On-Board Unit (OBU)-Supported Longitudinal Driving Behavior Monitoring Using Machine Learning Approaches
<p>Implementation Process.</p> "> Figure 2
<p>Equipment Installation.</p> "> Figure 3
<p>Driving map for data collection test.</p> "> Figure 4
<p>Process of VCSC.</p> "> Figure 5
<p>Comparison of acceleration before and after VCSC. (<b>a</b>) Acceleration before VCSC; (<b>b</b>) Acceleration after VCSC.</p> "> Figure 6
<p>The effect of data denoising.</p> "> Figure 7
<p>Data segmentation results through AEM.</p> "> Figure 8
<p>Characteristics of acceleration for different driving behaviors. (<b>a</b>) Characteristics of ACC; (<b>b</b>) characteristics of DEC; (<b>c</b>) characteristics of ST.</p> "> Figure 9
<p>Results of predicting different driving behaviors using different algorithms.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Data Collection and Preprocessing
3.1. Data Collection
3.2. Vehicle Coordinate System Conversion (VCSC)
3.3. Data Denoising
3.4. Data Segmentation
3.5. Feature Extraction
4. Driving Behavior Recognition
4.1. Algorithm Introduction
4.2. Classifier Evaluation
4.3. Results and Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, K.; Gu, Y.; Kamijo, S. Mapping for autonomous driving: Opportunities and challenges. IEEE Intell. Transp. Syst. Mag. 2020, 13, 91–106. [Google Scholar] [CrossRef]
- Wang, Z.; He, S.Y.; Leung, Y. Applying mobile phone data to travel behaviour research: A literature review. Travel Behav. Soc. 2018, 11, 141–155. [Google Scholar] [CrossRef]
- Rodriguez Gonzalez, A.B.; Wilby, M.R.; Vinagre Diaz, J.J.; Sanchez Avila, C. Modeling and detecting aggressiveness from driving signals. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1419–1428. [Google Scholar] [CrossRef]
- Yi, D.; Su, J.; Liu, C.; Quddus, M.; Chen, W.H. A machine learning based personalized system for driving state recognition. Transp. Res. Part C Emerg. Technol. 2019, 105, 241–261. [Google Scholar] [CrossRef]
- Yang, L.; Ma, R.; Zhang, H.M.; Guan, W.; Jiang, S. Driving behavior recognition using EEG data from a simulated car-following experiment. Accid. Anal. Prev. 2018, 116, 30–40. [Google Scholar] [CrossRef]
- Saleh, K.; Hossny, M.; Nahavandi, S. Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar]
- Lotfi, R.; Ghatee, M. Smartphone based driving style classification using features made by discrete wavelet transformation. arXiv 2018, arXiv:1803.06213. [Google Scholar]
- Shahverdy, M.; Fathy, M.; Berangi, R.; Sabokrou, M. Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 2020, 149, 113240. [Google Scholar] [CrossRef]
- Wang, K.; Huang, W.; Tian, B.; Wen, D. Measuring Driving Behaviors from Live Video. IEEE Intell. Syst. 2012, 27, 75–80. [Google Scholar] [CrossRef]
- Meng, Z.; Xia, X.; Xu, R.; Liu, W.; Ma, J. HYDRO-3D: Hybrid Object Detection and Tracking for Cooperative Perception Using 3D LiDAR. IEEE Trans. Intell. Veh. 2023, 1–13. [Google Scholar] [CrossRef]
- Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting Tassels in RGB UAV Imagery with Improved YOLOv5 Based on Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8085–8094. [Google Scholar] [CrossRef]
- Ramanishka, V.; Chen, Y.T.; Misu, T.; Saenko, K. Toward Driving Scene Understanding: A Dataset for Learning Driver Behavior and Causal Reasoning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7699–7707. [Google Scholar] [CrossRef] [Green Version]
- Kumtepe, Ö.; Akar, G.B.; Yüncü, E. On vehicle aggressive driving behavior detection using visual information. In Proceedings of the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015; pp. 795–798. [Google Scholar] [CrossRef]
- Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An automated driving systems data acquisition and analytics platform. Transp. Res. Part C: Emerg. Technol. 2023, 151, 104120. [Google Scholar] [CrossRef]
