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Abstract: This paper presents the first implementation of a spiking neural network (SNN) for the
extraction of cepstral coefficients in structural health monitoring (SHM) applications and demon-
strates the possibilities of neuromorphic computing in this field. In this regard, we show that spiking
neural networks can be effectively used to extract cepstral coefficients as features of vibration signals
of structures in their operational conditions. We demonstrate that the neural cepstral coefficients
extracted by the network can be successfully used for anomaly detection. To address the power
efficiency of sensor nodes, related to both processing and transmission, affecting the applicability of
the proposed approach, we implement the algorithm on specialised neuromorphic hardware (Intel ®
Loihi architecture) and benchmark the results using numerical and experimental data of degradation
in the form of stiffness change of a single degree of freedom system excited by Gaussian white noise.
The work is expected to open a new direction of SHM applications towards non-Von Neumann
computing through a neuromorphic approach.

Keywords: spiking neural network; neuromorphic; low-power; Loihi; cepstrum; Mahalanobis distance

1. Introduction

Effective structural health monitoring (SHM) requires acquisition, transmission, and
processing of multidimensional data over long periods of time. These typically comprise of
acceleration, displacement, velocity, and strain data, along with environmental factors such
as temperature [1,2]. To address the needs of acquiring high-resolution, high-volume data
from a structure, distributed sensor networks are becoming popular [3]. Wireless sensor
networks are favoured since they allow significant simplification of instrumentation in
practice, and other benefits such as minimal invasion of host structure and remote reconfig-
urability [4]. Powering the sensor nodes, however, poses a challenge. Wiring for power
from a grid partially offsets the advantages of wireless operation. Moreover, structures
are often situated in remote or harsh areas with inadequate access to sources of electricity.
Reliably powering such remote sensor nodes with appropriate processing capacity, along
with information transmission, converts the problem to an energy management issue as
well. This aspect consequently impacts all system design choices from sensor network
topology, transmission rate, and on-node/off-node processing, amongst others [5].

Energy harvesters based on solar, thermal, wind, piezoelectric, or electromagnetic
effects are being extensively studied to establish them as power source candidates for
such scenarios [6]. The limited power available, however, from such devices is generally
rationed for the acquisition and transmission phases, with the majority of the processing
relegated to a central hub or off-site laboratory where access to sufficient processing power
is available [5]. An optimisation problem of transmission is encountered here because
Internet of Things (IoT)-focused networks such as LoRaWAN and Narrowband-IoT suffer
from low bandwidth, whereas Wi-Fi suffers from short range [7–9]. Ideally, if damage-
sensitive features (DSFs) [10] could be extracted from the data at the nodes themselves,
the transmission required would be reduced to the feature vectors or their changes [11].
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Methods and algorithms oriented towards this approach, as well as using the harvester
itself as a sensor, have been reported [12–16]. However, currently, only basic processing
can be achieved at the node with the energy generated by harvesters. Nevertheless,
pattern recognition algorithms for SHM that adopt advances in machine learning have been
proposed, with promising initial results [17–21]. The ability to implement such algorithms
with limited power could prove to be a breakthrough in SHM technology.

A typical example of basic processing is transformation of a sensor input to the
frequency domain. Even this transformation can be energy intensive, even with a fast
Fourier transform (FFT) algorithm. However, the architecture used by the human ear
for the qualitatively similar operation of spectral decomposition is extremely efficient.
A linear scaling (N) in time and power is achieved [22] compared to an N log N scaling
for the FFT, where N is the number of output frequency bins. With this context, we
consider neuromorphic computing, which is a relatively novel paradigm of hardware and
software design implementing functional characteristics of such biological architectures on
silicon [23,24]. The approach is especially suited to processes where a loss in precision is
tolerable in exchange for greater energy efficiency and/or speed. SHM using distributed
sensor nodes is a perfect candidate for a neuromorphic approach due to the demand for
low-power computing of DSFs at the node level.

