Decision Support System to Classify and Optimize the Energy Efficiency in Smart Buildings: A Data Analytics Approach
<p>Prototype architecture.</p> "> Figure 2
<p>Occupancy distribution.</p> "> Figure 3
<p>Sample compressor consumption distribution.</p> "> Figure 4
<p>Set of rules for the clustering of the sample with the objective of average active power compressor versus temperature and work or non-workdays.</p> "> Figure 5
<p>Graphical representation of distribution of cluster 1.</p> "> Figure 6
<p>Graphical representation of distribution of cluster 2.</p> "> Figure 7
<p>Graphical representation of distribution of cluster 3.</p> "> Figure 8
<p>Graphical representation of distribution of cluster 3.1.</p> "> Figure 9
<p>Graphical representation of distribution of cluster 3.2.</p> "> Figure 10
<p>Graphical representation of distribution of cluster 3.3.</p> "> Figure 11
<p>Gaussian distribution of energy consumption in cluster 3.3.</p> "> Figure 12
<p>EE category prediction for cluster 3.3 and energy consumption behaviors.</p> ">
Abstract
:1. Introduction
2. Case Study: BlueNet Smart Building
2.1. Indoor Sensors
- Temperature: ZigBee sensors read the temperature in every room of the building. Generally, at least 2 or 3 sensors are used in every room to apply rules that ensure that the correct temperature is obtained.
- Humidity: ZigBee sensors read the relative humidity in every room of the BlueNet building. It is important to calculate the real feeling of the temperature in each zone.
- Lux: ZigBee sensors check the real effect of the lighting system by measuring the lux values in every room of the building.
- Presence: These sensors obtain data that indicate the presence of all occupants in the BlueNet building by identifying every person with a unique id and obtaining information about the time that every person is in BlueNet building rooms.
2.2. Outdoor Sensors
- Temperature: These sensors take the environmental temperature every 10 min and are also able to provide the maximum, minimum and mean temperature of each day.
- Humidity: The outdoor sensors measure the environmental humidity and the amount of rain fallen to calculate the feeling of environmental temperature.
- Sunshine: These sensors obtain the amount of sunshine that irradiates onto the building every day.
- Wind: The outdoor sensors also obtain the amount and direction of the wind in the building environment.
2.3. Energy Analyzers
2.3.1. HVAC
2.3.2. Lights
2.3.3. Power
2.3.4. Others
2.4. Energy Efficiency Indicators (EEIs)
2.4.1. Operational Changes in HVAC Compressor (OCC) Indicator
2.4.2. Number of Operational Regime Changes in the HVAC Compressor (ORCC) Indicator
2.4.3. Switch on HVAC Compressor and Abnormal Changes in Indoor Temperature (SONCCIT) Indicator
2.4.4. Switch off HVAC Compressor and Abnormal Changes in Indoor Temperature (SOFFCCIT) Indicator
2.4.5. No Persons in BlueNet Building and Switch on HVAC Compressors (NPSONC) Indicator
3. The Data-Mining-Based Decision Support System to Optimize EE in the Smart Building
3.1. Data Preprocessing
- -
- Indoor sensors (30 s basis): mote_id, timestamp (YYYY/MM/DD hh:dd:ss), temperature (Celsius degrees), percentage_humidity, CO2 and lux (lumens).
- -
- Indoor sensors (30 s basis): mote_id, timestamp (YYYY/MM/DD hh:dd:ss) and employee_id (presence).
- -
- Outdoor sensors (10 min basis): sensor_id, latitude, longitude, timestamp (yyyy/mm/dd hh:dd:ss), wind_direction (degrees), max_wind_speed (m/s), min_wind_speed (m/s), ave_wind_speed (m/s), UV_index, max_humidity, min_humidity, ave_humidity, precipitation (l/) and sunshine_radiation (W/).
- -
- Energy Analyzers—HVAC (5 min basis): timestamp (YYYY/MM/DD hh:mm:ss), AP_CLI_FASE1 (kW), AP_CLI_FASE2 (kW) and AP_CLI_FASE3 (kW).
- -
- Energy Analyzers—Lights (5 min basis): timestamp (YYYY/MM/DD hh:mm:ss), AP_LIG_FASE1 (kW), AP_LIG_FASE2 (kW) and AP_LIG_FASE3 (kW).
