Design of a Surface Plasmon Resonance CO Sensor
<p>Diagram of the plasmonic sensor. An optical fiber transports the incident radiation on the left part of the hemispherical prism, and another optical fiber collects the reflected radiation on the right. The surface plasmon polaritons are shown propagating along the Au-CO interface.</p> "> Figure 2
<p>Reflectance curves as a function of the angle of incidence of the light in the hemispherical prism and different concentrations of CO. The height above sea level is 0 m, 101,325 Pa, 25 °C. The sensor works with an incidence angle of 50.91°.</p> "> Figure 3
<p>Reflectance curves as a function of the angle of incidence of the light in the hemispherical prism and different concentrations of CO. The height above sea level is 1500 m, 8.45 × 10<sup>7</sup> Pa, 16 °C. The sensor works with an incidence angle of 50.20°.</p> "> Figure 4
<p>Reflectance curves as a function of the angle of incidence of the light in the hemispherical prism and different concentrations of CO. The height above sea level is 3000 m, 7.01 × 10<sup>7</sup> Pa, 7 °C. The sensor works with an incidence angle of 49.75°.</p> ">
Abstract
:1. Introduction
2. Design and Simulation of the Plasmonic Sensor
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graver, B.M.; Frey, H.C.; Choi, H.W. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle. Environ. Sci. Technol. 2011, 45, 9044–9051. [Google Scholar] [CrossRef]
- Fergus, J.W. Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases. Sens. Actuators B Chem. 2007, 122, 683–693. [Google Scholar] [CrossRef]
- Gorman, D.; Drewry, A.; Huang, Y.L.; Sames, C. The clinical toxicology of carbon monoxide. Toxicology 2003, 187, 25–38. [Google Scholar] [CrossRef]
- Prockop, L.D.; Chichkova, R.I. Carbon monoxide intoxication: An updated review. J. Neurol. Sci. 2007, 262, 122–130. [Google Scholar] [CrossRef] [PubMed]
- WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010. Available online: https://apps.who.int/iris/bitstream/handle/10665/260127/9789289002134-eng.pdf?sequence=1&isAllowed=y (accessed on 17 December 2021).
- Parrish, D.D.; Trainer, M.; Holloway, J.S.; Yee, J.E.; Warshawsky, M.S.; Fehsenfeld, F.C.; Forbes, G.L.; Moody, J.L. Relationships between ozone and carbonmonoxide at surface sites in the North Atlantic region. J. Geophys. Res. Atmos. 1998, 103, 13357–13376. [Google Scholar] [CrossRef]
- Seiler, W.; Fishman, J. The distribution of carbon monoxide and ozone in the free troposphere. J. Geophys. Res. 1981, 86, 7255–7265. [Google Scholar] [CrossRef]
- Nuryadi, R.; Aprilia, L.; Gustiono, D. CO gas response of ZnO nanostructures using microcantilever in dynamic mode operation. In Proceedings of the 7th IEEE International Nanoelectronics Conference, Chengdu, China, 9–11 May 2016. [Google Scholar] [CrossRef]
- Tan, C.H.; Tan, S.T.; Lee, H.B.; Ginting, R.T.; Oleiwi, H.F.; Yap, C.C.; Jumali, M.H.H.; Yahaya, M. Automated room temperature optical absorbance CO sensor based on in-doped ZnO nanorod. Sens. Actuators B Chem. 2017, 248, 140–152. [Google Scholar] [CrossRef]
- Savage, N.O.; Akbar, S.A.; Dutta, P.K. Titanium dioxide based high temperature carbon monoxide selective sensor. Sens. Actuators B Chem. 2001, 72, 239–248. [Google Scholar] [CrossRef]
- Norris, E.S.; Chormaic, S.G.N. Development of a portable carbon monoxide optical sensor based on an extended cavity diode laser at 1564 nm. In Opto-Ireland 2002: Optics and Photonics Technologies and Applications; SPIE: Bellingham, WA, USA, 2002; Volume 4876, pp. 923–929. [Google Scholar] [CrossRef]
- Nam, H.J.; Sasaki, T.; Koshizaki, N. Optical CO gas sensor using a cobalt oxide thin film prepared by pulsed laser deposition under various argon pressures. J. Phys. Chem. B. 2006, 110, 23081–23084. [Google Scholar] [CrossRef]
- Briggs, R.M.; Frez, C.; Bagheri, M.; Franz, K.J.; May, R.D.; Forouhara, S. Carbon monoxide monitoring for low-power spacecraft fire detection systems using quantum cascade laser sources at 4.6 μm. In Proceedings of the 11th International Conference on Infrared Optoelectronics: Materials and Devices. Jet Propulsion Laboratory, National Aeronautics and Space, Chicago, IL, USA, 4–8 September 2012; Available online: http://hdl.handle.net/2014/42930 (accessed on 20 March 2022).