This paper shows the extraction of DSFs using a novel neuromorphic hardware
platform and proposes its use in practice. The DSF vector is composed of coefficients
generated using an approximate version of the power-cepstrum [25,26]. The cepstrum
transformation has been long established as a method in condition monitoring of rotary
machines [27,28]. The conceptual similarity of the transform to the processing in the
human ear has led to its early adoption in audio-processing applications as well [29,30].
Application of cepstral analysis to SHM of civil infrastructure was proposed by a few
authors recently [20,31–35].

It is observed that a neuromorphic approach can have a particular advantage in terms
of computational and energy parsimony, while offering high pattern recognition capabili-
ties [36–38]. A neuromorphic implementation of cepstral analysis for speech recognition
and synthesis was shown recently [39]. As a first example of its kind, this paper demon-
strates a neuromorphic implementation of cepstral coefficient extraction for SHM and
implements it on the Intel® Loihi neuromorphic platform [40]. The efficacy and power
consumption is reported, showing promise for further investigation. While Loihi is still far
from being a low-cost edge processor, SNN implementations in SHM, demonstration of
solutions, and development of benchmarks of results create a pathway towards reaching
this goal.

Recent proposals and simulations of utilising spiking neural networks for damage
detection [41,42] showcase the potential of learning damage-sensitive features through
backpropagation. However, a recurring challenge in the deployment of neural-network-
based solutions in safety-critical applications is the explainability of the neural network
model applied. In this work, an alternative approach is adopted where a minimal, yet well
understood, feature extraction and anomaly detection method is converted to a spiking
neural network. An experimental evaluation is performed on the neuromorphic platform
Loihi to profile and validate the functionality. This demonstration could serve to lower the
barrier to adoption of such technology for applications in SHM in different sectors [43,44].

2. Theory

Neurobiological systems are complex, and the field of neuroscience has made strides
in understanding the functional characteristics of the core components that allow sensing
and computation in the brain. This understanding has led to the advent of neuromimetic
and neuromorphic devices where electronic components that capture these functional
characteristics reproduce behaviour similar to the brain. To simplify the process of neuro-
morphic system design, multiple mathematical formalisms have been developed, allowing
high levels of abstraction while preserving core aspects of behaviour. This work utilises
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the Neural Engineering Framework (NEF) formalism since it allows the construction of
a spiking neural network of a known transform through an optimisation procedure as
opposed to frameworks more suitable for learning a transformation based on input–output
data. A brief summary of the formalism is outlined here.

2.1. Neural Engineering Framework

Encoding/decoding, transmission, and processing of information in the human brain
is predominantly carried out through spiking activity of neurons. The neural engineering
framework (NEF) provides a set of principles intended as a practical method for non-
neuroscientists to transform traditional algorithms to a neuromorphic architecture using
spiking (or nonspiking) neural networks [45]. The NEF allows the mapping of both linear
and nonlinear dynamical systems to SNNs [46]. We use the NEF to build our network to
extract the cepstrum. Spiking neural networks (SNNs) described here are distinct from
the field of artificial neural networks, which has recently gained mainstream adoption
[47]. There is no fitting or learning of weights from data involved in this application. The
SNN in our case is fully defined based on the transformations to be performed (SNNs can
be considered as a generalisation of conventional ANN and learning can be performed
as well).

The three guiding principles of the NEF, pertaining to representation, transformation,
and dynamics, are summarised below. A formal description of the principles is provided
in Appendix A.

2.1.1. Representation

A continuous time-varying signal of arbitrary dimensionality is to be represented by
a population of spiking neurons. To achieve this, a nonlinear encoding and linear decoding
scheme is used. Each neuron model is characterised by a tuning curve which defines its
spiking activity as a function of its input current. Consider a signal, as shown in Figure 1a.
The signal is to be encoded, for example, using eight neurons (representation error reduces
with larger populations of neurons). The eight neurons are divided equally into those
that spike due to positive signals and those that spike due to negative signals. The tuning
curves of the eight neurons are shown in Figure 1b. The tuning curves have equally spaced
intercepts in the range (−0.9,0.9). Based on the intercepts, the spiking activity starts and
increases with signal amplitude in both cases. The spiking activity a(J) in each of the
eight neurons representing the input signal is shown in Figure 1c. Note how the neurons
with higher intercepts, such as neuron 7, start firing only at a high signal level. Thus, to
represent a signal vector x, the corresponding current levels J driving the neurons can be
determined as:

