A Review of Sensitivity Enhancement in Interferometer-Based Fiber Sensors
<p>The relationship between external RI and the resulting change in effective mode index under different diameters: (<bold>a</bold>) fundamental mode; (<bold>b</bold>) high-order mode [<xref ref-type="bibr" rid="B40-sensors-22-02506">40</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B40-sensors-22-02506">40</xref>], Copyright 2022 Elsvier Science and Technology Journals.</p> "> Figure 2
<p>The relationship between the refractive index and <inline-formula><mml:math id="mm147"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:msub><mml:mi>n</mml:mi><mml:mrow><mml:mi>e</mml:mi><mml:mi>f</mml:mi><mml:mi>f</mml:mi><mml:mo>,</mml:mo><mml:mi>A</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> (between the fundamental mode and high-order mode) for three fiber diameters [<xref ref-type="bibr" rid="B40-sensors-22-02506">40</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B40-sensors-22-02506">40</xref>]. Copyright 2022 Elsvier Science and Technology Journals.</p> "> Figure 3
<p>(<bold>a</bold>) Evolution of transmission spectrum of the microfiber MZI with the variation of refractive index; (<bold>b</bold>) RI sensitivities of interference dip around cut-off wavelength of the microfiber MZI in RI range of 1.3355–1.3402. [<xref ref-type="bibr" rid="B42-sensors-22-02506">42</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B42-sensors-22-02506">42</xref>]. Copyright 2020 Elsvier Science and Technology Journals.</p> "> Figure 4
<p>(<bold>a</bold>) Equipment and process of fabricating single mode–twisted-multimode–single mode fiber structure; (<bold>b</bold>) the transmittance spectrum of single mode–multimode–single mode fiber structure (SMS) and single mode–twisted-multimode–single mode fiber structure (STMS), respectively [<xref ref-type="bibr" rid="B62-sensors-22-02506">62</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B62-sensors-22-02506">62</xref>]. Copyright 2017 Elsvier Science and Technology Journals.</p> "> Figure 5
<p>Schematic of the MZI structure fabricated by the use of femtosecond laser pulse irradiation [<xref ref-type="bibr" rid="B65-sensors-22-02506">65</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B65-sensors-22-02506">65</xref>]. Copyright 2010 Optica Society.</p> "> Figure 6
<p>Schematic diagram of the proposed sensing system [<xref ref-type="bibr" rid="B44-sensors-22-02506">44</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B44-sensors-22-02506">44</xref>]. Copyright 2018 Elsvier Science and Technology Journals.</p> "> Figure 7
<p>Schematic diagram of the proposed sensing system [<xref ref-type="bibr" rid="B47-sensors-22-02506">47</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B47-sensors-22-02506">47</xref>]. Copyright 2008 Elsvier Science and Technology Journals.</p> "> Figure 8
<p>Experimental setup of coated polydimethylsiloxane based MZI temperature sensor [<xref ref-type="bibr" rid="B72-sensors-22-02506">72</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B72-sensors-22-02506">72</xref>]. Copyright 2019 Elsvier Science and Technology Journals.</p> "> Figure 9
<p>(<bold>a</bold>) SEM of the used photonic crystal fiber; (<bold>b</bold>) transmission spectra of the alcoholfilled HiBi-PCF FLM (<bold>a</bold>) when the temperature increases from 20 °C to 34 °C [<xref ref-type="bibr" rid="B48-sensors-22-02506">48</xref>]. Reprinted with permission from Ref. [<xref ref-type="bibr" rid="B48-sensors-22-02506">48</xref>]. Copyright 2011 The Optical Society.</p> ">
Abstract
:1. Introduction
2. Sensing Principle of Interferometer-Based Sensors
3. Interferometer-Based Sensors
- Three methods for modulation of ;
- Three methods for modulation of ;
- Modulation of to enhance the sensor sensitivity;
- Four methods for modulation of ;
- Modulation of to enhance the sensor sensitivity.