- -
- Energy Analyzers—Power (5 min basis): timestamp (YYYY/MM/DD hh:mm:ss), AP_POW_FASE1 (kW), AP_POW_FASE2 (kW) and AP_POW_FASE3 (kW).
- -
- Energy Efficiency Indicators—OCC, ORCC, SONCCIT, SOFFCCIT and NPSONC (10 min basis): timestamp (YYYY/MM/DD hh:mm:ss) and anomaly (true/false).
- -
- Energy Efficiency Indicators—OCC (10 min basis): timestamp (YYYY/MM/DD hh:mm:ss) and anomaly (true/false).
- -
- Energy Efficiency Indicators—ORCC (10 min basis): timestamp (YYYY/MM/DD hh:mm:ss) and anomaly (true/false).
- -
- Energy Efficiency Indicators—SONCCIT (10 min basis): timestamp (YYYY/MM/DD hh:mm:ss) and anomaly (true/false).
- -
- Energy Efficiency Indicators—SOFFCCIT (10 min basis): timestamp (YYYY/MM/DD hh:mm:ss) and anomaly (true/false).
- -
- Energy Efficiency Indicators—NPSONC (10 min basis): timestamp (YYYY/MM/DD hh:mm:ss) and anomaly (true/false).
- -
- Data cleaning: removing all missing and null values, as well as inconsistencies found in each data source;
- -
- Data transformation: normalizing all data to the same period (10 min) to facilitate the aggregation of data and their analysis;
- -
- Data reduction: simplifying the data with the aim of providing meaningful data.
- Detect every outlier in the data sample and fix it with the average value of data dispersion through DM techniques.
- Data consistency validation: every sample of data requires at least one value for each 30 min period.
3.2. Classification Module
Algorithm 1. A Priori with breadth-first search. |
Apriori(T,) {large 1 − itemsets} k 2 while {a ∪ {b} | a b a} − {c|{s|s c |s| = k − 1}} for transformations {c|c c t} for candidates count[c] count[c + 1] {c|c count[c] } k k + 1 return where T—The set of data; —Confidence threshold; k—Size of the set of candidate items; —Candidate set at level k; c—Candidate c; count[c]—Pointer to the candidate set c. |
3.2.1. Cluster 1
3.2.2. Cluster 2
3.2.3. Cluster 3
Cluster 3.1
Cluster 3.2
Cluster 3.3
3.3. Energy Efficiency Prediction Module
4. Summary and Experimental Results
- Cluster 1: This cluster represents days with lower external temperature ranging from 3.5 °C to 23.5 °C. This cluster does not discriminate between energy consumption or between work and non-workdays.
- Cluster 2: This cluster represents days with a softer curve of intermediate temperature ranging from 23.5 °C to 28.5 °C. This cluster does not discriminate between energy consumption or between work and non-workdays.
- Cluster 3.1: This cluster groups days with higher external temperature ranging from 28.5 °C to 39.6 °C, in which most of the days are non-working days with low energy consumption.
- Cluster 3.2: This cluster represents days with higher external temperature ranging mainly from 28.5 °C to 33.5 °C. Most of the selected days are working days with high energy consumption.
- Cluster 3.3: This cluster groups days with higher external temperature ranging mainly from 28.5 °C to 39.6 °C, in which most of the selected days are working days with high energy consumption.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Main Variables for Optimization in BlueNet Building
References
- Rashid, Y.R.; Sulaiman, M.S.; Aziz, A.; Selamat, H.; Yani, A.H.M.; Kandar, M.Z. Greening government’s office buildings: PWD Malaysia experiences. Procedia Eng. 2011, 21, 1056–1060. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Peters, G.P.; Andrew, R.M.; Canadell, J.G.; Fuss, S.; Jackson, R.B.; Korsbakken, J.I.; Le Quéré, C.; Nakicenovic, N. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Chang. 2017, 7, 118. [Google Scholar] [CrossRef]
- EIA, U.S. Key Energy Statistics; Energy Information Administration: Washington, DC, USA, 2017.