J(x) = αe · x + Jbias (1)

where e are unit vectors (called encoders) that specify the direction of spiking (positive
or negative) for each neuron, α is a scaling factor, and Jbias determines the intercept or the
level at which spiking starts/stops (in Figure 1b, the lines are not not strictly straight since
the neuron model is “leaky”. See Appendix A for more details).

Decoding of the spiking activity is performed using a weighted sum of the spiking
activity of all neurons:

x̂ =
n−1

∑
i=0

diai (2)

where x̂ is the decoded estimate of x, di is the set of decoding weight for each neuron,
and ai is the spiking activity of the neuron. d is, in general, calculated by solving the least
squares problem:

Ad = X (3)

where A is the activity of all neurons for all inputs and X is a sample input. With this
representation scheme, any smooth signal can be encoded and decoded.



Sensors 2022, 22, 9245 4 of 17

(a) (b)

(c) (d)

Figure 1. Illustration of encoding and decoding of signals using NEF. (a) normalised input signal,
(b) tuning curves of 8 neurons, (c) spiking activity of neurons, (d) decoded signal compared with
encoded signal [48].

2.1.2. Transformation

Arbitrary transformations of the signal can be decoded instead of the signal itself by
simply solving for a different set of decoders d. For a sample signal X, Equation (3) becomes

Ad = f (X) (4)

where f (·) is the desired transform (when f (·) is known, decoders can thus be solved for.
When only the output is known and the transformation is unknown, learning is involved).

2.1.3. Dynamics

An arbitrary dynamical system can be simulated using a network of spiking neurons
where the state vectors of the dynamical system are represented by ensembles of neurons.
Recurrent connections of ensembles allow differential equations to be simulated. The work
presented in this paper does not involve simulating the dynamics of a system and hence
does not utilise the third principle.

2.2. Cepstrum

The cepstrum was proposed by Bogert et al. in 1963 [49] and later developed by
Oppenheim and Schafer [25]. Interpretively, it can be considered as the “spectrum” of the
logarithm of a spectrum. The (power) cepstrum is usually given by:

C(x(t)) =
∣∣∣F−1

(
log
(
|F (x(t))|2

))∣∣∣2 (5)
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where F (x) denotes the discrete Fourier transform (DFT). In practice, the DFT is performed
using the fast Fourier transform (FFT) algorithm, and the magnitude squaring at the end
may be omitted. The echo delay or period of a periodic signal τ appears as a peak in the
cepstrum reminiscent of frequency peaks in conventional Fourier analysis. The domain
of the cepstrum is thus termed as the quefrency domain. The cepstrum is particularly
sensitive to reverberations or echoes of a fundamental wavelet, whose form does not have
to be known a priori. This allows it to be particularly useful in the analysis of seismic
signals and human speech, where it was initially used, and, later, in condition monitoring of
rotating machinery. Health monitoring of infrastructure can also benefit from the cepstrum
as it can eliminate harmonics and deconvolve periodic/quasi-periodic signals from the
waveform [20,31–34].

Since our objective is recognition, rather than reconstruction, of the signal, a com-
pressed version of the cepstrum can be generated by substituting the inverse DFT with the
inverse discrete cosine transform (DCT). DCT improves compression due to its reduced
complexity, and comparisons exist in the classic literature [50]. Analogous to Fourier com-
ponents, a set of cepstral coefficients can thus be extracted, capturing the most relevant
information in the signal. Damage to the structure would manifest as a change in cepstral
coefficients which can be analysed by averaging over time. Deviation from the baseline
healthy condition can be evaluated using simple statistical measures such as the Maha-
lanobis distance. This approach to SHM has been proposed previously with variations of
cepstral features, with good results [31,51].