- Pannek, C.; Tarantik, K.R.; Schmitt, K.; Wöllenstein, J. Investigation of gasochromic rhodium complexes towards their reactivity to CO and integration into an optical gas sensor for fire gas detection. Sensors 2018, 18, 1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ando, M.; Kobayashi, T.; Iijima, S.; Haruta, M. Optical CO sensitivity of Au-CuO composite film by use of the plasmon absorption change. Sens. Actuators B Chem. 2003, 96, 589–595. [Google Scholar] [CrossRef]
- Sirinakis, G.; Siddique, R.; Manning, I.; Rogers, P.H.; Carpenter, M.A. Development and characterization of Au–YSZ surface plasmon resonance based sensing materials: High temperature detection of CO. J. Phys. Chem. B 2006, 110, 13508–13511. [Google Scholar] [CrossRef] [PubMed]
- Kai-Qun, L.; Lai-Ming, W.; Dou-Guo, Z.; Rong-Sheng, Z.; Pei, W.; Yong-Hua, L.; Hai, M. Temperature effects on prism-based surface plasmon resonance sensor. Chin. Phys. Lett. 2007, 24, 3081–3308. [Google Scholar] [CrossRef]
- Kitenge, D. Optical Detection of CO and H2 Based on Surface Plasmon Resonance with Ag-YSZ (Yttria-Stabilized Zirconia), Au and Ag-Cu Nanoparticle Films. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2009. Available online: https://scholarcommons.usf.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3046&context=etd (accessed on 20 March 2022).
- Ghodselahi, T.; Zahrabi, H.; Saani, M.H.; Vesaghi, M.A. CO gas sensor properties of Cu@ CuO core–shell nanoparticles based on localized surface plasmon resonance. J. Phys. Chem. C 2011, 115, 22126–22130. [Google Scholar] [CrossRef]
- Chen, K.M.; Shen, C.H.; Chen, J.H. Detection of CO Concentration by Using SnO2 SPR Apparatus and Common-Path Heterodyne Interferometer; Intelligent Technologies and Engineering Systems. Lecture Notes in Electrical Engineering; Juang, J., Huang, Y.C., Eds.; Springer: New York, NY, USA, 2013; Volume 234. [Google Scholar] [CrossRef]
- Gaspera, E.D.; Martucci, A. Sol-Gel thin films for plasmonic gas sensors. Sensors 2015, 3, 16910–16928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purkayastha, A.; Srivastava, T.; Jha, R. Ultrasensitive THz–Plasmonics gaseous sensor using doped graphene. Sens. Actuators B Chem. 2016, 227, 291–295. [Google Scholar] [CrossRef]
- Paliwal, A.; Sharma, A.; Tomar, M.; Gupta, V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sens. Actuators B Chem. 2017, 250, 679–685. [Google Scholar] [CrossRef]
- Pozo, A.M.; Pérez-Ocón, F.; Rabaza, O. A continuous liquid-level sensor for fuel tanks based on surface plasmon resonance. Sensors 2016, 16, 724. [Google Scholar] [CrossRef] [Green Version]
- Optical Glass, Sumita Optical Glass. Available online: https://www.sumita-opt.co.jp/en/products/optical.html (accessed on 17 December 2021).
- Babar, S.; Weaver, J.H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Smith, P.L.; Huber, M.C.E.; Parkinson, W.H. Refractivities of H2, He, O2, CO, and Kr for 168 ≤ λ ≤ 288 nm. Phys. Rev. A 1976, 13, 1422–1434. [Google Scholar] [CrossRef]
- Martínez, I. Termodinámica Básica y Aplicada; Editorial Dossat, S.A.: Madrid, Spain, 1992; Available online: http://imartinez.etsiae.upm.es/~isidoro/bk3/Termodinamica%20basica%20y%20aplicada1.pdf (accessed on 20 March 2022).