- EIA, U.S. Annual Energy Outlook; Energy Information Administration: Washington, DC, USA, 2018.
- Day, A.; Jones, P.; Turton, J. Development of a UK Centre for Efficient and Renewable Energy in Buildings (CEREB). Renew. Energy 2012, 49, 166–170. [Google Scholar] [CrossRef]
- de Alegría Mancisidor, I.; de Basurto Uraga, P.D.; de Arbulo López, P.R. European Union’s renewable energy sources and energy efficiency policy review: The Spanish perspective. Renew. Sustain. Energy Rev. 2009, 13, 100–114. [Google Scholar] [CrossRef]
- EEA. Financial Support for Energy Efficiency in Buildings 2018; EEA: Copenhagen, Denmark, 2018. [Google Scholar]
- DOE/EIA. Annual Energy Outlook 2021; DOE/EIA: Washington, DC, USA, 2021. [Google Scholar]
- Yamagata, Y.; Seya, H. Simulating a future smart city: An integrated land use-energy model. Appl. Energy 2013, 112, 1466–1474. [Google Scholar] [CrossRef]
- Lazaroiu, G.C.; Roscia, M. Definition methodology for the smart cities model. Energy 2012, 47, 326–332. [Google Scholar] [CrossRef]
- Personal, E.; Guerrero, J.I.; Garcia, A.; Peña, M.; Leon, C. Key performance indicators: A useful tool to assess Smart Grid goals. Energy 2014, 76, 976–988. [Google Scholar] [CrossRef]
- Vadiee, A.; Martin, V. Thermal energy storage strategies for effective closed greenhouse design. Appl. Energy 2013, 109, 337–343. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, G. Energy conservation in the greenhouse system: A steady state analysis. Energy 2010, 35, 2367–2373. [Google Scholar] [CrossRef]
- Djevic, M.; Dimitrijevic, A. Energy consumption for different greenhouse constructions. Energy 2009, 34, 1325–1331. [Google Scholar] [CrossRef]
- Hoseini, A.G.; Dahlan, N.D.; Berardi, U.; Hoseini, A.G.; Makaremi, N.; Hoseini, M.G. Sustainable energy performances of green buildings: A review of current theories, implementations and challenges. Renew. Sustain. Energy Rev. 2013, 25, 1–17. [Google Scholar] [CrossRef]
- Hoseini, A.G.; Dahlan, N.; Berardi, U.; Hoseini, A.G.; Makaremi, N. The essence of future smart houses: From embedding ICT to adapting to sustainability principles. Renew. Sustain. Energy Rev. 2013, 24, 593–607. [Google Scholar] [CrossRef]
- Dounis, A.I.; Caraiscos, C. Advanced control systems engineering for energy and comfort management in a building environment—A review. Renew. Sustain. Energy Rev. 2009, 13, 1246–1261. [Google Scholar] [CrossRef]
- Omer, A.M. Renewable building energy systems and passive human comfort solutions. Renew. Sustain. Energy Rev. 2008, 12, 1562–1587. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, Y.; Lin, B. Renewable energy utilization evaluation method in green buildings. Renew. Energy 2008, 33, 883–886. [Google Scholar] [CrossRef]
- Peña, M.; Biscarri, F.; Guerrero, J.I.; Monedero, I.; León, C. Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach. Expert Syst. Appl. 2016, 56, 242–255. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Int. Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Singh, D.; Tripathi, G.; Jara, A.J. A survey of Internet-of-Things: Future vision, architecture, challenges and services. Int. Things (WF-IoT) 2014, 1, 287–292. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Rathore, M.M.; Paul, A.; Hong, W.-H.; Seo, H.; Awan, I.; Saeed, S. Exploiting IoT and big data analytics: Defining Smart Digital City using real-time urban data. Sustain. Cities Soc. 2018, 40, 600–610. [Google Scholar] [CrossRef]