The process of extracting the cepstrum, i.e., decomposition into the log-spectrum and
compression into coefficients centred at a finite number of characteristic frequencies, has
been shown to be very similar to the process of feature extraction in the human ear [39].
A variant of the cepstrum called Mel-frequency cepstrum, where the frequency bands are
spaced based on the human auditory response, has been widely used in speech processing.
Passive and active mechanical components in the ear, along with neurons, extract the
feature vector from the incoming sound and encode it in spikes sent to the auditory cortex
of the brain. Considering the energy efficiency of the process, which is of critical importance
as described earlier, this paper looks at a neuromorphic approach to extracting cepstral
coefficients analogous to Mel-frequency cepstral coefficients (MFCCs) but distinct in the
extraction procedure. The approach was first described by Bekolay [39] for the purpose
of speech recognition and synthesis. While lack of powerful SNN training algorithms has
posed challenges in terms of their performance as compared to artificial neural networks,
recent efforts [52,53] have established the potential advantages of SNN in the context of
MFCC by retaining numerical efficiency along with low-energy aspects.

3. Methods
3.1. Overview

The objective is to create a neuromorphic implementation of the cepstrum and test
the feasibility of using it for SHM. For this, simulated and experimental datasets of a one-
degree of freedom (1-DoF) oscillator with a change in stiffness were used. Once validated
theoretically, the algorithm was implemented on hardware. The “Loihi” chip developed by
Intel® was used to test the algorithm described in this paper. Loihi is a novel computing
architecture composed of multiple cores composed of compartments of spiking neurons
interconnected by synapses, allowing a direct mapping of a spiking neural network onto
silicon [40]. The chip allows configuration of the network parameters such as synaptic
delays as a hardware feature rather than emulated through algorithms. This allows SNNs to
be flexibly implemented on the chip with minimal overhead, allowing high energy efficiency.
The energy consumption per neuron update as well as synaptic operation (between neurons)
is in the pico-Joule range on the chip, allowing it to achieve improvements in energy
consumption of several orders of magnitude [54,55]. The SNN model was created using
Nengo, a software library based on the NEF allowing an intuitive design environment [48],
and deployed on the Loihi board using the Nengo Loihi backend.
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3.2. Datasets

The simulated dataset was produced by the excitation of a single-degree-of-freedom
linear oscillator (Figure 2a) using Gaussian white noise forcing for 60 s. The acceleration of
the oscillator was measured. After recording the time series of the baseline undamaged
state, the model was excited by the same force vector but with a sudden stiffness change
k′ = 0.5 k introduced at 30 s. The same procedure was then repeated for a bilinear oscillator
(Figure 2b), where α is changed from 1 to 0.5 at 30 s.

m

k

b

b b

k

m

αk

f(t)

f(t)

(a)

(b)

Figure 2. Schematic of simulated oscillator scenarios. (a) Linear and (b) bilinear 1-DoF systems
were excited by a Gaussian white noise. Damage was introduced in the linear case by changing the
stiffness k to 0.5 k. For the bilinear case, damage was introduced by changing α from 1 to 0.5.

The experimental dataset was produced by the experimental setup shown in Figure 3.
A single-degree-of-freedom cart coupled to the frame by 6 springs was excited using white
noise. To simulate damage, springs were removed from the cart. To simulate robustness
against changes in surface morphology, the experiment was conducted on wood, sandpaper,
and plastic surfaces. The acceleration was measured using an accelerometer attached to
the cart sampled at a rate of 617 data points per second. A detailed description of the
experiment can be found in [56].

3.3. Architecture

The cepstrum may be considered as the composition of three functions:

• F (·) : Fourier transform;
• 2 log(·) : Log transform;
• F−1(·) : Inverse Fourier transform.

The final squaring operation may, in general, be omitted. The approach presented
here is to use approximate methods to implement the transforms in a manner reminiscent
of the human ear.

