Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions
<p>Schematic overview of the real-time prediction process. (1) CGM data (blue line) and mealtime (vertical green arrow), as well as postprandial clusters prototypes are the input of the forecasting process. (2) Postprandial cluster periods and CGM data after mealtime are used to compute the membership values (w1, w2, w3, w4). (3) CGM data and mealtime are fed into the SARIMA local models to provide the local predictions <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>y</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>+</mo> <mi>P</mi> <mi>H</mi> <mo>|</mo> <mi>t</mi> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>y</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>+</mo> <mi>P</mi> <mi>H</mi> <mo>|</mo> <mi>t</mi> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>y</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>+</mo> <mi>P</mi> <mi>H</mi> <mo>|</mo> <mi>t</mi> </mfenced> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>y</mi> <mo>^</mo> </mover> <mn>4</mn> </msub> <mfenced separators="" open="(" close=")"> <mi>t</mi> <mo>+</mo> <mi>P</mi> <mi>H</mi> <mo>|</mo> <mi>t</mi> </mfenced> </mrow> </semantics></math>. (4) Local predictions are then weighted according to the membership values to compute the final prediction. Each step is described in detail in <a href="#sec2dot5-sensors-22-08682" class="html-sec">Section 2.5</a>.</p> "> Figure 2
<p>Illustrative example of a postprandial predicted profile, PH = 30 min. The top panel shows CGM data (black dotted line), the final prediction (red dotted line), and the predictions provided by each SARIMA model (colored lines). The bottom panel shows the prediction weights.</p> "> Figure 3
<p>Illustrative example of postprandial predicted profile, PH = 30 min. The top panel shows CGM data (black dotted line), the final prediction (red dotted line), and the predictions provided by each SARIMA model (colored lines). The bottom panel shows the prediction weights.</p> "> Figure A1
<p>Predictive performance for increasing training set size. (<b>a</b>) Results on the CTR3 dataset; (<b>b</b>) results on the OhioT1DM dataset for the ARIMA (blue square), NN (orange cross), ARIMAX (yellow triangle), NN-X (violet circle), and C-SARIMA (green dots).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Time Series Segmentation
- From mealtime up to 4 h after meal intake o;r
- From mealtime up to the following meal intake (if this happens before 4 h).
2.3. Time Series Clustering
2.4. Model Identification
2.5. Real-Time Glucose Forecasting
- The optimal number of clusters found in the training set is four (hence, four prototypes and four SARIMA models are available);
- It is mealtime (green vertical arrow in Figure 1).
- Wait for collecting 3 CGM samples (i.e., wait for 15 min, if the sampling time is 5 min);
- Compute the membership values, i.e., the weights , between the collected CGM samples and the clusters prototypes using Equation (4);
- Compute the glucose predictions exploiting the four identified SARIMA models (i.e., );
- Compute the output as the weighted sum of the computed predictions in Step 3 using the weights computed in Step 2;
- Repeat Steps 2 to 4 each time a new sample is recorded.
2.6. Benchmark Glucose Predictive Algorithms
2.7. Metric for the Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Algorithms Employing the Same Amount of Information
Models | RMSE (mg/dL) | |||
---|---|---|---|---|
PH = 30 min | PH = 45 min | PH = 60 min | PH = 75 min | |
ARIMAX + mealtime | 18.93 | 27.88 | 34.28 | 38.39 |
[17.42–20.52] | [22.90–28.93] | [28.26–35.78] | [32.47–41.68] | |
NN + mealtime | 20.16 | 26.53 | 32.78 | 34.22 |
[18.04–21.88] | [23.06–28.28] | [30.55–33.88] | [31.36–37.81] | |
C–SARIMA | 20.13 | 27.23 | 31.96 (*,+) | 33.91 (*,+) |