- Wu, Q.; Shi, S.; Wan, Z.; Fan, Q.; Fan, P.; Zhang, C. Towards V2I Age-aware Fairness Access: A DQN Based Intelligent Vehicular Node Training and Test Method. Chin. J. Electron. 2023, in press. [Google Scholar] [CrossRef]
- Johnson, D.A.; Trivedi, M.M. Driving style recognition using a smartphone as a sensor platform. In Proceedings of the 14th IEEE International Intelligent Transportation Systems Conference (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 1609–1615. [Google Scholar]
- Singh, G.; Bansa, D.; Sofat, S. A smartphone based technique to monitor driving behavior using DTW and crowdsensing. Pervasive Mob. Comput. 2017, 40, 56–60. [Google Scholar] [CrossRef]
- Júnior, J.F.; Carvalho, E.; Ferreira, B.V.; De Souza, C.; Suhara, Y.; Pentland, A.; Pessin, G. Driver behavior profiling: An investigation with different smartphone sensors and machine learning. PLoS ONE. 2017, 12, e0174959. [Google Scholar]
- Mitrovic, D. Reliable method for driving events recognition. IEEE Trans. Intell. Transp. Syst. 2005, 6, 198–205. [Google Scholar] [CrossRef]
- Haochen, S.; Zhumu, F.; Fazhan, T.; Yongsheng, D.; Baofeng, J. Machine-learning-based hybrid recognition approach for longitudinal driving behavior in noisy environment. Eng. Appl. Artif. Intell. 2022, 114, 104990. [Google Scholar]
- Cao, W.; Lin, X.; Zhang, K.; Dong, Y.; Huang, S.; Zhang, L. Analysis and Evaluation of Driving Behavior Recognition Based on a 3-axis Accelerometer Using a Random Forest Approach. In Proceedings of the 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Pittsburgh, PA, USA, 18–21 April 2017; pp. 303–304. [Google Scholar]
- Wu, M.; Zhang, S.; Dong, Y. A novel model-based driving behavior recognition system using motion sensors. Sensors 2016, 16, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndt, H.; Dietmayer, K. Driver intention inference with vehicle onboard sensors. In Proceedings of the IEEE International Conference on Vehicular Electronics and Safety (ICVES), Pune, India, 11–12 November 2009; pp. 102–107. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Begum, S. Convolutional Neural Network for Driving Maneuver Identification Based on Inertial Measurement Unit (IMU) and Global Positioning System (GPS). Front. Sustain. Cities 2020, 2, 34. [Google Scholar] [CrossRef]
- Bonfati, L.V.; Mendes Junior, J.J.A.; Siqueira, H.V.; Stevan, S.L. Correlation Analysis of In-Vehicle Sensors Data and Driver Signals in Identifying Driving and Driver Behaviors. Sensors 2023, 23, 263. [Google Scholar] [CrossRef]
- Higgs, B.; Abbas, M. Segmentation and clustering of car-following behavior: Recognition of driving patterns. IEEE Trans. Intell. Transp. Syst. 2015, 16, 81–90. [Google Scholar] [CrossRef]
- Schmidt, K.; Beggiato, M.; Hoffmann, K.H.; Krems, J.F. A mathematical model for predicting lane changes using the steering wheel angle. J. Saf. Res. 2014, 49, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Gadepally, V.; Kurt, A.; Krishnamurthy, A.; Özgüner, Ü. Driver/vehicle state estimation and detection. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 582–587. [Google Scholar] [CrossRef]
- Maghsood, R.; Johannesson, P. Detection of steering events based on vehicle logging data using hidden Markov models. Inderscience Publ. 2016, 70, 278–295. [Google Scholar] [CrossRef]
- Bonnin, S.; Weisswange, T.H.; Kummert, F.; Schmu Dderich, J. Accurate behavior prediction on highways based on a systematic combination of classifiers. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 242–249. [Google Scholar] [CrossRef]
- Boyraz, P.; Acar, M.; Kerr, D. Signal modelling and Hidden Markov models for driving manoeuvre recognition and driver fault diagnosis in an urban road scenario. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 987–992. [Google Scholar] [CrossRef]
- Meyer Delius, D.; Plagemann, C.; Burgard, W. Probabilistic situation recognition for vehicular traffic scenarios. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 459–464. [Google Scholar]