Passing the signals through a filterbank with different characteristic frequencies repli-
cates the Fourier transform, as the output level of the filters provide an approximate
frequency domain representation of the signal. Thus, a filterbank with logarithmically
spaced characteristic frequencies would approximate the first two functions of the cepstrum,
as listed above. For the third operation, the inverse discrete cosine transform (DCT-III
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or iDCT) may be used in place of the inverse Fourier transform as it generates an almost
uncorrelated representation while compressing data dimensionality. More importantly, it
can be very efficiently implemented on hardware compared to an FFT because it is limited
to the real domain.

Wireless 
Accelerometer

1-DoF cart

Shaker

Calibrated 
springs

Figure 3. Setup for experimental test. The base on which the cart is placed was excited by Gaussian
white noise by the shaker shown to the left. A total of 6 calibrated springs (3 on each side) are attached
to the cart. The stiffness was changed in the damaged condition by removing 1 spring from each side.

3.4. Filterbank

As indicated earlier, cepstral analysis of speech/audio signals often uses the Mel-
frequency scale and triangular filters. The Mel-scale is an empirically derived range
approximating the human auditory range from 20–20,000 Hz. For SHM, a more compact
range suffices, as most structures have modal frequencies in the sub 2000 Hz range. Instead
of triangular filters, the gammatone filter is used, which is among the most widely used
auditory filters [57]. The gammatone filter can be implemented very efficiently and can
process signals in near-real time [58]. The impulse response of the filter is given by:

g(t) = atn−1e−2πbtERB( f ) cos(2π f t), (6)

ERB( f ) = 24.7 + 0.108 f (7)

where a is the amplitude, n is filter order, b is the filter bandwidth parameter, and ERB( f )
is the equivalent rectangular bandwidth of the filter centred at frequency f . A filterbank of
36 filters logarithmically spaced in the 0–2000 Hz range was used (Figure 4). Increasing the
number of filters beyond this did not appear to affect the results perceivably.
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Figure 4. (a) Impulse response of gammatone filter. (b) Frequency response of filterbank (20/36
filters shown).

3.5. SNN

The SNN involves 2 layers of neurons. Signals from the m-dimensional filterbank
are encoded into spiking signals in the first layer (see Figure 5). Leaky-integrate-and-fire
(LIF) type neurons are used to encode the information. Twelve neurons are used per
characteristic frequency. Intercepts are uniformly distributed in the range (−0.1, 0.5) (the
point along each neuron’s encoder where its activity starts). The connection between the
first and second layer implements the inverse DCT. The second layer thus gives the cepstral
coefficients which compose the feature vector. The dimensionality of the feature vector is
decided using the energy contained in the cepstral coefficients estimated using the L2-norm.
The number of coefficients from the iDCT in the feature vector is incremented by 1 until
>99% of the energy of the original signal is contained in the vector. To represent each
cepstral coefficient, an ensemble of 20 neurons was used.

The minimum number of cepstral coefficients required for the datasets in this study was
found to be 6. Thus, for encoding the signal using 36 filterbanks, a total of 36 × 12 = 432 neu-
rons were used. To decode the 6 iDCT coefficients, 6 × 20 = 120 neurons were used. The
spiking neural network thus required 552 neurons to implement.
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Decode spikes to 
cepstral coeffs.Filterbank Encode into spikes Transform

Vibration

Cepstral 
Coeffs.

0-2000 Hz
36 filters

12 LIF neurons 
per filter

iDCT
6 coeffs.

Normalized 
to [-1,1]

20 LIF neurons 
per coeff.

Figure 5. Schematic of the SNN architecture. The input signal is passed through filters with logarith-
mically spaced characteristic frequencies and encoded into spikes. An ensemble of spiking neurons is
allocated to each filter. The inverse DCT transformation is performed on the output of the first layer
and passed to the second layer. The transformation is performed through weights on the connections
between the layers. The cepstral coefficients are decoded from the second layer. The number of
coefficients to be extracted is chosen such that the L2-norm of all the coefficients combined captures
>99% of the energy of the input signal. The number of ensembles is the same as the number of
cepstral coefficients. The architecture is adapted from the Sermo model proposed by Bekolay [39].