[18.63–21.38] | [24.63–28.74] | [29.55–33.95] | [31.97–37.29] |
Models | RMSE (mg/dL) | |||
---|---|---|---|---|
PH = 30 min | PH = 45 min | PH = 60 min | PH = 75 min | |
ARIMAX + mealtime | 20.97 | 29.40 | 36.75 | 42.95 |
[17.83–24.63] | [23.36–33.36] | [29.90–41.74] | [36.35–44.44] | |
NN + mealtime | 21.57 | 29.24 | 34.55 | 41.29 |
[18.13–24.50] | [24.37–33.55] | [29.43–38.28] | [32.79–42.47] | |
C–SARIMA | 21.63 | 29.67 | 33.47 (*,+) | 40.18 (*,+) |
[20.00–25.90] | [25.83–34.07] | [29.59–39.62] | [32.92–42.42] |
Appendix B. Performance of the Algorithms for Different Training Set Sizes
References
- Dovc, K.; Battelino, T. Evolution of diabetes technology. Endocrinol. Metab. Clin. 2020, 49, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab. J. 2019, 43, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C.; Ahn, D.; Drincic, A. Continuous glucose monitoring: A review of the technology and clinical use. Diabetes Res. Clin. Pract. 2017, 133, 178–192. [Google Scholar] [CrossRef]
- Boughton, C.K.; Hovorka, R. New closed-loop insulin systems. Diabetologia 2021, 64, 1007–1015. [Google Scholar] [CrossRef]
- Cameron, F.; Wilson, D.M.; Buckingham, B.A.; Arzumanyan, H.; Clinton, P.; Chase, H.P.; Lum, J.; Maahs, D.M.; Calhoun, P.M.; Bequette, B.W. Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. J. Diabetes Sci. Technol. 2012, 6, 1142–1147. [Google Scholar] [CrossRef] [Green Version]
- Buckingham, B.; Chase, H.P.; Dassau, E.; Cobry, E.; Clinton, P.; Gage, V.; Caswell, K.; Wilkinson, J.; Cameron, F.; Lee, H.; et al. Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Care 2010, 33, 1013–1017. [Google Scholar] [CrossRef] [Green Version]
- Vettoretti, M.; Facchinetti, A. Combining continuous glucose monitoring and insulin pumps to automatically tune the basal insulin infusion in diabetes therapy: A review. Biomed. Eng. Online 2019, 18, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, N.S.; Jacobs, P.G. Artificial intelligence in decision support systems for type 1 diabetes. Sensors 2020, 20, 3214. [Google Scholar] [CrossRef]
- Vettoretti, M.; Cappon, G.; Facchinetti, A.; Sparacino, G. Advanced diabetes management using artificial intelligence and continuous glucose monitoring sensors. Sensors 2020, 20, 3870. [Google Scholar] [CrossRef]
- Dassau, E.; Cameron, F.; Lee, H.; Bequette, B.W.; Zisser, H.; Jovanovič, L.; Chase, H.P.; Wilson, D.M.; Buckingham, B.A.; Doyle III, F.J. Real-time hypoglycemia prediction suite using continuous glucose monitoring: A safety net for the artificial pancreas. Diabetes Care 2010, 33, 1249–1254. [Google Scholar] [CrossRef]
- Allen, N.; Gupta, A. Current diabetes technology: Striving for the artificial pancreas. Diagnostics 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oviedo, S.; Vehí, J.; Calm, R.; Armengol, J. A review of personalized blood glucose prediction strategies for T1DM patients. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2833. [Google Scholar] [CrossRef] [PubMed]
- Gani, A.; Gribok, A.V.; Lu, Y.; Ward, W.K.; Vigersky, R.A.; Reifman, J. Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Gadaleta, M.; Facchinetti, A.; Grisan, E.; Rossi, M. Prediction of adverse glycemic events from continuous glucose monitoring signal. IEEE J. Biomed. Health Inform. 2018, 23, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Dave, D.; DeSalvo, D.J.; Haridas, B.; McKay, S.; Shenoy, A.; Koh, C.J.; Lawley, M.; Erraguntla, M. Feature-based machine learning model for real-time hypoglycemia prediction. J. Diabetes Sci. Technol. 2021, 15, 842–855. [Google Scholar] [CrossRef]
- Faccioli, S.; Facchinetti, A.; Sparacino, G.; Pillonetto, G.; Del Favero, S. Linear Model Identification for Personalized Prediction and Control in Diabetes. IEEE Trans. Biomed. Eng. 2022, 69, 558–568. [Google Scholar] [CrossRef]
