Barrier Function Adaptive Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles
<p>Block diagram of the barrier function based-adaptive non-singular TSMC.</p> "> Figure 2
<p>Three-dimensional schematic of attitude tracking of the quad-rotor using the barrier function based-adaptive non-singular TSMC.</p> "> Figure 3
<p>Position and attitude tracking of the quad-rotor using the barrier function-based adaptive non-singular TSMC method.</p> "> Figure 4
<p>Trajectories of the position and tracking errors.</p> "> Figure 5
<p>Trajectories of the linear sliding surfaces.</p> "> Figure 6
<p>Trajectories of the non-singular TSMC surfaces.</p> "> Figure 7
<p>Control inputs.</p> "> Figure 8
<p>Trajectories of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>Q</mi> <mo stretchy="false">^</mo> </mover> <mi>i</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <mtext> </mtext> <mfenced> <mrow> <mo>∀</mo> <mi>i</mi> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>ϕ</mi> <mo>,</mo> <mi>θ</mi> <mo>,</mo> <mi>ψ</mi> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 9
<p>Control inputs in the presence of abrupt change.</p> "> Figure 10
<p>Three-dimensional schematic of attitude tracking of the quad-rotor using the barrier function-based adaptive non-singular TSMC under abrupt change.</p> "> Figure 11
<p>Position and attitude tracking of the quad-rotor using the barrier function-based adaptive non-singular TSMC method under abrupt change.</p> "> Figure 12
<p>Trajectories of the linear sliding surfaces under abrupt change.</p> "> Figure 13
<p>Trajectories of the non-singular sliding surfaces under abrupt change.</p> "> Figure 14
<p>Trajectories of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>Q</mi> <mo stretchy="false">^</mo> </mover> <mi>i</mi> </msub> <mfenced> <mi>t</mi> </mfenced> <mo>,</mo> <mtext> </mtext> <mfenced> <mrow> <mo>∀</mo> <mi>i</mi> <mo>=</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>ϕ</mi> <mo>,</mo> <mi>θ</mi> <mo>,</mo> <mi>ψ</mi> </mrow> </mfenced> </mrow> </semantics></math> under abrupt change.</p> ">
Abstract
:1. Introduction
- Presentation of a linear sliding surface aiming for convergence of thee attitude and position tracking error;
- Proposition of a nonsingular terminal sliding surface as the target of fast convergence of the linear sliding surface;
- Employment of the adaptive barrier function technique for rejection of the matched disturbances that enter the quad-rotor system;
- Demonstration of finite-time tracking control of the disturbed quad-rotor system using the Lyapunov stability concept.
2. Presentation of the Dynamical Model of the Quad-Rotor
3. Main Results
4. Adaptive Barrier Function Technique
- Condition (a):
- Condition (b):
5. Simulation Results
5.1. Simulation Results of the Barrier Function-Based Adaptive Non-Singular TSMC Method
5.2. Abrupt Change in Matched Disturbance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, W.; Wang, X.; Wang, X.; Wang, W.; Liu, B. Design of Sliding Mode Controller for Tilting Quadrotor UAV Based on Predetermined Performance. J. Phys. Conf. Ser. 2021, 1748, 062074. [Google Scholar] [CrossRef]
- Mehmood, Y.; Aslam, J.; Ullah, N.; Chowdhury, M.; Techato, K.; Alzaed, A.N. Adaptive Robust Trajectory Tracking Control of Multiple Quad-Rotor UAVs with Parametric Uncertainties and Disturbances. Sensors 2021, 21, 2401. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, H.; Man, Z.; Jin, J.; Fu, M. Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode. IEEE/ASME Trans. Mechatron. 2014, 20, 1743–1752. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, Y. Data Driven Model-Free Adaptive Control Method for Quadrotor Formation Trajectory Tracking Based on RISE and ISMC Algorithm. Sensors 2021, 21, 1289. [Google Scholar] [CrossRef]
- Davoudi, B.; Taheri, E.; Duraisamy, K.; Jayaraman, B.; Kolmanovsky, I. Quad-rotor flight simulation in realistic atmospheric conditions. AIAA J. 2020, 58, 1992–2004. [Google Scholar] [CrossRef]
- Zhou, N.; Cheng, X.; Xia, Y.; Liu, Y. Fully adaptive-gain-based intelligent failure-tolerant control for spacecraft attitude stabilization under actuator saturation. IEEE Trans. Cybern. 2020, 52, 344–356. [Google Scholar] [CrossRef]
