Dynamic Lane Reversal Strategy in Intelligent Transportation Systems in Smart Cities
<p>A two-way undivided road with six lanes.</p> "> Figure 2
<p>(<b>a</b>) Green logo and (<b>b</b>) red logo.</p> "> Figure 3
<p>(<b>a</b>) Road sectional view at S after reversing lane D. (<b>b</b>) Road sectional view at S after reversing lane C.</p> "> Figure 4
<p>A two-way undivided road is separated into two regions.</p> "> Figure 5
<p>(Color online) (<b>a</b>) Plot ratio. (<b>b</b>) Quantity. (<b>c</b>) Speed.</p> "> Figure 6
<p>(Color online) Comparison of (<b>a</b>) average flux, (<b>b</b>) total average flux, (<b>c</b>) average speed, and (<b>d</b>) total average speed of different strategies with the start time of rush hour at 5000 time steps and the duration of rush hour being 3000 time steps.</p> "> Figure 7
<p>(Color online) Comparison of (<b>a</b>) average flux, (<b>b</b>) total average flux, (<b>c</b>) average speed, and (<b>d</b>) total average speed of different strategies with the start time of rush hour at 7000 time steps and the duration of rush hour being 3000 time steps.</p> "> Figure 8
<p>(Color online) Comparison of (<b>a</b>) average flux, (<b>b</b>) total average flux, (<b>c</b>) average speed, and (<b>d</b>) total average speed of different strategies with the start time of rush hour at 6000 time steps and the duration of rush hour being 2000 time steps.</p> "> Figure 9
<p>(Color online) Comparison of (<b>a</b>) average flux, (<b>b</b>) total average flux, (<b>c</b>) average speed, and (<b>d</b>) total average speed of different strategies with the start time of rush hour at 6000 time steps and the duration of rush hour being 4000 time steps.</p> ">
Abstract
:1. Introduction
2. Dynamic Lane Reversal Strategy
3. Simulations and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wahle, J.; Bazzan, A.L.C.; Klugl, F.; Schreckenberg, M. Decision dynamics in a traffic scenario. Physica A 2000, 287, 669–681. [Google Scholar] [CrossRef]
- Lee, K.E.; Hui, P.; Wang, B.H.; Johnson, N. Effects of announcing global information in a tworoute traffic flow model. J. Phys. Soc. Jpn. 2001, 70, 3507–3510. [Google Scholar] [CrossRef]
- Wang, W.X.; Wang, B.H.; Zheng, W.C.; Yin, C.Y.; Zhou, T. Advanced in formation feedback in intelligent traffic systems. Phys. Rev. E 2005, 72, 066702. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.F.; Ma, X.; Wang, B.H.; Sun, X.Y. Effects of prediction feedback in multi-route intelligent traffic systems. Physica A 2009, 389, 3274–3281. [Google Scholar] [CrossRef]
- Dong, C.F.; Ma, X. Corresponding angle feedback in an innovative weighted transportation system. Phys. Lett. A 2010, 374, 2417–2423. [Google Scholar] [CrossRef]
- Chen, B.K.; Sun, X.Y.; Wei, H.; Dong, C.F.; Wang, B.H. Piecewise function feedback strategy in intelligent traffic systems with a speed limit bottleneck. Int. J. Mod. Phys. C 2011, 22, 849–860. [Google Scholar] [CrossRef]
- He, Z.B.; Chen, B.K.; Jia, N.; Guan, W.; Lin, B.C.; Wang, B.H. Route guidance strategies revisited: Comparison and evaluation in an asymmetric two route traffic network. Int. J. Mod. Phys. C 2014, 25, 1450005–1450011. [Google Scholar] [CrossRef]
- Li, M.; Ding, Z.; Jiang, R.; Hu, M.; Wang, B. Traffic flow in a manhattan-like urban system. J. Stat. Mech. 2011, 11, P12001. [Google Scholar] [CrossRef]
- Li, W.T.; Li, J.Q.; Chen, B.K.; Huang, X.; Wang, Z. Information feed back strategy for beltways in intelligent transportation systems. EPL 2016, 113, 64001. [Google Scholar] [CrossRef]
- Tang, T.Q.; Yu, Q.; Liu, K. Analysis of the traffic running cost in a two-route system with feedback strategy. Physica A 2017, 466, 1–9. [Google Scholar] [CrossRef]
- Ding, Z.J.; Yu, S.L.; Zhu, K.J.; Ding, J.X.; Chen, B.K.; Shi, Q.; Lu, X.S.; Jiang, R.; Wang, B.H. Analytical and simulation studies of 2d asymmetric simple exclusion process. Physica A 2018, 492, 1700–1714. [Google Scholar] [CrossRef]
- Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 1983, 55, 601–644. [Google Scholar] [CrossRef]
- Nagel, K.; Schreckenberg, M. A cellular automaton model for freeway traffic. J. Phys. I 1992, 2, 2221–2229. [Google Scholar] [CrossRef]