- Pawar, P.; Kumar, M.T.; Vittal, K.P. An IoT based Intelligent Smart Energy Management System with accurate forecasting and load strategy for renewable generation. Measurement 2020, 152, 107187. [Google Scholar] [CrossRef]
- Palattella, M.; Dohler, M.; Grieco, A.; Rizzo, J.; Torsner, T.; Engel, L.; Ladid, L. Internet of Things in the 5G era: Enablers architecture and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Skouby, K.E.; Lynggaard, P. Smart home and smart city solutions enabled by 5G, IoT, AAI, and CoT services. In Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysuru, India, 27–29 November 2014; pp. 874–878. [Google Scholar]
- Goraczek, M.; Pereira, G.; Falco, E.; Kleinhans, R.; Parycek, P. Using Fuzzy Cognitive Maps as Decision Support Tool for Smart Cities. In CeDEM Asia 2016: Proceedings of the International Conference for E-Democracy and Open Government, Asia 2016, 7–9 Decemer 2016, Deagu, Korea; Edition Donau-Universität Krems: Krems an der Donau, Austria, 2017. [Google Scholar]
- Somu, N.; Raman, G.; Ramamritham, K. A hybrid model for building energy consumption forecasting using long short term memory networks. Appl. Energy 2020, 261, 114131. [Google Scholar] [CrossRef]
- Ikhide, M.; Egaji, A.; Ahmed, A. Developing Energy Control and Optimisation Methodology for Built Environment of the Future. Renew. Energy Sustain. Build. 2020, 45, 567–577. [Google Scholar] [CrossRef]
- Fan, C.; Sun, Y.; Xiao, F.; Ma, J.; Lee, D.; Wang, J.; Tseng, Y.C. Statistical investigations of transfer learning-based methodology for short-term building energy predictions. Appl. Energy 2020, 262, 114499. [Google Scholar] [CrossRef]
- Hosseinnezhad, V.; Shafie-Khah, M.; Siano, P.; Catalao, J.P.S. An Optimal Home Energy Management Paradigm with an Adaptive Neuro-Fuzzy Regulation. IEEE Access 2020, 8, 19614–19628. [Google Scholar] [CrossRef]
- Broujeny, R.S.; Madani, K.; Chebira, A.; Amarger, V.; Hurtard, L. Data-Driven Living Spaces’ Heating Dynamics Modeling in Smart Buildings using Machine Learning-Based Identification. Sensors 2020, 20, 1071. [Google Scholar] [CrossRef] [Green Version]
- Pallonetto, F.; De Rosa, M.; Milano, F.; Finn, D.P. Demand response algorithms for smart-grid ready residential buildings using machine learning models. Appl. Energy 2019, 239, 1265–1282. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Yan, C.; Liu, C.; Li, Z.; Wang, J. A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning. Appl. Energy 2018, 235, 1551–1560. [Google Scholar] [CrossRef]
- Reynolds, J.; Ahmad, M.W.; Rezgui, Y.; Hippolyte, J.L. Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm. Appl. Energy 2019, 235, 699–713. [Google Scholar] [CrossRef]
- Olszewski, R.; Pałka, P.; Turek, A. Solving “Smart City” Transport Problems by Designing Carpooling Gamification Schemes with Multi-Agent Systems: The Case of the So-Called “Mordor of Warsaw”. Sensors 2018, 18, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshino, H.; Hong, T.; Nord, N. IEA EBC annex 53: Total energy use in buildings—Analysis and evaluation methods. Energy Build. 2017, 152, 124–136. [Google Scholar] [CrossRef] [Green Version]