3.1. Modulation of to Enhance the Sensor Sensitivity
3.1.1. Dual-Core Tapers with Large Diameters
3.1.2. Effective Group–Velocity Matching Induced by an Antisymmetric Long-Period Grating
3.1.3. Cut-Off Wavelength of High-Order Modes
3.2. Modulation of to Enhance the Sensor Sensitivity
3.2.1. The Coupling between Fundamental Mode and High-Order Modes
3.2.2. Inducing a Waveguide with a High Refractive Index in One Arm of a MZI
3.2.3. Using the Large Refractive Index Difference of the Two Polarization Axes in Polarization-Maintaining Fibers
3.3. Modulation of to Enhance the Sensor Sensitivity
3.4. Modulation of to Enhance the Sensor Sensitivity
3.4.1. Specialty Fiber That Is Sensitive to the Surrounding Environment
3.4.2. Coating Sensitive Materials on the Surface of the Sensors
3.4.3. Filling the Air Holes in Photonic Crystal Fibers Using a High Sensitive Solution
3.4.4. High-Order Modes
3.5. Modulation of to Enhance the Sensor Sensitivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, B.; Fang, F.; Zhang, Z.; Xu, J.; Zhang, L. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference. Opt. Lett. 2018, 43, 1311–1314. [Google Scholar] [PubMed]
- Rosenthal, A.; Razansky, D.; Ntziachristos, V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Opt. Lett. 2011, 36, 1833–1835. [Google Scholar] [PubMed]
- Wu, Q.; Okabe, Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Opt. Express 2012, 20, 28353–28362. [Google Scholar] [PubMed]
- Lin, Z.T.; Lv, R.Q.; Zhao, Y.; Zheng, H.K. High-sensitivity salinity measurement sensor based on no-core fiber. Sens. Actuators A Phys. 2020, 305, 111947. [Google Scholar]
- Yang, X.; Shi, C.; Wheeler, D.; Newhouse, R.; Chen, B.; Zhang, J.Z.; Gu, C. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. JOSA A 2010, 27, 977–984. [Google Scholar]
- Liang, L.; Li, M.; Liu, N.; Sun, H.; Rong, Q.; Hu, M. A high-sensitivity optical fiber relative humidity sensor based on microsphere WGM resonator. Opt. Fiber Technol. 2018, 45, 415–418. [Google Scholar]
- Arif, M.F.H.; Biddut, M.J.H. A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications. Sens. Bio-Sens. Res. 2017, 12, 8–14. [Google Scholar]
- Yang, X.; Chang, A.S.; Chen, B.; Gu, C.; Bond, T.C. High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber. Sens. Actuators B Chem. 2013, 176, 64–68. [Google Scholar]
- Bajić, J.S.; Stupar, D.Z.; Manojlović, L.M.; Slankamenac, M.P.; Živanov, M.B. A simple, low-cost, high-sensitivity fiber-optic tilt sensor. Sens. Actuators A Phys. 2012, 185, 33–38. [Google Scholar]
- Donlagic, D.; Cibula, E. All-fiber high-sensitivity pressure sensor with SiO 2 diaphragm. Opt. Lett. 2005, 30, 2071–2073. [Google Scholar]
- Liu, L.; Zhang, H.; Zhao, Q.; Liu, Y.; Li, F. Temperature-independent FBG pressure sensor with high sensitivity. Opt. Fiber Technol. 2007, 13, 78–80. [Google Scholar]
- Cusano, A.; Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M.; Guerra, G. Coated long-period fiber gratings as high-sensitivity optochemical sensors. J. Light. Technol. 2006, 24, 1776–1786. [Google Scholar]
- Zheng, S.; Zhu, Y.; Krishnaswamy, S. Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings. Sens. Actuators B Chem. 2013, 176, 264–274. [Google Scholar]
- Wei, W.; Nong, J.; Zhang, G.; Tang, L.; Jiang, X.; Chen, N.; Luo, S.; Lan, G.; Zhu, Y. Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing. Sensors 2017, 17, 2. [Google Scholar]