3.6. Damage Classification

The damaged state is identified using the Mahalanobis distance of the feature vector
averaged in time from the distribution of the feature vector of the undamaged state. The
Mahalanobis distance of vector x from the baseline multivariate distribution with mean
vector µ is measured as

DM(x) =
√
(x− µ)TS−1(x− µ) (8)

where S is the covariance matrix of the baseline distribution. An averaging window of 1.5 s
is used. Threshold identification of the undamaged vs. damaged condition can be carried
out based on tolerance levels required, as shown in Balsamo et al. [31].

4. Results

The results for the simulated case (Figure 6) show a clear change in the cepstral coef-
ficients after t = 30 s, for both the linear and bilinear case, after which the Mahalanobis
distance of the damaged state remains higher than the undamaged state overall. The oscil-
lations in the Mahalanobis distance are smoothened if a higher averaging time (currently
1.5 s) is used, allowing a simple classification of damaged and undamaged states at very
short timescales.

For the experimental case, the baseline is the undamaged oscillation over a wood
surface. Figure 7a–c show the Mahalanobis distances from the mean of the undamaged
condition for sandpaper, plastic, and wood, respectively. All three plots show a clear
differentiation in the feature vectors between damaged and undamaged, allowing a simple
classification into damaged and undamaged states. The damaged states are always at
a higher distance from the undamaged state. Figure 7d shows a comparison between
undamaged conditions for two surfaces (wood and plastic), showing that the feature is
robust to variations in surface conditions.

The static and dynamic power consumption of the chip were measured (using profiling
tools provided through the Loihi SDK) to be approximately 1.0 Watt and 0.1 Watt, respectively.
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(a) (b)

Figure 6. Change in Mahalanobis distance between the feature vectors of the damaged and undam-
aged states. (a) Simulated linear system and (b) simulated bilinear system. Damage introduced at
t = 30 s.

(a)

(b)

(c)

(d)

Figure 7. Change in Mahalanobis distance between the feature vectors of the damaged and undam-
aged states in experimental cases with surfaces: (a) Sandpaper, (b) plastic, and (c) wood. Mahalanobis
distance comparison of the undamaged cases for wood and plastic is shown in (d).

5. Discussion and Conclusions

An SNN-based implementation is not expected to be more efficient than an optimised
hardware implementation of the MFCC algorithm. However, the conceptual translation
of a well-defined and well-understood transform to the spiking domain highlights the
potential to use spiking neural networks as a programmable and explainable paradigm for
feature extraction in SHM while also offering benefits of low-power operation. The scalabil-
ity of neural networks to arbitrary complexity in feature extraction would also allow highly
sophisticated pattern recognition from sensor streams across many degrees of freedom of
the structure, or to enable sensor fusion from multimodal, multiresolution sensors.

Loihi contains 128 neuromorphic cores, each with 1024 spiking compartments. The
implementation presented here utilises less than 1% of the available compartments on the
chip. A fully utilised chip consumes less than 2 Watts, implying that multiple streams
of sensor input could be processed in near-real time on a single chip to extract damage-
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sensitive features at a node. Alternatively, more advanced neuromorphic algorithms may be
implemented at the node level to extract better damage-sensitive features to be transmitted.

Static power dominates the power consumption in Loihi at∼1 W. However, an application-
specific integrated circuit (ASIC) for SHM could be envisaged with a subset of neurons and
optimised functions for pre-/post-processing that brings the resource utilisation closer to
100% operating at the mW range or lower. Several digital and mixed-signal implementa-
tions of spiking neural network accelerators have been developed recently that consume
power as low as 100 µW [59–63]. The prospects that these architectures offer are perfectly
suited for SHM since true edge deployment of sophisticated damage-detection algorithms
may become viable once a sufficiently low threshold of system power (including acquisition
and transmission) is crossed.

The damage identification using Mahalanobis distance was carried out using feature
vectors from a single sensor. An averaging window of just 1.5 s results in a clear distinc-
tion in the damaged and undamaged state, as shown. This confirms that the SNN-based
cepstrum generates damage-sensitive features. It is reasonable to project that integration
of data from multiple sensors over larger windows of time along with pattern recogni-
tion algorithms suited for neuromorphic implementation would allow accurate damage
identification at very low power levels.

