Direction of Arrival Estimation of Coherent Wideband Sources Using Nested Array
<p>Two-level nested array.</p> "> Figure 2
<p>Overlapping subarrays used in the spatial smoothing method.</p> "> Figure 3
<p>Comparison between the spatial spectra of different algorithms.</p> "> Figure 4
<p>RMSE versus SNR.</p> "> Figure 5
<p>(<b>a</b>) is the sparse array used in the experiment, which used a tripod and a spirit level to ensure the stability of the support frame used for observation. (<b>b</b>) is the signal generator used in the experiment.</p> "> Figure 6
<p>Experiment scene designed to satisfy the conditions required for coherent signals; we performed experiments inside of the room.</p> "> Figure 7
<p>Spectrum of the proposed method for real data.</p> ">
Abstract
:1. Introduction
2. Array Model
3. Proposed Method
3.1. Multi-Frequency Focused Decorrelation Method
3.2. Enhanced Spatial Smoothing Method
Algorithm 1: The Proposed Method |
Input: The received data Output: DOA estimation values
|
4. Performance Analysis
4.1. Simulation Analysis
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuncer, T.E.; Friedlander, B. Classical and Modern Direction-of-Arrival Estimation; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Xiang, H.H.; Chen, B.X.; Yang, M.L.; Xu, S.Q. Angle Separation Learning for Coherent DOA Estimation with Deep Sparse Prior. IEEE Commun. Lett. 2021, 25, 465–469. [Google Scholar] [CrossRef]
- Jiang, H.; Li, L.; Zhang, H.; Pan, H.; Li, X. Stepwise DOA Estimation for Coherent and Uncorrelated Mixed Signals on Coprime Array. In Proceedings of the 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 16–18 December 2022; pp. 1685–1688. [Google Scholar] [CrossRef]
- Li, J.F.; Li, P.; Li, P.; Tang, L.M.; Zhang, X.F.; Wu, Q.H. Self-Position Awareness Based on Cascade Direct Localization Over Multiple Source Data. IEEE Trans. Intell. Transp. Syst. 2022, 9. [Google Scholar] [CrossRef]
- Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct Localization for Massive MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [Google Scholar] [CrossRef] [Green Version]
- Khabbazibasmenj, A.; Hassanien, A.; Vorobyov, S.A.; Morency, M.W. Efficient Transmit Beamspace Design for Search-Free Based DOA Estimation in MIMO Radar. IEEE Trans. Signal Process. 2014, 62, 1490–1500. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Kim, B.; Kim, J.; Kim, D.; Cho, H. Doppler Coherent Focusing DOA Method for Efficient Radar Map Generation. In Proceedings of the 5th IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Detroit, MI, USA, 15–16 April 2019; pp. 1–4. [Google Scholar]
- Millhiser, J.; Sarangi, P.; Pal, P. Initialization-Free Implicit-Focusing (IF2) for Wideband Direction-of-Arrival Estimation. In Proceedings of the 47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 4973–4977. [Google Scholar]
- Zhang, J.; Bao, M.; Zhang, X.P.; Chen, Z.F.; Yang, J.H. DOA Estimation for Heterogeneous Wideband Sources Based on Adaptive Space-Frequency Joint Processing. IEEE Trans. Signal Process. 2022, 70, 1657–1672. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Kaplan, L.M.; McClellan, J.H. TOPS: New DOA estimator for wideband signals. IEEE Trans. Signal Process. 2006, 54, 1977–1989. [Google Scholar] [CrossRef]
- Yuanyuan, J.; Dan, L.; Xiaohuan, W.; Wei-Ping, Z. A Gridless Wideband DOA Estimation Based On Atomic Norm Minimization. In Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020. [Google Scholar] [CrossRef]
- Kulhandjian, H.; Kulhandjian, M.; Kim, Y.; D’Amours, C. 2-D DOA Estimation of Coherent Wideband Signals with Auxiliary-Vector Basis. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Zoltowski, M.D.; Silverstein, S.D.; Mathews, C.P. Beamspace Root-Music for Minimum Redundancy Linear Arrays. IEEE Trans. Signal Process. 1993, 41, 2502–2507. [Google Scholar] [CrossRef]
- Li, J.F.; Li, D.; Jiang, D.F.; Zhang, X.F. Extended-Aperture Unitary Root MUSIC-Based DOA Estimation for Coprime Array. IEEE Commun. Lett. 2018, 22, 752–755. [Google Scholar] [CrossRef]
- Peng, Z.; Ding, Y.T.; Ren, S.W.; Wu, H.X.; Wang, W.J. Coprime Nested Arrays for DOA Estimation: Exploiting the Nesting Property of Coprime Array. IEEE Signal Process. Lett. 2022, 29, 444–448. [Google Scholar] [CrossRef]
- Qin, Y.H.; Liu, Y.M.; Liu, J.Y.; Yu, Z.Y. Underdetermined Wideband DOA Estimation for Off-Grid Sources with Coprime Array Using Sparse Bayesian Learning. Sensors 2018, 18, 11. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.P.; Hu, G.P.; Zhang, X.F.; Zhou, H. Generalized Nested Array: Optimization for Degrees of Freedom and Mutual Coupling. IEEE Commun. Lett. 2018, 22, 1208–1211. [Google Scholar] [CrossRef]