- Pérez-Ocón, F.; Pozo, A.M.; Cortina, J.; Rabaza, O. Surface plasmon resonance sensor of CO2 for indoors and outdoors. Appl. Sci. 2021, 11, 6869. [Google Scholar] [CrossRef]
- Heavens, O.S. Thin Films Optics. Optical Properties of Thin Solid Films; Dover Books on Physics: New York, NY, USA, 2016; pp. 45–96. [Google Scholar]
- Bingham, J.M.; Anker, J.N.; Kreno, L.E.; van Duyne, R.P. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 2010, 132, 17358–17359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreno, L.E.; Hupp, J.T.; van Duyne, R.P. Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 2010, 82, 8042–8046. [Google Scholar] [CrossRef]
- Xiang, Y.J.; Zhu, J.Q.; Wu, L.M.; You, Q.; Ruan, B.X.; Dai, X.Y. Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Uwais, M.; Bijalwan, A.; Rastogi, V. Surface plasmon resonance based carbon monoxide sensor utilizing ZnO grating. In Proceedings of the Workshop on Recent Advances in Photonics (WRAP) IEEE, Guwahati, India, 13–14 December 2019. [Google Scholar] [CrossRef]
- Proença, M.; Rodrigues, M.; Vaz, F.; Borges, J. Carbon monoxide (CO) sensor based on Au nanoparticles embedded in a CuO matrix by HR-LSPR spectroscopy at room temperature. IEEE Sens. Lett. 2021, 5, 5000103. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Based Sensors; Springer Series on Chemical Sensors and Biosensors; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
ppm | 0 m above Sea Level | 1500 m above Sea Level | 3000 m above Sea Level | |||
---|---|---|---|---|---|---|
Sensitivity (RIU−1) | Resolution (RIU) | Sensitivity (RIU−1) | Resolution (RIU) | Sensitivity (RIU−1) | Resolution (RIU) | |
0 | 57.16 | 3.47 × 10−5 | 81.35 | 2.44 × 10−5 | 72.86 | 2.76 × 10−5 |
20 | 56.97 | 3.52 × 10−5 | 81.26 | 2.45 × 10−5 | 73.15 | 2.74 × 10−5 |
50 | 56.31 | 3.55 × 10−5 | 81.16 | 2.46 × 10−5 | 73.64 | 2.72 × 10−5 |
100 | 55.98 | 3.57 × 10−5 | 81.07 | 2.47 × 10−5 | 74.× 10 | 2.70 × 10−5 |
150 | 55.57 | 3.60 × 10−5 | 80.95 | 2.47 × 10−5 | 74.67 | 2.68 × 10−5 |
200 | 55.15 | 3.63 × 10−5 | 80.81 | 2.48 × 10−5 | 75.21 | 2.66 × 10−5 |
250 | 54.74 | 3.65 × 10−5 | 80.66 | 2.48 × 10−5 | 75.73 | 2.64 × 10−5 |
300 | 54.32 | 3.68 × 10−5 | 80.51 | 2.48 × 10−5 | 76.24 | 2.62 × 10−5 |
350 | 53.91 | 3.71 × 10−5 | 80.34 | 2.49 × 10−5 | 76.73 | 2.61 × 10−5 |
400 | 53.50 | 3.74 × 10−5 | 80.16 | 2.50 × 10−5 | 77.19 | 2.59 × 10−5 |
450 | 54.74 | 3.65 × 10−5 | 79.97 | 2.50 × 10−5 | 77.79 | 2.57 × 10−5 |
500 | 54.32 | 3.68 × 10−5 | 79.76 | 2.51 × 10−5 | 78.38 | 2.55 × 10−5 |
550 | 53.91 | 3.71 × 10−5 | 79.57 | 2.51 × 10−5 | 78.76 | 2.54 × 10−5 |
600 | 53.50 | 3.74 × 10−5 | 79.35 | 2.52 × 10−5 | 79.16 | 2.53 × 10−5 |
Sensitivity | Measure Range (ppm) | Response Time (s) | Resolution | Size | Main Compounds |
---|---|---|---|---|---|
Low [32] | 0–100 [33] | 14 s and a recovery time of 50 s [34] | Low [31] | Large [13] | Au-CuO [15,35] |
Our sensor higher sensitivity | 50 [34] | Our sensor measure in real-time | Our sensor higher resolution | Au-YSZ [16] | |
0.1–500 [13] | Ag, Au, and Ag-Cu [18] | ||||
Hexagonal array of Cu@CuO core-shell nanoparticles on the a-C:H thin film [19] | |||||
Graphene [22] | |||||
ZnO [23] | |||||
Our sensor only Au, simplest |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Ocón, F.; Pozo, A.M.; Cortina, J.; Rabaza, O. Design of a Surface Plasmon Resonance CO Sensor. Sensors 2022, 22, 3299. https://doi.org/10.3390/s22093299
Pérez-Ocón F, Pozo AM, Cortina J, Rabaza O. Design of a Surface Plasmon Resonance CO Sensor. Sensors. 2022; 22(9):3299. https://doi.org/10.3390/s22093299
Chicago/Turabian StylePérez-Ocón, Francisco, Antonio Manuel Pozo, Jorge Cortina, and Ovidio Rabaza. 2022. "Design of a Surface Plasmon Resonance CO Sensor" Sensors 22, no. 9: 3299. https://doi.org/10.3390/s22093299