Neuroimage 2010, 50, 572–576. [Google Scholar] [CrossRef]
- Richards, J.E.; Casey, B.J. Heart Rate Variability During Attention Phases in Young Infants. Psychophysiology 1991, 28, 43–53. [Google Scholar] [CrossRef]
- Gao, R.; Yan, H.; Duan, J.; Gao, Y.; Cao, C.; Li, L.; Guo, L. Study on the nonfatigue and fatigue states of orchard workers based on electrocardiogram signal analysis. Sci. Rep. 2022, 12, 4858. [Google Scholar] [CrossRef]
- Kuan-Ming, L.; Chih-Jen, L. A study on reduced support vector machines. IEEE Trans. Neural Netw. 2003, 14, 1449–1459. [Google Scholar] [CrossRef]
- Deng, Z.; Zhu, X.; Cheng, D.; Zong, M.; Zhang, S. Efficient kNN classification algorithm for big data. Neurocomputing 2016, 195, 143–148. [Google Scholar] [CrossRef]
HRV Features | Unit | Description |
---|---|---|
Time-domain features | ||
mRR | [ms] | The mean of RR intervals |
SDRR | [ms] | The standard deviation of RR intervals |
RMSSD | [ms] | The square root of the mean squared differences between successive RR intervals |
pNN50 | [%] | Number of interval differences of successive RR intervals greater than 50 ms |
Frequency-domain features | ||
VLF | [ms2] | Absolute powers of very low frequency band (0–0.04 Hz) |
LF | [ms2] | Absolute powers of low frequency band (0.04–0.15 Hz) |
HF | [ms2] | Absolute powers of high frequency band (0.15–0.4 Hz) |
TP | [ms2] | The total energy of RR intervals |
LF/HF | [n.u.] | The ratio between LF and HF band powers |
nLF | [n.u.] | Normalized low frequency power |
nHF | [n.u.] | Normalized high frequency power |
Nonlinear features | ||
SD2/SD1 | - | Ratio between SD2 and SD1 |
ApEn | - | Approximate entropy |
SampEn | - | Sample entropy |
GSR Features | Unit | Description |
---|---|---|
SCR | [muS] | Average phasic driver within response window |
nSCR | - | Number of significant SCRs within response window |
ISCR | [muS∗s] | Area (i.e., time integral) of phasic driver within response window |
Latency | [s] | Response latency of first significant SCR within response window |
AmpSum | [muS] | Sum of SCR-amplitudes of significant SCRs within response window |
PhasicMax | [muS] | Maximum value of phasic activity within response window |
Tonic | - | Mean tonic activity within response window |
HRV Features | Median (P25, P75) or Mean ± SD | p-Value of Shapiro-Wilk Test | t (z) | p | |
---|---|---|---|---|---|
Condition1 | Condition2 | ||||
mRR | 884.06 (869.48, 921.66) | 894.45 (873.34, 945.34) | 0.004 b | (−2.026) | 0.043 * |
SDRR | 22.86 ± 6.97 | 25.78 ± 5.29 | 0.065 a | −3.425 | 0.002 ** |
RMSSD | 26.85 ± 7.72 | 28.62 ± 8.19 | 0.257 a | −2.242 | 0.033 * |
PNN50 | 6.59 ± 6.10 | 8.84 ± 8.13 | 0.741 a | −2.766 | 0.010 * |
VLF | 22.39 (12.57, 53.25) | 32.56 (27.92, 72.17) | 0.002 b | (−1.450) | 0.147 |
LF | 105.18 (73.20, 296.07) | 291.91 (173.14, 365.52) | 0.008 b | (−3.445) | 0.001 ** |
HF | 213.87 ± 160.59 | 224.99 ± 146.28 | 0.978 a | −1.132 | 0.267 |