- Zarkogianni, K.; Mitsis, K.; Litsa, E.; Arredondo, M.T.; Fico, G.; Fioravanti, A.; Nikita, K.S. Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring. Med. Biol. Eng. Comput. 2015, 53, 1333–1343. [Google Scholar] [CrossRef]
- Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med. 2019, 98, 109–134. [Google Scholar] [CrossRef]
- Sparacino, G.; Zanderigo, F.; Corazza, S.; Maran, A.; Facchinetti, A.; Cobelli, C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans. Biomed. Eng. 2007, 54, 931–937. [Google Scholar] [CrossRef]
- Frandes, M.; Timar, B.; Timar, R.; Lungeanu, D. Chaotic time series prediction for glucose dynamics in type 1 diabetes mellitus using regime-switching models. Sci. Rep. 2017, 7, 6232. [Google Scholar] [CrossRef]
- Pérez-Gandía, C.; Facchinetti, A.; Sparacino, G.; Cobelli, C.; Gómez, E.; Rigla, M.; de Leiva, A.; Hernando, M. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther. 2010, 12, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Mirshekarian, S.; Shen, H.; Bunescu, R.; Marling, C. LSTMs and neural attention models for blood glucose prediction: Comparative experiments on real and synthetic data. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 706–712. [Google Scholar]
- Zhu, T.; Li, K.; Herrero, P.; Chen, J.; Georgiou, P. A Deep Learning Algorithm for Personalized Blood Glucose Prediction. In Proceedings of the 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence (IJCAI-ECAI 2018), Stockholm, Sweden, 13–19 July 2018; pp. 64–78. [Google Scholar]
- Aliberti, A.; Pupillo, I.; Terna, S.; Macii, E.; Di Cataldo, S.; Patti, E.; Acquaviva, A. A multi-patient data-driven approach to blood glucose prediction. IEEE Access 2019, 7, 69311–69325. [Google Scholar] [CrossRef]
- Montaser, E.; Díez, J.L.; Bondia, J. Stochastic seasonal models for glucose prediction in the artificial pancreas. J. Diabetes Sci. Technol. 2017, 11, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Montaser, E.; Díez, J.L.; Rossetti, P.; Rashid, M.; Cinar, A.; Bondia, J. Seasonal local models for glucose prediction in type 1 diabetes. IEEE J. Biomed. Health Inform. 2019, 24, 2064–2072. [Google Scholar] [CrossRef]
- Montaser, E.; Díez, J.L.; Bondia, J. Glucose Prediction under Variable-Length Time-Stamped Daily Events: A Seasonal Stochastic Local Modeling Framework. Sensors 2021, 21, 3188. [Google Scholar] [CrossRef] [PubMed]
- Man, C.D.; Micheletto, F.; Lv, D.; Breton, M.; Kovatchev, B.; Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New features. J. Diabetes Sci. Technol. 2014, 8, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Prendin, F.; Del Favero, S.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Forecasting of glucose levels and hypoglycemic events: Head-to-head comparison of linear and nonlinear data-driven algorithms based on continuous glucose monitoring data only. Sensors 2021, 21, 1647. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Q. Benchmarking machine learning algorithms on blood glucose prediction for type I diabetes in comparison with classical time-series models. IEEE Trans. Biomed. Eng. 2020, 67, 3101–3124. [Google Scholar] [CrossRef]
- Marling, C.; Bunescu, R. The OhioT1DM dataset for blood glucose level prediction: Update 2020. CEUR Workshop Proc. 2020, 2675, 71–74. [Google Scholar]
- Kovatchev, B.; Cheng, P.; Anderson, S.M.; Pinsker, J.E.; Boscari, F.; Buckingham, B.A.; Doyle III, F.J.; Hood, K.K.; Brown, S.A.; Breton, M.D.; et al. Feasibility of long-term closed-loop control: A multicenter 6-month trial of 24/7 automated insulin delivery. Diabetes Technol. Ther. 2017, 19, 18–24. [Google Scholar] [CrossRef]
- Ceriello, A.; Monnier, L.; Owens, D. Glycaemic variability in diabetes: Clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019, 7, 221–230. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y. On fuzzy cluster validity indices. Fuzzy Sets Syst. 2007, 158, 2095–2117. [Google Scholar] [CrossRef]