- Noailly, J. Improving the energy efficiency of buildings: The impact of environmental policy on technological innovation. Energy Econ. 2012, 34, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Andrews, C.J.; Krogmann, U. Explaining the adoption of energy-efficient technologies in U.S. commercial buildings. Energy Build. 2009, 41, 287–294. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; de Lober, L.N.T.; Borge-Diez, D.; Castro-Gil, M. Solutions to reduce energy consumption in the man-agement of large buildings. Energy Build. 2013, 56, 66–77. [Google Scholar] [CrossRef]
- Biyik, E.; Kahraman, A. A predictive control strategy for optimal management of peak load, thermal comfort, energy storage and renewables in multi-zone buildings. J. Build. Eng. 2019, 25, 100826. [Google Scholar] [CrossRef]
- Chumnanvanichkul, P.; Chirapongsananurak, P.; Hoonchareon, N. Three-level Classification of Air Conditioning Energy Consumption for Building Energy Management System Using Data Mining Techniques. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 20 March–23 March 2019; pp. 611–615. [Google Scholar] [CrossRef]
- Marinakis, V.; Karakosta, C.; Doukas, H.; Androulaki, S.; Psarras, J. A building automation and control tool for remote and real time monitoring of energy consumption. Sustain. Cities Soc. 2013, 6, 11–15. [Google Scholar] [CrossRef]
- Azadeh, A.; Saberi, M.; Ghaderi, S.; Gitiforouz, A.; Ebrahimipour, V. Improved estimation of electricity demand function by integration of fuzzy system and data mining approach. Energy Convers. Manag. 2008, 49, 2165–2177. [Google Scholar] [CrossRef]
- Altwies, J.E.; Nemet, G.F. Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology. Energy Pol. 2013, 52, 819–831. [Google Scholar] [CrossRef]
- Pang, X.; Wetter, M.; Bhattacharya, P.; Haves, P. A framework for simulation-based real-time whole building performance assessment. Build. Environ. 2012, 54, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Kolokotsa, D.; Kalaitzakis, K.; Antonidakis, E.; Stavrakakis, G. Interconnecting smart card system with PLC controller in a local operating network to form a distributed energy management and control system for buildings. Energy Convers. Manag. 2002, 43, 119–134. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Aiello, M. Energy intelligent buildings based on user activity: A survey. Energy Build. 2013, 56, 244–257. [Google Scholar] [CrossRef] [Green Version]
- Escrivá-Escrivá, G. Basic actions to improve energy efficiency in commercial buildings in operation. Energy Build. 2011, 43, 3106–3111. [Google Scholar] [CrossRef]
- D’Agostino, D.; Cuniberti, B.; Bertoldi, P. Energy consumption and efficiency technology measures in European non-residential buildings. Energy Build. 2017, 153, 72–86. [Google Scholar] [CrossRef]
- Koezjakov, A.; Urge-Vorsatz, D.; Crijns-Graus, W.; van den Broek, M. The relationship between operational energy demand and embodied energy in Dutch residential buildings. Energy Build. 2018, 165, 233–245. [Google Scholar] [CrossRef]
- Figueiredo, J.; Sá da Costa, J. A SCADA system for energy management in intelligent buildings. Energy Build. 2012, 49, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Diakaki, C.; Grigoroudis, E.; Kolokotsa, D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 2008, 40, 1747–1754. [Google Scholar] [CrossRef]
- Diakaki, C.; Grigoroudis, E.; Kabelis, N.; Kolokotsa, D.; Kalaitzakis, K.; Stavrakakis, G. A multi-objective decision model for the improvement of energy efficiency in buildings. Energy 2010, 35, 5483–5496. [Google Scholar] [CrossRef]