- Chuang, C.; Yang, C.; Lin, Y. HMM-based driving behavior recognition for in-car control service. In Proceedings of the 2nd IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 June 2015; pp. 258–259. [Google Scholar] [CrossRef]
- Schlechtriemen, J.; Wedel, A.; Hillenbrand, J.; Breuel, G.; Kuhnert, K.-D. A lane change detection approach using feature ranking with maximized predictive power. In Proceedings of the 25th IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014; pp. 108–114. [Google Scholar]
- Peng, J.; Guo, Y.; Fu, R.; Yuan, W.; Wang, C. Multi-parameter prediction of drivers’ lane-changing behaviour with neural network model. Appl. Ergon. 2015, 50, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.A.; Robbel, P.; Kochenderfer, M.J. A Probabilistic Framework for Microscopic Traffic Propagation. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran, Canaria, Spain, 15–18 September 2015; pp. 262–267. [Google Scholar]
- Kumar, P.; Perrollaz, M.; Lefèvre, S.; Laugier, C. Learning-based approach for online lane change intention prediction. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 797–802. [Google Scholar]
- Jang, Y.M.; Mallipeddi, R.; Lee, M. Driver’s lane-change intent identification based on pupillary variation. In Proceedings of the 2014 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–13 January 2014; pp. 197–198. [Google Scholar] [CrossRef]
- Eftekhari, H.R.; Ghatee, M. Hybrid of discrete wavelet transform and adaptive neuro fuzzy inference system for overall driving behavior recognition. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 782–796. [Google Scholar] [CrossRef]
- Chen, S.; Yao, H.; Qiao, F.; Ma, Y.; Wu, Y.; Lu, J. Vehicles driving behavior recognition based on transfer learning. Expert Syst. Appl. 2023, 213, 119254. [Google Scholar] [CrossRef]
- Al Din, M.S.N. Driving Maneuvers Recognition and Classification Using A Hyprid Pattern Matching and Machine Learning. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 247–256. [Google Scholar] [CrossRef]
- Lyu, N.; Wang, Y.; Wu, C.; Peng, L.; Thomas, A.F. Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions. J. Intell. Connect. Veh. 2022, 5, 17–35. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, C.; Lu, C.; Wei, L.; Gong, J. Lateral and longitudinal driving behavior prediction based on improved deep belief network. Sensors 2021, 21, 8498. [Google Scholar] [CrossRef]
- Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle Estimation Based on Consensus Kalman Filter. IEEE Trans. Control Syst. Technol. 2023, 31, 179–192. [Google Scholar] [CrossRef]
- Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement Characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Vehicle sideslip angle estimation by fusing inertial measurement unit and global navigation satellite system with heading alignment. Mech. Syst. Signal Process. 2021, 150, 107290. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Z.; Hu, S.; Lepine, J.; Na, X.; Ainalis, D.; Stettler, M. An automated machine-learning approach for road pothole detection using smartphone sensor data. Sensors 2020, 20, 5564. [Google Scholar] [CrossRef] [PubMed]
- Astarita, V.; Caruso, M.V.; Danieli, G.; Festa, D.C.; Giofrè, V.P.; Iuele, T.; Vaiana, R. A mobile application for road surface quality control: UNIquALroad. Procedia Soc. Behav. Sci 2012, 54, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Yu, Z. IMU-Based Automated Vehicle Body Sideslip Angle and Attitude Estimation Aided by GNSS Using Parallel Adaptive Kalman Filters. IEEE Trans. Veh. Technol. 2020, 69, 10668–10680. [Google Scholar] [CrossRef]
- Liu, W.; Xiong, L.; Xia, X.; Lu, Y.; Gao, L.; Song, S. Vision-aided intelligent vehicle sideslip angle estimation based on a dynamic model. IET Intell. Transp. Syst. 2020, 14, 1183–1189. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, Y.; Wu, Y.; Geng, Y.; Fan, L. An overview of speech endpoint detection algorithms. Appl. Acoust. 2020, 160, 107133. [Google Scholar] [CrossRef]