TP | 432.39 ± 276.46 | 594.09 ± 196.07 | 0.066 a | −3.941 | <0.001 ** |
LF/HF | 1.94 (0.44, 3.42) | 0.72 (0.45, 1.79) | 0.005 b | (−2.931) | 0.003 ** |
nLF | 41.70 (30.64, 64.04) | 65.93 (30.47, 77.23) | 0.002 b | (−2.499) | 0.012 * |
nHF | 58.27 (35.88, 69.09) | 34.02 (22.72, 69.51) | 0.002 b | (−2.499) | 0.012 * |
SD1/SD2 | 1.45 (1.00, 1.55) | 1.41 (1.17, 1.79) | <0.001 b | (−2.170) | 0.030 * |
ApEn | 1.14 (1.10, 1.18) | 1.12 (1.10, 1.15) | 0.009 b | (−0.504) | 0.614 |
SampEn | 1.80 (1.68, 1.87) | 1.78 (1.72, 1.89) | <0.001 b | (0.298) | 0.766 |
GSR Features | Median (P25, P75) or Mean ± SD | p-Value of Shapiro-Wilk Test | t (z) | p | |
---|---|---|---|---|---|
Condition1 | Condition2 | ||||
SCR | 0.05 (0.02, 0.12) | 0.05 (0.13, 0.10) | <0.001 b | (−0.957) | 0.339 |
nSCR | 80.50 (32.25, 113.75) | 60.50 (24.00, 126.00) | 0.014 b | (−0.119) | 0.905 |
ISCR | 14.61 (6.07, 35.71) | 16.05(3.85, 30.83) | <0.001 b | (−0.957) | 0.339 |
Latency | 1.00 (0.68, 1.75) | 3.95 (0.80, 1.35) | <0.001 b | (−3.261) | 0.001 ** |
Tonic | 1.22 ± 0.78 | 1.17 ± 0.85 | 0.400 a | 0.668 | 0.509 |
AmpSum | 3.41 (0.85, 9.20) | 3.33 (0.49, 7.34) | <0.001 b | (−0.915) | 0.360 |
PhasicMax | 0.92 (0.67, 2.42) | 1.23 (0.53, 2.32) | <0.001 b | (−0.977) | 0.329 |
Feature Combination | KNN | SVM | LDA | RF | |
---|---|---|---|---|---|
HRV features n = 8 | SDRR, PNN50, LF, TP, LF/HF, nLF, nHF, SD1/SD2 | 88.33% (k = 2) | 86.67% | 63.33% | 80.00% |
GSR features n = 7 | SCR, nSCR, ISCR, Latency, Tonic, AmpSum, PhasicMax | 76.67% (k = 1) | 58.33% | 46.67% | 63.33% |
HRV and GSR features n = 17 | mRR, RMSSD, SDRR, PNN50, LF, TP, LF/HF, nLF, nHF, SD1/SD2, SCR, nSCR, ISCR, Latency, Tonic, AmpSum, PhasicMax | 86.67% (k = 1) | 96.67% | 91.67% | 95.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Liu, M.; Cheng, C.; Yang, Y.; He, S.; Zheng, L. Monitoring Inattention in Construction Workers Caused by Physical Fatigue Using Electrocardiograph (ECG) and Galvanic Skin Response (GSR) Sensors. Sensors 2023, 23, 7405. https://doi.org/10.3390/s23177405
Ouyang Y, Liu M, Cheng C, Yang Y, He S, Zheng L. Monitoring Inattention in Construction Workers Caused by Physical Fatigue Using Electrocardiograph (ECG) and Galvanic Skin Response (GSR) Sensors. Sensors. 2023; 23(17):7405. https://doi.org/10.3390/s23177405
Chicago/Turabian StyleOuyang, Yewei, Ming Liu, Cheng Cheng, Yuchen Yang, Shiyi He, and Lan Zheng. 2023. "Monitoring Inattention in Construction Workers Caused by Physical Fatigue Using Electrocardiograph (ECG) and Galvanic Skin Response (GSR) Sensors" Sensors 23, no. 17: 7405. https://doi.org/10.3390/s23177405
APA StyleOuyang, Y., Liu, M., Cheng, C., Yang, Y., He, S., & Zheng, L. (2023). Monitoring Inattention in Construction Workers Caused by Physical Fatigue Using Electrocardiograph (ECG) and Galvanic Skin Response (GSR) Sensors. Sensors, 23(17), 7405. https://doi.org/10.3390/s23177405