The novelty introduced in this work is the use of a neuromorphic architecture (non-
Von Neumann) as opposed to a conventional processing architecture (such as x86). The
cepstrum, by virtue of its biological similarity, lends itself to a simple adaptation. However,
arbitrary transformations of the input signal can be implemented using the methods as
described in the NEF. Algorithms that rely on incorporate online learning rather than a pre-
determined explicit transform would gain higher advantages from an SNN implementation.
The prospects offered by such advanced processing capabilities at a node with low power
demand open avenues for SHM implementation that were not feasible previously.
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Appendix A

The Neural Engineering Framework (NEF) allows arbitrary dynamical systems to
be described using spiking or nonspiking neural networks. A formal description of the
framework is presented below. The NEF can approximate exact mathematical operations
with precision of O(

√
n) for spiking networks and O(n) for the nonspiking case. The

framework can be summarised using three principles: representation, transformation,
and dynamics.

Principle 1: Representation

The scheme of distributed information representation in the NEF is called population
coding, where an ensemble of neurons collectively encode information. The scheme was
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proposed in 1986 based on empirical evidence from the monkey cortex. A spiking neuron is
a biologically derived model where the neuron “fires” only when the membrane potential,
an intrinsic property of the neuron, crosses a threshold. It is also called the integrate-and-fire
model. We represent the model using a capacitance C:

dV(t)
dt

=
1
C

J(t) (A1)

where the voltage V(t) increases with time until it reaches a threshold, when a spike is
emitted and the voltage is reset. A biological implausibility in this model is that it retains
any energy input indefinitely. To overcome this, a leaky integrate-and-fire (LIF) neuron
model was proposed, which can be represented as:

dV(t)
dt

=
1

RC
(J(t)R−V(t)) (A2)

Incorporating a refractory period after each spike τref, during which spiking cannot
happen for a constant input (thereby limiting spike frequency), the activity of a neuron can
be solved exactly as

s(J) =


1

τref−τRCln
(

1− Jth
J

) if J > Jth

0 Otherwise
(A3)

where J is the input current, Jth is the threshold at which spiking occurs, and τRC is the time
constant for the rate of charge accumulation.

Using the LIF neuron model, the NEF describes a nonlinear encoding and linear
decoding scheme to represent a q-dimensional vector in a population of n spiking neurons.
Each neuron’s activity a is a function of the current J injected into it, e.g., spiking begins
in a neuron at a current threshold and the spike rate increases with current. A different
neuron may have the inverse behaviour, where spiking decreases with current and stops at
a current threshold. An ensemble of n-neurons of both “positive” and “negative” spiking
directions as n→ ∞ can thus exactly represent arbitrary signals using thresholds at all real
numbers. The input current vector to encode the signal vector x is thus:

J(x) = αe · x + Jbias (A4)

where Jbias determines the Jth (intercept/threshold) of each neuron, e gives the direction,
and α gives the rate of increase of the spiking frequency with signal amplitude. In practice,
a finite domain of [−1, 1] is used, scaling the signals to the domain, and outliers are
effectively clipped at the boundaries. Intercepts are typically distributed equally between
positive and negative directions sampled uniformly (see Figure 1). However, to optimise
the usage of each neuron, the choice of intercepts may be skewed or shifted based on
the system modelled, e.g., if only the threshold-crossing events of a signal in the positive
direction, say ≥0.9, are to be encoded, all encoders e may be set to be positive and all
elements of Jbias may be set to 0.9. The activity of the ensemble using Equation (A3) is
thus a(J), where the transfer function of a single neuron, as shown in Equation (A3), is
used, giving

a(J) = s(J) (A5)

Decoding encoded signals from the activity a(J) amounts to estimating the vector x as
the weighted sum of each neuron’s activity. The weights are called decoders in the NEF.

x̂ =
n

∑
i=1

diai (A6)

where x̂ is the decoded estimate of x, di is the set of decoding weights for each neuron, and
ai is the spiking activity of the neuron. Since the characteristics of each neuron are known,
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the activity generated by all possible inputs is also known. This allows the decoding
weights to be solved for by setting up the equation

Ad = X (A7)

where X is set of sample inputs and A is the set of activities of all neurons n for all possible
inputs m, given by

A = aj(Xi) (A8)

where i = 1, 2, . . . , m and j = 1, 2, . . . , n. An approximation of the decoders d is obtained
by solving the least squares problem given by Equation (A7).