- Wu, Y.; Yao, B.; Zhang, A.; Rao, Y.; Wang, Z.; Cheng, Y.; Gong, Y.; Zhang, W.; Chen, Y.; Chiang, K. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt. Lett. 2014, 39, 1235–1237. [Google Scholar]
- Zhang, L.; Liu, Y.; Cao, X.; Wang, T. High sensitivity chiral long-period grating sensors written in the twisted fiber. IEEE Sens. J. 2016, 16, 4253–4257. [Google Scholar]
- Leon, M.J.B.M.; Kabir, M.A. Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence & low confinement loss. Sens. Bio-Sens. Res. 2020, 28, 100335. [Google Scholar]
- Paul, B.K.; Ahmed, K.; Asaduzzaman, S.; Islam, M.S. Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis. Sens. Bio-Sens. Res. 2017, 12, 36–42. [Google Scholar]
- Li, C.; Liao, C.; Wang, J.; Li, Z.; Wang, Y.; He, J.; Bai, Z.; Wang, Y. Femtosecond laser microprinting of a polymer fiber Bragg grating for high-sensitivity temperature measurements. Opt. Lett. 2018, 43, 3409–3412. [Google Scholar]
- Chryssis, A.N.; Lee, S.M.; Lee, S.B.; Saini, S.S.; Dagenais, M. High sensitivity evanescent field fiber Bragg grating sensor. IEEE Photonics Technol. Lett. 2005, 17, 1253–1255. [Google Scholar]
- Rajan, G.; Liu, B.; Luo, Y.; Ambikairajah, E.; Peng, G.D. High sensitivity force and pressure measurements using etched singlemode polymer fiber Bragg gratings. IEEE Sens. J. 2013, 13, 1794–1800. [Google Scholar]
- Stefani, A.; Andresen, S.; Yuan, W.; Herholdt-Rasmussen, N.; Bang, O. High sensitivity polymer optical fiber-Bragg-grating-based accelerometer. IEEE Photonics Technol. Lett. 2012, 24, 763–765. [Google Scholar]
- Wang, B.; Tian, J.; Hu, L.; Yao, Y. High sensitivity humidity fiber-optic sensor based on all-agar Fabry–Perot interferometer. IEEE Sens. J. 2018, 18, 4879–4885. [Google Scholar]
- Kao, T.; Taylor, H. High-sensitivity intrinsic fiber-optic Fabry–Perot pressure sensor. Opt. Lett. 1996, 21, 615–617. [Google Scholar]
- Liu, S.; Yang, K.; Wang, Y.; Qu, J.; Liao, C.; He, J.; Li, Z.; Yin, G.; Sun, B.; Zhou, J.; et al. High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 2015, 5, 1–7. [Google Scholar]
- Zhou, K.; Ai, M.Z.; Qian, Z.H.; Gao, X.X.; Hu, Z.H.; Li, Q.; Yuan, L.; Wang, Z.; Huang, Y.F.; Tu, T.; et al. High-sensitivity strain sensor with an in-fiber air-bubble Fabry-Perot interferometer. Appl. Phys. Lett. 2018, 113, 181901. [Google Scholar]
- Favero, F.; Araujo, L.; Bouwmans, G.; Finazzi, V.; Villatoro, J.; Pruneri, V. Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing. Opt. Express 2012, 20, 7112–7118. [Google Scholar]
- Quan, M.; Tian, J.; Yao, Y. Ultra-high sensitivity Fabry–Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect. Opt. Lett. 2015, 40, 4891–4894. [Google Scholar]
- Wang, J.; Ge, S.; Ren, H.; Huang, T.; Yang, P.; Xu, P.; Bai, S.; Dai, S.; Du, J.; Nie, Q. High-sensitivity micro-strain sensing using a broadband wavelength-tunable thulium-doped all-fiber structured mode-locked laser. Opt. Lett. 2022, 47, 34–37. [Google Scholar]
- Wang, H.; Gao, S.; Baker, C.; Wang, Y.; Chen, L.; Bao, X. Wide-range strain sensor based on Brillouin frequency and linewidth in an As2Se3-PMMA hybrid microfiber. Opt. Express 2020, 28, 22933–22945. [Google Scholar]
- Islam, M.; Ali, M.M.; Lai, M.H.; Lim, K.S.; Ahmad, H. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review. Sensors 2014, 14, 7451–7488. [Google Scholar] [PubMed] [Green Version]
- Guzman-Sepulveda, J.; May-Arrioja, D. In-fiber directional coupler for high-sensitivity curvature measurement. Opt. Express 2013, 21, 11853–11861. [Google Scholar] [PubMed]