- Nakamura, S.; Higashi, Y.; Masuda, A.; Miura, N. A Positioning System and Position Control System of a Quad-Rotor Applying Kalman Filter to a UWB Module and an IMU. In Proceedings of the 2020 IEEE/SICE International Symposium on System Integration (SII), Honolulu, HI, USA, 12–15 January 2020; pp. 747–752. [Google Scholar]
- Machini Malachias Marques, F.; Augusto Queiroz Assis, P.; Mendes Finzi Neto, R. Position Tracking of a Tilt-rotor Quad-copter With Small Attitude Variation Using Model Predictive Control. In Proceedings of the AIAA Aviation 2020 Forum, Virtual, 8 June 2020; p. 3194. [Google Scholar]
- Song, Z.; Sun, K. Attitude tracking control of a quad-rotor with partial loss of rotation effectiveness. Asian J. Control 2017, 19, 1812–1821. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Y.; Li, Z. Distributed sliding mode control for leader-follower formation flight of fixed-wing unmanned aerial vehicles subject to velocity constraints. Int. J. Robust Nonlinear Control 2021, 31, 2110–2125. [Google Scholar] [CrossRef]
- Li, T.; Zhao, R.; Chen, C.P.; Fang, L.; Liu, C. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans. Cybern. 2018, 48, 3243–3253. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.-J.; Liu, L.; Tong, S.; Gao, Z. Anti-Saturation-Based Adaptive Sliding-Mode Control for Active Suspension Systems With Time-Varying Vertical Displacement and Speed Constraints. IEEE Trans. Cybern. 2021, 1–11. [Google Scholar] [CrossRef]
- Van, M.; Ge, S.S.; Ren, H. Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans. Cybern. 2016, 47, 1681–1693. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, Y. Two new discrete-time neurodynamic algorithms applied to online future matrix inversion with nonsingular or sometimes-singular coefficient. IEEE Trans. Cybern. 2018, 49, 2032–2045. [Google Scholar] [CrossRef]
- Van, M.; Mavrovouniotis, M.; Ge, S.S. An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 1448–1458. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.L.; Santos, D.A. Fast nonsingular terminal sliding mode flight control for multirotor aerial vehicles. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4288–4299. [Google Scholar] [CrossRef]
- Yu, J.; Shi, P.; Chen, X.; Cui, G. Finite-Time Command Filtered Adaptive Control for Nonlinear Systems via Immersion and Invariance. Sci. China Inf. Sci. 2021, 64, 1–14. [Google Scholar] [CrossRef]
- Muñoz, F.; Espinoza, E.S.; González-Hernández, I.; Salazar, S.; Lozano, R. Robust trajectory tracking for unmanned aircraft systems using a nonsingular terminal modified super-twisting sliding mode controller. J. Intell. Robot. Syst. 2019, 93, 55–72. [Google Scholar] [CrossRef]
- Muñoz, F.; González-Hernández, I.; Salazar, S.; Espinoza, E.S.; Lozano, R. Second order sliding mode controllers for altitude control of a quadrotor UAS: Real-time implementation in outdoor environments. Neurocomputing 2017, 233, 61–71. [Google Scholar] [CrossRef]
- Shao, X.; Liu, N.; Wang, Z.; Zhang, W.; Yang, W. Neuroadaptive integral robust control of visual quadrotor for tracking a moving object. Mech. Syst. Signal Processing 2020, 136, 106513. [Google Scholar] [CrossRef]
- Yañez-Badillo, H.; Beltran-Carbajal, F.; Tapia-Olvera, R.; Valderrabano-Gonzalez, A.; Favela-Contreras, A.; Rosas-Caro, J.C. A Dynamic Motion Tracking Control Approach for a Quadrotor Aerial Mechanical System. Shock. Vib. 2020, 2020, 6635011. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, H.; Li, X. Active disturbance rejection switching control of quadrotor based on robust differentiator. Syst. Sci. Control Eng. 2020, 8, 605–617. [Google Scholar] [CrossRef]
- Mokhtari, M.R.; Cherki, B.; Braham, A.C. Disturbance observer based hierarchical control of coaxial-rotor UAV. ISA Trans. 2017, 67, 466–475. [Google Scholar] [CrossRef]
- Aboudonia, A.; El-Badawy, A.; Rashad, R. Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach. Nonlinear Dyn. 2017, 90, 581–597. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Yan, J. Distributed adaptive finite-time compensation control for UAV swarm with uncertain disturbances. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 829–841. [Google Scholar] [CrossRef]