Since the spikes generated by the neurons take a finite amount of time to decay, a post-
synaptic filter h(t) is introduced to the decoding operation. A basic model for the filter is
as a decaying exponential:

h(t) =
1

τPSC
e−t/τPSC (A9)

Thus, the activity of a neuron is

a(t) = ∑
s

δ(t− ts) ∗ h(t) = ∑
s

h(t− ts) (A10)

where δ is the Dirac delta function for the spikes, s is the set of spike times, and ∗ repre-
sents convolution.

The decoded estimate x̂ is then:

x̂ =
n

∑
i=1

∑
s

h(t− ti,s)i (A11)

Principle 2: Transformation

The connections between neurons allow transformations of the encoded signal before
decoding using weights on the connections. The activity of n neurons from an ensemble
acts as the input current to another neuron j in an ensemble:

Jj(x) =
n

∑
i=1

ωijai + Jj,bias (A12)

where ωij is the connection strength between neurons i and j. If no transformation is
applied on the signal, using Equations (A4) and (A6), the weights can be expressed as

ωij = αjej · di (A13)

If a linear transformation is to be implemented on the signal, the input current to the
downstream ensemble can be modified by changing ωij as

ωij = αjejLjidi (A14)

where Lji gives the transformation matrix. Thus, for linear transformation, the decoders
are simply scaled using the transformation matrix to obtain the transformed output from
the network.

For an arbitrary function f (x), the computation of weights, and consequently decoders,
becomes an optimisation problem, as shown below.
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The estimate of the output to be obtained after decoding is

( f (x) ∗ h)(t) ≈
n

∑
i=
(ai ∗ h)(t)di (A15)

=
n

∑
i=1

∑
s

h(t− ti,s)di (A16)

The activity of a single neuron for constant input is given by Equation (A3). Introduc-
ing a white noise process η to account for the variance of spiking across the population, the
solution to the set of decoders d in Equation (A16) is given by the minimisation problem:

d = argmin
Rn×q

∫
m

∥∥∥∥∥ f (v)−
n

∑
i=1

(si(v + η))di

∥∥∥∥∥
2

2

dv (A17)

where m is the domain of the q-dimensional signal x and v ∈ m. The optimisation does
not depend on the nature of x, but only on the distribution of the signal. The dynamic
problem involving spiking has been converted to a static problem, allowing the decoders to
be computed without explicitly simulating the neurons in time. This convex optimisation
problem can be solved by sampling the domain m uniformly and solving the resulting
least-squares problem, similar to Equation (A7).

Principle 3: Dynamics

A linear time-invariant (LTI) system can be represented as

ẋ(t) = Ax(t) + Bu(t) (A18)

y(t) = Cx(t) + Du(t) (A19)

The ability to simulate dynamical systems relies on the availability of an integrator,
i.e., the source of dynamics is the integration over time of the system above. In the NEF, the
integrator is replaced by a leaky integrator given by the low-pass filter h(t) available on the
connections between the neurons.

h(t) =
1
τ

e−t/τ = L−1
(

1
1 + τs

)
(A20)

where L−1(·) is the inverse Laplace transform.
Thus, a recurrent connection in an ensemble allows the integration of Equation (A19)

by replacing A and B as follows:

A′ = τA + I (A21)

B′ = τB (A22)

where I is the identity matrix. In other words, the replacement of the integrator by the filter
is compensated by driving the synapse with τẋ(t) + x(t). This transformation of x(t) may
be implemented using Principle 2, thereby allowing simulation of dynamical systems.
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