- Geng, Y.; Li, X.; Tan, X.; Deng, Y.; Yu, Y. High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper. IEEE Sens. J. 2011, 11, 2891–2894. [Google Scholar]
- Zhao, Y.; Cai, L.; Li, X.G.; Meng, F.c.; Zhao, Z. Investigation of the high sensitivity RI sensor based on SMS fiber structure. Sens. Actuators A Phys. 2014, 205, 186–190. [Google Scholar]
- Ahsani, V.; Ahmed, F.; Jun, M.B.; Bradley, C. Tapered fiber-optic Mach–Zehnder interferometer for ultra-high sensitivity measurement of refractive index. Sensors 2019, 19, 1652. [Google Scholar]
- Liu, D.; Kumar, R.; Wei, F.; Han, W.; Mallik, A.K.; Yuan, J.; Wan, S.; He, X.; Kang, Z.; Li, F.; et al. High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol. Sens. Actuators B Chem. 2018, 271, 1–8. [Google Scholar]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric fiber optic sensors. Sensors 2012, 12, 2467–2486. [Google Scholar]
- Hanim, A.; Hazura, H.; Zain, A.; Idris, S. Modal interferometer structures and splicing techniques of fiber optic sensor. J. Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 23–27. [Google Scholar]
- Korposh, S.; James, S.W.; Lee, S.W.; Tatam, R.P. Tapered optical fibre sensors: Current trends and future perspectives. Sensors 2019, 19, 2294. [Google Scholar]
- Li, X.; Chen, N.; Zhou, X.; Zhang, Y.; Zhao, Y.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. In-situ DNA detection with an interferometric-type optical sensor based on tapered exposed core microstructured optical fiber. Sens. Actuators B Chem. 2022, 351, 130942. [Google Scholar]
- Gao, S.; Baker, C.; Chen, L.; Bao, X. High-sensitivity temperature and strain measurement in dual-core hybrid tapers. IEEE Photonics Technol. Lett. 2018, 30, 1155–1158. [Google Scholar]
- Xia, F.; Zhao, Y. RI sensing system with high sensitivity and large measurement range using a microfiber MZI and a photonic crystal fiber MZI. Measurement 2020, 156, 107603. [Google Scholar]
- Fu, H.; Zhao, N.; Shao, M.; Li, H.; Gao, H.; Liu, Q.; Yong, Z.; Liu, Y.; Qiao, X. High-sensitivity Mach–Zehnder interferometric curvature fiber sensor based on thin-core fiber. IEEE Sens. J. 2014, 15, 520–525. [Google Scholar]
- Li, X.; Nguyen, L.V.; Zhao, Y.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber. Sens. Actuators B Chem. 2018, 269, 103–109. [Google Scholar]
- Yang, J.; Jiang, L.; Wang, S.; Li, B.; Wang, M.; Xiao, H.; Lu, Y.; Tsai, H. High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing. Appl. Opt. 2011, 50, 5503–5507. [Google Scholar]
- Shao, M.; Qiao, X.; Fu, H.; Zhao, N.; Liu, Q.; Gao, H. An in-fiber Mach–Zehnder interferometer based on arc-induced tapers for high sensitivity humidity sensing. IEEE Sens. J. 2013, 13, 2026–2031. [Google Scholar]
- Li, E.; Peng, G.D. Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity. Opt. Commun. 2008, 281, 5768–5770. [Google Scholar]
- Qian, W.; Zhao, C.L.; He, S.; Dong, X.; Zhang, S.; Zhang, Z.; Jin, S.; Guo, J.; Wei, H. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror. Opt. Lett. 2011, 36, 1548–1550. [Google Scholar]
- Gallego, D.; Lamela, H. High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications. Opt. Lett. 2009, 34, 1807–1809. [Google Scholar]
- Gao, S.; Baker, C.; Chen, L.; Bao, X. Simultaneous measurement of temperature and strain in a dual-core As2Se3-PMMA taper. IEEE Photonics Technol. Lett. 2017, 30, 79–82. [Google Scholar]