- Wilpon, J.G.; Rabiner, L.R.; Martin, T. An improved word-detection algorithm for telephone-quality speech incorporating both syntactic and semantic constraints. ATT Bell Lab. Tech. J. 1984, 63, 479–498. [Google Scholar] [CrossRef]
- Zhao, Y.; Jia, H.; Luo, H.; Zhao, F.; Qin, Y.; Wang, Y. An abnormal driving behavior recognition algorithm based on the temporal convolutional network and soft thresholding. Int. J. Intell. Syst. 2022, 37, 6244–6261. [Google Scholar] [CrossRef]
Data Variable | Unit | Description | Example Data |
---|---|---|---|
position_3d.lat | - | Latitude | 22.695279 |
position_3d.lon | - | Longitude | 114.380882 |
sensor_3d.x_accel | m/s2 | Acceleration in X-axis | −5.414062 |
sensor_3d.x_rotat | deg/s | X-axis angular velocity | −0.807861 |
sensor_3d.y_accel | m/s2 | Acceleration in Y-axis | −1.543945 |
sensor_3d.y_rotat | deg/s | Y-axis angular velocity | 0.358154 |
sensor_3d.z_accel | m/s2 | Acceleration in Z-axis | −8.397461 |
sensor_3d.z_rotat | deg/s | Z-axis angular velocity | 0.251465 |
motion. heading | deg | Angle of orientation | 285.29 |
motion. speed | m/s | Speed | 4.831148 |
Update Timestamp | - | Time of data collection | 2022-07-16T01:26:57.581Z |
Feature | Description |
---|---|
max | Maximum value of the data unit |
min | Minimum value of the data unit |
rms | Root mean square of the data unit |
std | Mean squared deviation of the data unit |
energy | Energy of the data unit |
peak | Peak to peak value of the data unit |
avg | Rectified average value of the data unit |
sk | Skewness of the data unit |
ku | Kurtosis of the data unit |
S | Waveform factor of the data unit |
L | Margin factor of the data unit |
C | Peak factor of the data unit |
I | Pulse factor of the data unit |
k | Slope of the data unit |
mean | Mean of the data unit |
Class | 0 | 1 | 2 |
---|---|---|---|
0 | T00 | F01 | F02 |
1 | F10 | T11 | F12 |
2 | F20 | F21 | T22 |
Model | Accuracy for Training Set | Accuracy for Testing Set |
---|---|---|
SVM | 0.989 | 0.970 |
RF | 0.989 | 0.982 |
KNN | 0.96 | 0.923 |
LR | 0.991 | 0.970 |
BPNN | 0.989 | 0.942 |
DT | 0.993 | 0.976 |
NB | 0.938 | 0.915 |
Model | Behavior Category | |||
---|---|---|---|---|
SVM | ACC | DEC | ST | |
ACC | 609 | 5 | 2 | |
DEC | 7 | 570 | 3 | |
ST | 3 | 2 | 140 | |
RF | ACC | DEC | ST | |
ACC | 612 | 3 | 1 | |
DEC | 8 | 572 | 0 | |
ST | 2 | 3 | 140 | |
KNN | ACC | DEC | ST | |
ACC | 607 | 7 | 2 | |
DEC | 12 | 563 | 5 | |
ST | 2 | 3 | 140 | |
LR | ACC | DEC | ST | |
ACC | 610 | 5 | 1 | |
DEC | 7 | 571 | 2 | |
ST | 4 | 1 | 140 | |
BPNN | ACC | DEC | ST | |
ACC | 603 | 6 | 7 | |
DEC | 8 | 562 | 10 | |
ST | 5 | 3 | 127 | |
DT | ACC | DEC | ST | |
ACC | 614 | 2 | 0 | |
DEC | 7 | 573 | 0 | |
ST | 4 | 2 | 139 | |
NB | ACC | DEC | ST | |
ACC | 570 | 21 | 21 | |
DEC | 8 | 537 | 35 | |
ST | 0 | 3 | 142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Liang, L.; Lei, T.; Yin, X.; Wang, Y.; Gao, M.; Liu, Y. On-Board Unit (OBU)-Supported Longitudinal Driving Behavior Monitoring Using Machine Learning Approaches. Sensors 2023, 23, 6708. https://doi.org/10.3390/s23156708
Wei L, Liang L, Lei T, Yin X, Wang Y, Gao M, Liu Y. On-Board Unit (OBU)-Supported Longitudinal Driving Behavior Monitoring Using Machine Learning Approaches. Sensors. 2023; 23(15):6708. https://doi.org/10.3390/s23156708
Chicago/Turabian StyleWei, Leyu, Lichan Liang, Tian Lei, Xiaohong Yin, Yanyan Wang, Mingyu Gao, and Yunpeng Liu. 2023. "On-Board Unit (OBU)-Supported Longitudinal Driving Behavior Monitoring Using Machine Learning Approaches" Sensors 23, no. 15: 6708. https://doi.org/10.3390/s23156708
APA StyleWei, L., Liang, L., Lei, T., Yin, X., Wang, Y., Gao, M., & Liu, Y. (2023). On-Board Unit (OBU)-Supported Longitudinal Driving Behavior Monitoring Using Machine Learning Approaches. Sensors, 23(15), 6708. https://doi.org/10.3390/s23156708