- Wu, W.; Guo, J.; Li, J.; Hou, H.; Meng, Q.; Wang, W. A multi-objective optimization design method in zero energy building study: A case study concerning small mass buildings in cold district of China. Energy Build. 2018, 158, 1613–1624. [Google Scholar] [CrossRef]
- Doukas, H.; Nychtis, C.; Psarras, J. Assessing energy-saving measures in buildings through an intelligent decision support model. Build. Environ. 2009, 44, 290–298. [Google Scholar] [CrossRef]
- Yang, R.; Wang, L. Development of multi-agent system for building energy and comfort management based on occupant behaviors. Energy Build. 2013, 56, 1–7. [Google Scholar] [CrossRef]
- Klein, L.; Kwak, J.-Y.; Kavulya, G.; Jazizadeh, F.; Becerik-Gerber, B.; Varakantham, P.; Tambe, M. Coordinating occupant behavior for building energy and comfort management using multi-agent systems. Autom. Constr. 2012, 22, 525–536. [Google Scholar] [CrossRef]
- Oldewurtel, F.; Parisio, A.; Jones, C.; Gyalistras, D.; Gwerder, M.; Stauch, V.; Lehmann, B.; Morari, M. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 2012, 45, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Stamatescu, G.; Stamatescu, I.; Arghira, N.; Drăgana, C.; Făgărăşan, I. Data-driven methods for smart building AHU subsystem modelling. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Bucharest, Romania, 21–23 September 2017; pp. 617–621. [Google Scholar]
- Kim, H.; Stumpf, A.; Kim, W. Analysis of an energy efficient building design through data mining approach. Autom. Constr. 2011, 20, 37–43. [Google Scholar] [CrossRef]
- Petrushevski, F.; Gaida, S.; Beigelböck, B.; Sipetic, M.; Zucker, G.; Schiefer, C.; Schachinger, D.; Kastner, W. Semantic Building Systems Modeling for Advanced Data Analytics for Energy Efficiency. In Proceedings of the 15th IBPSA Conference, San Francisco, CA, USA, 7–9 August 2017; pp. 622–627. [Google Scholar]
- Schachinger, D.; Gaida, S.; Kastner, W.; Petrushevski, F.; Reinthaler, C.; Sipetic, M.; Zucker, G. An advanced data analytics framework for energy efficiency in buildings. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Fan, C.; Xiao, F.; Li, Z.; Wang, J. Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review. Energy Build. 2018, 159, 296–308. [Google Scholar] [CrossRef]
- Li, X.; Bowers, C.; Schnier, T. Classification of Energy Consumption in Buildings with Outlier Detection. IEEE Trans. Ind. Electron. 2009, 57, 3639–3644. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Embedded heating, ventilation, and air-conditioning control systems: From traditional technologies toward radar advanced sensing. Rev. Sci. Instrum. 2021, 92, 061501. [Google Scholar] [CrossRef]
- Labeodan, T.; Zeiler, W.; Boxem, G.; Zhao, Y. Occupancy measurement in commercial office buildings for demand-driven control applications—A survey and detection system evaluation. Energy Build. 2015, 93, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, A.; Dobra, A. Probabilistic Characterization of Random Decision Trees. J. Mach. Learn. Res. 2008, 9, 2321–2348. [Google Scholar]
- Maimon, O.; Rokach, L. Data Mining and Knowledge Discovery Handbook, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Han, J.; Kamber, M. Data Mining. Concepts and Techniques, 1st ed.; Morgan Kaufmann: Burlington, MA, USA, 2001. [Google Scholar]