- Fukui, M.; Ishibashi, Y. Traffic flow in 1d cellular automaton model including cars moving with high speed. J. Phys. Soc. Jpn. 1996, 65, 1868–1870. [Google Scholar] [CrossRef]
- Barlovic, R.; Santen, L.; Schadschneider, A.; Schreckenberg, M. Metastable states in cellular automata for traffic flow. Eur. Phys. J. B 1998, 5, 793–800. [Google Scholar] [CrossRef]
- Wolf, D.E. Cellular automata for traffic simulations. Physica A 1999, 263, 438–451. [Google Scholar] [CrossRef]
- Li, X.B.; Wu, Q.S.; Jiang, R. Cellular automaton model considering the velocity effect of a car on the successive car. Phys. Rev. E 2001, 64, 066128. [Google Scholar] [CrossRef]
- Gao, K.; Jiang, R.; Wang, B.H.; Wu, Q.S. Discontinuous transition from free flow to synchronized flow induced by short-range interaction between vehicles in a three-phase traffic flow model. Phys. A Stat. Appl. 2009, 388, 3233–3243. [Google Scholar] [CrossRef]
- Zhao, H.T.; Liu, X.R.; Chen, X.X.; Lu, J.C. Cellular automata model for traffic flow at intersections in internet of vehicles. Physica A 2018, 494, 40–51. [Google Scholar] [CrossRef]
- Salcido, A.; Hernandez-Zapata, E.; Carreon-Sierra, S. Exact results of 1d traffic cellular automata: The low-density behavior of the fukui-ishibashi model. Physica A 2018, 494, 276–287. [Google Scholar] [CrossRef]
- Chen, B.; Sun, D.; Zhou, J.; Wong, W.; Gao, Y.; Ding, Z. A mixed intelligent traffic system with autonomous vehicles and human-driven vehicles. Inf. Sci. 2020, 529, 59–72. [Google Scholar] [CrossRef]
- Espitia, N.; Auriol, J.; Yu, H.; Krstic, M. Traffic flow control on cascaded roads by event-triggered output feedback. Int. J. Robust Nonlinear Control 2022, 32, 5919–5949. [Google Scholar] [CrossRef]
- Inbamalar, T.M.; Bharatha, S.G.; Amala, J. Intelligent Traffic Control System Using Deep Learning. ECS Trans. 2022, 107, 2783. [Google Scholar]
- Pan, Y.; Wang, Y.; Miao, B.; Cheng, R. Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver. Sustainability 2022, 14, 7281. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, B.; Hu, L.; Jiang, Y. Traffic Signal Control at Intersections Considering Congestion Propagation in Dynamic Stochastic Environments: A Queueing Network Approach. Ph.D. Thesis, Southwest Jiaotong University, Chengdu, China, 2021. [Google Scholar]
- Zeng, J.; Qian, Y.; Mi, P.; Zhang, C.; Yin, F.; Zhu, L.; Xu, D. Freeway traffic flow cellular automata model based on mean velocity feedback. Phys. A Stat. Mech. Appl. 2021, 562, 125387. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Wang, J. An inner full-state feedback control model for traffic flow system. J. Phys. Conf. Ser. 2021, 1848, 012059. [Google Scholar] [CrossRef]
- Yang, F.; Vereshchaka, A.; Lepri, B.; Dong, W. Optimizing City-Scale Traffic through Modeling Observations of Vehicle Movements; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2021. [Google Scholar]
- Zhang, F.; Han, Z.; Ge, H.; Zhu, Y. Optimization design of traffic flow under security based on cellular automata model. Comput. Sci. Inf. Syst. 2015, 12, 427–443. [Google Scholar] [CrossRef]
- Yuan, G.; Cheng, J.; Zhou, M.; Cheng, S.; Gao, S.; Jiang, C.; Abusorrah, A. A Dynamic Evolution Method for Autonomous Vehicle Groups in an Urban Scene. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 3450–3460. [Google Scholar] [CrossRef]
- Hu, M.; Bu, L.; Bian, Y.; Qin, H.; Sun, N.; Cao, D.; Zhong, Z. Hierarchical cooperative control of connected vehicles: From heterogeneous parameters to heterogeneous structures. IEEE/CAA J. Autom. Sin. 2022, 9, 1590–1602. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, J.; Han, D. Dynamic Lane Reversal Strategy in Intelligent Transportation Systems in Smart Cities. Sensors 2023, 23, 7402. https://doi.org/10.3390/s23177402
Li W, Li J, Han D. Dynamic Lane Reversal Strategy in Intelligent Transportation Systems in Smart Cities. Sensors. 2023; 23(17):7402. https://doi.org/10.3390/s23177402
Chicago/Turabian StyleLi, Wenting, Jianqing Li, and Di Han. 2023. "Dynamic Lane Reversal Strategy in Intelligent Transportation Systems in Smart Cities" Sensors 23, no. 17: 7402. https://doi.org/10.3390/s23177402
APA StyleLi, W., Li, J., & Han, D. (2023). Dynamic Lane Reversal Strategy in Intelligent Transportation Systems in Smart Cities. Sensors, 23(17), 7402. https://doi.org/10.3390/s23177402