- Wang, Q.; Kong, L.; Dang, Y.; Xia, F.; Zhang, Y.; Zhao, Y.; Hu, H.; Li, J. High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer. Sens. Actuators B Chem. 2016, 225, 213–220. [Google Scholar]
- Zhao, Y.; Zhao, J.; Zhao, Q. High sensitivity seawater temperature sensor based on no-core optical fiber. Opt. Fiber Technol. 2020, 54, 102115. [Google Scholar]
- Yuan, S.; Tong, Z.; Zhao, J.; Zhang, W.; Cao, Y. High temperature fiber sensor based on spherical-shape structures with high sensitivity. Opt. Commun. 2014, 332, 154–157. [Google Scholar]
- Wu, Q.; Semenova, Y.; Wang, P.; Farrell, G. High sensitivity SMS fiber structure based refractometer–analysis and experiment. Opt. Express 2011, 19, 7937–7944. [Google Scholar] [PubMed]
- Nguyen, L.V.; Hwang, D.; Moon, S.; Moon, D.S.; Chung, Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375. [Google Scholar]
- Zhao, N.; Lin, Q.; Jing, W.; Jiang, Z.; Wu, Z.; Yao, K.; Tian, B.; Zhang, Z.; Shi, P. High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers. Sens. Actuators A Phys. 2017, 267, 491–495. [Google Scholar]
- Mitu, S.A.; Ahmed, K.; Al Zahrani, F.A.; Abdullah, H.; Hossain, M.N.; Paul, B.K. Micro-Structure Ring Fiber–Based Novel Magnetic Sensor with High Birefringence and High Sensitivity Response in Broad Waveband. Plasmonics 2021, 16, 905–913. [Google Scholar]
- Villatoro, J.; Kreuzer, M.P.; Jha, R.; Minkovich, V.P.; Finazzi, V.; Badenes, G.; Pruneri, V. Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 2009, 17, 1447–1453. [Google Scholar]
- Wang, H.; Gao, S.; Baker, C.; Wang, Y.; Chen, L.; Bao, X. Stimulated Brillouin scattering in a tapered dual-core As2Se3-PMMA fiber for simultaneous temperature and strain sensing. Opt. Lett. 2020, 45, 3301–3304. [Google Scholar]
- Gao, S.; Baker, C.; Chen, L.; Bao, X. Approach for temperature-sensitivity enhancement in a tapered dual-core As2Se3-PMMA fiber with an antisymmetric long-period grating. J. Light. Technol. 2019, 37, 2734–2738. [Google Scholar]
- Baker, C.; Gao, S.; Chen, L.; Bao, X. Self-inscribed antisymmetric long-period grating in a dual-core As2Se3-PMMA fiber. Opt. Express 2017, 25, 12409–12414. [Google Scholar] [PubMed]
- Sun, Y.; Liu, D.; Lu, P.; Sun, Q.; Yang, W.; Wang, S.; Liu, L.; Ni, W. High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure. Opt. Commun. 2017, 405, 416–420. [Google Scholar]
- Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 2011, 36, 3753–3755. [Google Scholar] [PubMed]
- Huang, X.; Li, X.; Yang, J.; Tao, C.; Guo, X.; Bao, H.; Yin, Y.; Chen, H.; Zhu, Y. An in-line Mach–Zehnder interferometer using thin-core fiber for ammonia gas sensing with high sensitivity. Sci. Rep. 2017, 7, 1–8. [Google Scholar]
- Wang, Y.; Yang, M.; Wang, D.; Liu, S.; Lu, P. Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. JOSA B 2010, 27, 370–374. [Google Scholar]
- Monfared, Y.E.; Liang, C.; Khosravi, R.; Kacerovská, B.; Yang, S. Selectively toluene-filled photonic crystal fiber Sagnac interferometer with high sensitivity for temperature sensing applications. Results Phys. 2019, 13, 102297. [Google Scholar]
- Guzman-Sepulveda, J.R.; Ruiz-Perez, V.I.; Torres-Cisneros, M.; Sanchez-Mondragon, J.J.; May-Arrioja, D.A. Fiber optic sensor for high-sensitivity salinity measurement. IEEE Photonics Technol. Lett. 2013, 25, 2323–2326. [Google Scholar]
- Liu, Y.; Peng, W.; Liang, Y.; Zhang, X.; Zhou, X.; Pan, L. Fiber-optic Mach–Zehnder interferometric sensor for high-sensitivity high temperature measurement. Opt. Commun. 2013, 300, 194–198. [Google Scholar]