- Sehgal, S.; Singh, H.; Agarwal, M.; Bhasker, V. Data analysis using principal component analysis 2014. In Proceedings of the 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), Greater Noida, India, 7–8 November 2014; pp. 45–48. [Google Scholar]
- Hou, Z.; Lian, Z.; Yao, Y.; Yuan, X. Data mining-based sensor fault diagnosis and validation for building air conditioning system. Energy Conv. Manag. 2006, 47, 2479–2490. [Google Scholar] [CrossRef]
- Wu, S.; Clements-Croome, D. Understanding the indoor environment through mining sensory data—A case study. Energy Build. 2007, 39, 1183–1191. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S. Association Rule Mining: Models and Algorithms; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 3-540-43533-6. [Google Scholar]
- Dongre, J.; Prajapati, G.L.; Tokekar, S.V. The role of Apriori algorithm for finding the association rules in Data mining. In Proceedings of the 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques, Ghaziabad, India, 7–8 February 2014; pp. 657–660. [Google Scholar] [CrossRef]
Feature | Unit |
---|---|
AEMET_AT | °C |
AP_COMPRESSOR | kW |
AP_COMPRESSOR_MINUTES | minutes |
AP_COMPRESSORS_MEAN | kW |
AP_LIGTH | kW |
DATE | DD/MM/YY hh:min:ss |
HOLIDAY | DD/MM/YY |
LIG_MINUTES | minutes |
NPSONC_MINUTES | minutes |
NPSONC_PERIODNUMBER | integer |
NPSONC_TIMES | integer |
OCC_STOPPOINTS | integer |
ORCC_PERIODNUMBER | integer |
ORCC_MINUTES | minutes |
ORCC_TIMES | integer |
PRESENCE_ID_ENT | DD/MM/YY hh:min:ss |
PRESENCE_ID_EXI | DD/MM/YY hh:min:ss |
SOFFCCIT_MINUTES | minutes |
SOFFCCIT_PERIODNUMBER | integer |
SOFFCCIT_TIMES | integer |
SONCCIT_AP | kW |
SONCCIT_MINUTES | minutes |
SONCCIT_PERIODNUMBER | integer |
SONCCIT_TIMES | integer |
Bin | Lower | Upper |
---|---|---|
1 | ≥3,562,762 | <8,562,762 |
2 | ≥8,562,762 | <13,562,762 |
3 | ≥13,562,762 | <18,562,762 |
4 | ≥18,562,762 | <23,562,762 |
5 | ≥23,562,762 | <28,562,762 |
6 | ≥28,562,762 | <33,562,762 |
7 | ≥33,562,762 | <38,562,762 |
8 | ≥38,562,762 | <39,529,412 |
Cluster 1 | Days | OCC | ORCC | SOFFCCIT | SONCCIT | NPSONC | TOTAL | |
---|---|---|---|---|---|---|---|---|
EE Categ. 1 | 0 | - | - | - | - | - | 0 | |
EE Categ. 2 | 9 | 0 | 1 | 1 | 1 | 9 | 12 | |
EE Categ. 3 | 8 | 0 | 5 | 9 | 6 | 8 | 28 | |
EE Categ. 4 | 2 | 0 | 1 | 1 | 0 | 2 | 4 | |
EE Categ. 5 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
19 | 0 | 8 | 11 | 7 | 19 | 45 |
Cluster 1 | Days | OCC | ORCC | SOFFCCIT | SONCCIT | NPSONC | TOTAL | |
---|---|---|---|---|---|---|---|---|
EE Categ. 1 | 3 | 0 | 0 | 0 | 0 | 1 | 1 | |
EE Categ. 2 | 8 | 0 | 0 | 0 | 0 | 1 | 1 | |
EE Categ. 3 | 13 | 0 | 0 | 0 | 0 | 3 | 3 | |
EE Categ. 4 | 12 | 0 | 2 | 0 | 0 | 0 | 2 | |
EE Categ. 5 | 2 | 0 | 2 | 0 | 0 | 1 | 3 | |
38 | 0 | 4 | 0 | 0 | 6 | 10 |
Cluster 1 | Days | OCC | ORCC | SOFFCCIT | SONCCIT | NPSONC | TOTAL | |
---|---|---|---|---|---|---|---|---|
EE Categ. 1 | 0 | - | - | - | - | - | 0 | |
EE Categ. 2 | 11 | 0 | 1 | 0 | 0 | 7 | 8 | |
EE Categ. 3 | 8 | 0 | 1 | 0 | 0 | 4 | 5 | |
EE Categ. 4 | 4 | 0 | 0 | 0 | 0 | 2 | 2 | |
EE Categ. 5 | 3 | 0 | 0 | 0 | 0 | 1 | 1 | |
26 | 0 | 2 | 0 | 0 | 14 | 16 |
Cluster 1 | Days | OCC | ORCC | SOFFCCIT | SONCCIT | NPSONC | TOTAL | |
---|---|---|---|---|---|---|---|---|
EE Categ. 1 | 0 | - | - | - | - | - | 0 | |
EE Categ. 2 | 7 | 0 | 3 | 0 | 0 | 3 | 6 | |