- Obeid, H.; Fridman, L.; Laghrouche, S.; Harmouche, M. Barrier function-based adaptive integral sliding mode control. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 5946–5950. [Google Scholar]
- Chen, Z.; Li, Q.; Ju, X.; Cen, F. Barrier Lyapunov function-based sliding mode control for BWB aircraft with mismatched disturbances and output constraints. IEEE Access 2019, 7, 175341–175352. [Google Scholar] [CrossRef]
- Li, S.; He, P.; Nguang, S.K.; Lin, X. Barrier function-based adaptive neuro network sliding mode vibration control for flexible double-clamped beams with input saturation. IEEE Access 2020, 8, 125887–125898. [Google Scholar] [CrossRef]
- Long, J.; Zhu, S.; Cui, P.; Liang, Z. Barrier Lyapunov function based sliding mode control for Mars atmospheric entry trajectory tracking with input saturation constraint. Aerosp. Sci. Technol. 2020, 106, 106213. [Google Scholar] [CrossRef]
- Song, B.D.; Park, K.; Kim, J. Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput. Ind. Eng. 2018, 120, 418–428. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, F.; Jiang, S.; Chen, B. Adaptive nonsingular terminal sliding mode control of cable-driven manipulators with time delay estimation. Int. J. Syst. Sci. 2020, 51, 1429–1447. [Google Scholar] [CrossRef]
- Xu, D.; Wang, G.; Yan, W.; Yan, X. A novel adaptive command-filtered backstepping sliding mode control for PV grid-connected system with energy storage. Solar Energy 2019, 178, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, J.; Zhu, Z.H. Adaptive learning observer for spacecraft attitude control with actuator fault. Aerosp. Sci. Technol. 2021, 108, 106389. [Google Scholar] [CrossRef]
- Mofid, O.; Mobayen, S. Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Trans. 2018, 72, 1–14. [Google Scholar] [CrossRef]
- Mofid, O.; Mobayen, S.; Wong, W.-K. Adaptive terminal sliding mode control for attitude and position tracking control of quadrotor UAVs in the existence of external disturbance. IEEE Access 2020, 9, 3428–3440. [Google Scholar] [CrossRef]
- Michailidis, M.G.; Rutherford, M.J.; Valavanis, K.P. A survey of controller designs for new generation UAVs: The challenge of uncertain aerodynamic parameters. Int. J. Control Autom. Syst. 2020, 18, 801–816. [Google Scholar] [CrossRef]
- Afshari, M.; Mobayen, S.; Hajmohammadi, R.; Baleanu, D. Global sliding mode control via linear matrix inequality approach for uncertain chaotic systems with input nonlinearities and multiple delays. J. Comput. Nonlinear Dyn. 2018, 13, 031008. [Google Scholar] [CrossRef]
- Mofid, O.; Mobayen, S.; Zhang, C.; Esakki, B. Desired tracking of delayed quadrotor UAV under model uncertainty and wind disturbance using adaptive super-twisting terminal sliding mode control. ISA Trans. 2021; in press. [Google Scholar] [CrossRef]
Parameter | Description | Unit (SI) |
---|---|---|
Angular velocities | Rad/s | |
coordinates | N·m/rad/s2 | |
Aerodynamic fiction factors | N/rad/s | |
Drag coefficients | N/rad/s | |
distance between rotation axes and center | m | |
Mass of quad-rotor | kg | |
lift power factor | N·m/rad/s | |
motor inertia | N·m/rad/s2 | |
drag factors | N·m/rad/s |
10−2 | ||
10−5 |
Variable | Value | Variable | Value |
---|---|---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alattas, K.A.; Mofid, O.; Alanazi, A.K.; Abo-Dief, H.M.; Bartoszewicz, A.; Bakouri, M.; Mobayen, S. Barrier Function Adaptive Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles. Sensors 2022, 22, 909. https://doi.org/10.3390/s22030909
Alattas KA, Mofid O, Alanazi AK, Abo-Dief HM, Bartoszewicz A, Bakouri M, Mobayen S. Barrier Function Adaptive Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles. Sensors. 2022; 22(3):909. https://doi.org/10.3390/s22030909
Chicago/Turabian StyleAlattas, Khalid A., Omid Mofid, Abdullah K. Alanazi, Hala M. Abo-Dief, Andrzej Bartoszewicz, Mohsen Bakouri, and Saleh Mobayen. 2022. "Barrier Function Adaptive Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles" Sensors 22, no. 3: 909. https://doi.org/10.3390/s22030909
APA StyleAlattas, K. A., Mofid, O., Alanazi, A. K., Abo-Dief, H. M., Bartoszewicz, A., Bakouri, M., & Mobayen, S. (2022). Barrier Function Adaptive Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles. Sensors, 22(3), 909. https://doi.org/10.3390/s22030909