- Yang, J.; Guan, C.; Yu, Z.; Yang, M.; Shi, J.; Wang, P.; Yang, J.; Yuan, L. High sensitivity humidity sensor based on gelatin coated side-polished in-fiber directional coupler. Sens. Actuators B Chem. 2020, 305, 127555. [Google Scholar]
- Al-Hayali, S.K.; Salman, A.M.; Al-Janabi, A.H. High sensitivity balloon-like interferometric optical fiber humidity sensor based on tuning gold nanoparticles coating thickness. Measurement 2021, 170, 108703. [Google Scholar]
- Ascorbe, J.; Corres, J.; Matias, I.; Arregui, F. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. [Google Scholar]
- Gong, J.; Shen, C.; Xiao, Y.; Liu, S.; Zhang, C.; Ding, Z.; Deng, H.; Fang, J.; Lang, T.; Zhao, C.; et al. High sensitivity fiber temperature sensor based PDMS film on Mach–Zehnder interferometer. Opt. Fiber Technol. 2019, 53, 102029. [Google Scholar]
- Sun, H.; Hu, M.; Rong, Q.; Du, Y.; Yang, H.; Qiao, X. High sensitivity optical fiber temperature sensor based on the temperature cross-sensitivity feature of RI-sensitive device. Opt. Commun. 2014, 323, 28–31. [Google Scholar]
- Bakurov, D.D.; Ivanov, O.V. Control of Excitation of Cladding Modes by Tapering an Insertion of Special Fiber. Sensors 2021, 21, 2498. [Google Scholar]
- Wang, P.; Brambilla, G.; Ding, M.; Semenova, Y.; Wu, Q.; Farrell, G. High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference. Opt. Lett. 2011, 36, 2233–2235. [Google Scholar]
- Kong, Y.; Shu, X.; Cao, H.; Deng, J. Thin-core fiber taper-based multi-mode interferometer for refractive index sensing. IEEE Sens. J. 2018, 18, 8747–8754. [Google Scholar]
Sensor | Interferometer Type | Modulated Terms | Measurand | Sensitivity | Ref. |
---|---|---|---|---|---|
Tapered exposed-core fiber | MZI | ; | cDNA | 61.8 pm/nM | [40] |
Large diameter dual-core taper | Mode Coupling | Temperature; Strain | 572 pm/°C; −6.23 pm/με | [41] | |
Microfibers MZI | MZI | Refractive index | 44,271 nm/RIU | [42] | |
Thin-core fiber MZI | MZI | Curvature | −13.53 nm/m−1 | [43] | |
Exposed core microstructured fiber | Sagnac Interferometer | Refractive index | −3137 nm/RIU | [44] | |
Dual taper-based MZI | MZI | Refractive index | 2210.84 nm/RIU | [45] | |
Arc-induced tapers | MZI | Humidity | −0.047 nm/%RH | [46] | |
Polymer fiber | MZI | Temperature | 3.195 nm/°C | [47] | |
Alcohol-filled photonic crystal fiber | Birefringence Coupling | Temperature | 6.6 nm/°C | [48] | |
Polymer optical fibers MZI | MZI | Ultrasound | 13.1 mrad/kPa | [49] | |
Dual-core As2Se3-PMMA taper | Mode Coupling | ; | Temperature; Strain | −115 pm/°C; −4.21 pm/με | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Guan, Z.; Dong, J.; Li, H.; Cai, Y.; Gao, S. A Review of Sensitivity Enhancement in Interferometer-Based Fiber Sensors. Sensors 2022, 22, 2506. https://doi.org/10.3390/s22072506
Wen Z, Guan Z, Dong J, Li H, Cai Y, Gao S. A Review of Sensitivity Enhancement in Interferometer-Based Fiber Sensors. Sensors. 2022; 22(7):2506. https://doi.org/10.3390/s22072506
Chicago/Turabian StyleWen, Zengrun, Ziqing Guan, Jingru Dong, Hongxin Li, Yangjian Cai, and Song Gao. 2022. "A Review of Sensitivity Enhancement in Interferometer-Based Fiber Sensors" Sensors 22, no. 7: 2506. https://doi.org/10.3390/s22072506
APA StyleWen, Z., Guan, Z., Dong, J., Li, H., Cai, Y., & Gao, S. (2022). A Review of Sensitivity Enhancement in Interferometer-Based Fiber Sensors. Sensors, 22(7), 2506. https://doi.org/10.3390/s22072506