EE Categ. 3 | 12 | 0 | 3 | 0 | 0 | 3 | 6 | |
EE Categ. 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
EE Categ. 5 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | |
22 | 0 | 7 | 0 | 0 | 6 | 13 |
Cluster 1 | Days | OCC | ORCC | SOFFCCIT | SONCCIT | NPSONC | TOTAL | |
---|---|---|---|---|---|---|---|---|
EE Categ. 1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | |
EE Categ. 2 | 16 | 8 | 12 | 0 | 0 | 1 | 21 | |
EE Categ. 3 | 20 | 13 | 16 | 0 | 0 | 1 | 30 | |
EE Categ. 4 | 18 | 14 | 14 | 0 | 0 | 2 | 30 | |
EE Categ. 5 | 5 | 4 | 5 | 0 | 0 | 0 | 9 | |
64 | 39 | 47 | 0 | 0 | 4 | 90 |
Cluster | Anomaly | Days | Categ. 1 | Categ. 2 | Categ. 3 | Categ. 4 | Categ. 5 |
---|---|---|---|---|---|---|---|
Cluster 1 | OCC | 5 | 0 | 0 | 0 | 0 | 0 |
ORCC | 16 | 0 | 313 (1) | 1769 (5) | 418 (1) | 544 (1) | |
Cluster 2 | OCC | 20 | 0 | 0 | 0 | 0 | 0 |
ORCC | 18 | 0 | 0 | 0 | 724 (2) | 658 (2) | |
Cluster 3.1 | OCC | 20 | 0 | 0 | 0 | 0 | 0 |
ORCC | 18 | 0 | 340 (1) | 315 (1) | 0 | 0 | |
Cluster 3.2 | OCC | 20 | 0 | 0 | 0 | 0 | 0 |
ORCC | 18 | 0 | 1020 (3) | 945 (3) | 0 | 543 (1) | |
Cluster 3.3 | OCC | 20 | 0 | 64 (8) | 142 (13) | 158 (14) | 39 (4) |
ORCC | 18 | 0 | 5026 (12) | 7278 (16) | 5881 (14) | 2671 (5) | |
Total | 64 | 0 | 64/6699 | 142/10307 | 158/7023 | 39/4416 |
Cluster | Anomaly | Days | Categ. 1 | Categ. 2 | Categ. 3 | Categ. 4 | Categ. 5 |
---|---|---|---|---|---|---|---|
Cluster 1 | OCC | 5 | 0 | 0 | 0 | 0 | 0 |
ORCC | 16 | 0 | 313 | 353.8 | 418 | 544 | |
Cluster 2 | OCC | 20 | 0 | 0 | 0 | 0 | 0 |
ORCC | 18 | 0 | 0 | 0 | 362 | 329 | |
Cluster 3.1 | OCC | 20 | 0 | 0 | 0 | 0 | 0 |
ORCC | 18 | 0 | 340 | 315 | 0 | 0 | |
Cluster 3.2 | OCC | 20 | 0 | 0 | 0 | 0 | 0 |
ORCC | 18 | 0 | 462.7 | 437.7 | 0 | 543 | |
Cluster 3.3 | OCC | 20 | 0 | 8 | 10.9 | 11.3 | 9.8 |
ORCC | 18 | 0 | 418.8 | 454.9 | 420.1 | 534.2 | |
Total | 64 | 0 | 8/394.1 | 10.9/412.3 | 11.3/413.1 | 9.8/490.7 |
Cluster | Days | Categ. 1 | Categ. 2 | Categ. 3 | Categ. 4 | Categ. 5 |
---|---|---|---|---|---|---|
Cluster 1 | 171 | 0% | 32.35% | 48.87% | 13.53% | 5.25% |
Cluster 2 | 91 | 7.89% | 21.05% | 34.21% | 31.58% | 5.27% |
Cluster 3.1 | 26 | 0% | 42.31% | 30.77% | 15.39% | 11.53% |
Cluster 3.2 | 22 | 0% | 31.82% | 54.55% | 9.09% | 4.54% |
Cluster 3.3 | 64 | 7.81% | 25% | 31.25% | 28.13% | 7.81% |
Total | 374 | 3.25% | 29% | 41.36% | 20.29% | 6.36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña, M.; Biscarri, F.; Personal, E.; León, C. Decision Support System to Classify and Optimize the Energy Efficiency in Smart Buildings: A Data Analytics Approach. Sensors 2022, 22, 1380. https://doi.org/10.3390/s22041380
Peña M, Biscarri F, Personal E, León C. Decision Support System to Classify and Optimize the Energy Efficiency in Smart Buildings: A Data Analytics Approach. Sensors. 2022; 22(4):1380. https://doi.org/10.3390/s22041380
Chicago/Turabian StylePeña, Manuel, Félix Biscarri, Enrique Personal, and Carlos León. 2022. "Decision Support System to Classify and Optimize the Energy Efficiency in Smart Buildings: A Data Analytics Approach" Sensors 22, no. 4: 1380. https://doi.org/10.3390/s22041380
APA StylePeña, M., Biscarri, F., Personal, E., & León, C. (2022). Decision Support System to Classify and Optimize the Energy Efficiency in Smart Buildings: A Data Analytics Approach. Sensors, 22(4), 1380. https://doi.org/10.3390/s22041380