- Ren, S.W.; Dong, W.T.; Li, X.N.; Wang, W.J.; Li, X.R. Extended Nested Arrays for Consecutive Virtual Aperture Enhancement. IEEE Signal Process. Lett. 2020, 27, 575–579. [Google Scholar] [CrossRef]
- Shan, T.J.; Wax, M.; Kailath, T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 1985, ASSP-33, 806–811. [Google Scholar] [CrossRef]
- Ziskind, I.; Wax, M. Maximum likelihood localization of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1553–1560. [Google Scholar] [CrossRef]
- Zoltowski, M.; Haber, F. A vector space approach to direction finding in a coherent multipath environment. IEEE Trans. Antennas Propag. 1986, AP-34, 1069–1079. [Google Scholar] [CrossRef]
- Pillai, S.U.; Kwon, B.H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Pham, G.T.; Loubaton, P.; Vallet, P. Performance Analysis of Spatial Smoothing Schemes in the Context of Large Arrays. IEEE Trans. Signal Process. 2016, 64, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.L.; Sun, Q.; Yang, T.H.; Zhang, L.L.; Sun, Y.P. Time-Delay Estimation for Ground Penetrating Radar Using ESPRIT With Improved Spatial Smoothing Technique. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1315–1319. [Google Scholar] [CrossRef]
- Jin, A.S.; Zhang, F. 2D DOA estimation of coherent sources based on reconstruction of Toeplitz matrix sets. In Proceedings of the Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 508–513. [Google Scholar]
- Liu, X.Z.; Song, M.Y.; Yang, Y.H. An Effective DOA Estimation Method of Coherent Signals Based on Reconstruct Weighted Noise Subspace. In Proceedings of the 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 2218–2222. [Google Scholar]
- Evans, J.E.; Sun, D.F.; Johnson, J.R. Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems; Massachusetts Institute of Technology, Lincoln Laboratory: Cambridge, MA, USA, 1982. [Google Scholar]
- Wax, M.; Shan, T.J.; Kailath, T. Spatio-temporal spectral analysis by eigenstructure methods. IEEE Trans. Acoust. Speech Signal Process. 1984, ASSP-32, 817–827. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Q.F.; Wang, Y. Wideband DOA Estimation based on A-Shaped Array. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 22–25 October 2017. [Google Scholar]
- Yadav, A.K.; Santosh, S. Comparative Analysis of Wideband DOA Estimation Methods with Nested Array. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bengaluru, India, 20–21 May 2016; pp. 1367–1370. [Google Scholar]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, AP-34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Di Claudio, E.D.; Parisi, R. WAVES: Weighted average of signal subspaces for robust wideband direction finding. IEEE Trans. Signal Process. 2001, 49, 2179–2191. [Google Scholar] [CrossRef] [Green Version]
- Pal, P.; Vaidyanathan, P.P. A Novel Autofocusing Approach for Estimating Directions-of-Arrival of Wideband Signals. In Proceedings of the 2009 43rd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–4 November 2009; pp. 1663–1667. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kaveh, M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources. IEEE Trans. Acoust. Speech Signal Process. 1985, ASSP-33, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Bo, L.K.; Xiong, J.Y.; Luo, L.Y. A Novel Wideband DOA Estimation Method Using Direction-Free Focusing Matrix. In Proceedings of the 3rd International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 12–13 October 2013; pp. 1065–1069. [Google Scholar]
- Hung, H.; Kaveh, M. Focussing matrices for coherent signal-subspace processing. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1272–1281. [Google Scholar] [CrossRef]
- Valaee, S.; Kabal, P. The optimal focusing subspace for coherent signal subspace processing. IEEE Trans. Signal Process. 1996, 44, 752–756. [Google Scholar] [CrossRef] [Green Version]
Method | DOA Estimation | Error Value |
---|---|---|
IEF-CSSM | 8.25° | 3.75° |
ISSM-ss | 12.80° | 0.80° |
CSSM-enss | 12.70° | 0.70° |
Proposed method | 12.20° | 0.20° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Deng, W.; Li, J.; Zhang, X. Direction of Arrival Estimation of Coherent Wideband Sources Using Nested Array. Sensors 2023, 23, 6984. https://doi.org/10.3390/s23156984
Tang Y, Deng W, Li J, Zhang X. Direction of Arrival Estimation of Coherent Wideband Sources Using Nested Array. Sensors. 2023; 23(15):6984. https://doi.org/10.3390/s23156984
Chicago/Turabian StyleTang, Yawei, Weiming Deng, Jianfeng Li, and Xiaofei Zhang. 2023. "Direction of Arrival Estimation of Coherent Wideband Sources Using Nested Array" Sensors 23, no. 15: 6984. https://doi.org/10.3390/s23156984
APA StyleTang, Y., Deng, W., Li, J., & Zhang, X. (2023). Direction of Arrival Estimation of Coherent Wideband Sources Using Nested Array. Sensors, 23(15), 6984. https://doi.org/10.3390/s23156984