- Dixon, J.K. Pattern recognition with partly missing data. IEEE Trans. Syst. Man Cybern. 1979, 9, 617–621. [Google Scholar] [CrossRef]
- Sengupta, S.; De, S.; Konar, A.; Janarthanan, R. An improved fuzzy clustering method using modified Fukuyama-Sugeno cluster validity index. In Proceedings of the 2011 International Conference on Recent Trends in Information Systems, Kolkata, India, 21–23 December 2011; pp. 269–274. [Google Scholar]
- Roversi, C.; Vettoretti, M.; Del Favero, S.; Facchinetti, A.; Sparacino, G.; Consortium, H.R. Modeling carbohydrate counting error in type 1 diabetes management. Diabetes Technol. Ther. 2020, 22, 749–759. [Google Scholar] [CrossRef] [Green Version]
- Bao, C.; Peng, H.; He, D.; Wang, J. Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique. Pattern Anal. Appl. 2018, 21, 803–812. [Google Scholar] [CrossRef]
- Shekhar, S.; Williams, B.M. Adaptive seasonal time series models for forecasting short-term traffic flow. Transp. Res. Rec. 2007, 2024, 116–125. [Google Scholar] [CrossRef]
- McShinsky, R.; Marshall, B. Comparison of Forecasting Algorithms for Type 1 Diabetic Glucose Prediction on 30 and 60-Minute Prediction Horizons. In Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ ECAI, Santiago de Compostela, Spain & Virtually, 29–30 August 2020; pp. 12–18. [Google Scholar]
- Daniels, J.; Herrero, P.; Georgiou, P. A Multitask Learning Approach to Personalized Blood Glucose Prediction. IEEE J. Biomed. Health Inform. 2021, 26, 436–445. [Google Scholar] [CrossRef]
- Li, K.; Daniels, J.; Liu, C.; Herrero, P.; Georgiou, P. Convolutional recurrent neural networks for glucose prediction. IEEE J. Biomed. Health Inform. 2019, 24, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Jankovic, M.V.; Bally, L.; Mougiakakou, S.G. Predicting blood glucose with an lstm and bi-lstm based deep neural network. In Proceedings of the 2018 14th symposium on neural networks and applications (NEUREL), Belgrade, Serbia, 20–21 November 2018; pp. 1–5. [Google Scholar]
- Zaidi, S.M.A.; Chandola, V.; Ibrahim, M.; Romanski, B.; Mastrandrea, L.D.; Singh, T. Multi-step ahead predictive model for blood glucose concentrations of type-1 diabetic patients. Sci. Rep. 2021, 11, 24332. [Google Scholar] [CrossRef]
- Rabby, M.F.; Tu, Y.; Hossen, M.I.; Lee, I.; Maida, A.S.; Hei, X. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. BMC Med. Inform. Decis. Mak. 2021, 21, 101. [Google Scholar] [CrossRef]
- Li, N.; Tuo, J.; Wang, Y.; Wang, M. Prediction of blood glucose concentration for type 1 diabetes based on echo state networks embedded with incremental learning. Neurocomputing 2020, 378, 248–259. [Google Scholar] [CrossRef]
- Kushner, T.; Breton, M.D.; Sankaranarayanan, S. Multi-hour blood glucose prediction in type 1 diabetes: A patient-specific approach using shallow neural network models. Diabetes Technol. Ther. 2020, 22, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Bunescu, R.; Struble, N.; Marling, C.; Shubrook, J.; Schwartz, F. Blood glucose level prediction using physiological models and support vector regression. In Proceedings of the 2013 12th International Conference on Machine Learning and Applications, Miami, FL, USA, 4–7 December 2013; Volume 1, pp. 135–140. [Google Scholar]
Subj ID | Missing Values (%) | CV (%) | TIR (%) | TAR (%) | TBR (%) |
---|---|---|---|---|---|
540 | 8 | 41 | 72 | 22 | 6 |
544 | 15 | 36 | 70 | 29 | 1 |
552 | 23 | 37 | 80 | 18 | 3 |
559 | 11 | 42 | 61 | 36 | 4 |
563 | 7 | 33 | 73 | 25 | 2 |
570 | 5 | 33 | 43 | 56 | 2 |
575 | 7 | 42 | 70 | 23 | 7 |
584 | 8 | 35 | 53 | 46 | 1 |
588 | 3 | 30 | 63 | 37 | 1 |
591 | 12 | 37 | 68 | 28 | 4 |
596 | 18 | 34 | 78 | 20 | 2 |
Mean (SD) | 11 (6) | 36.4 (4) | 66.4 (11) | 31 (12) | 3 (2) |
Subj ID | Missing Values (%) | CV (%) | TIR (%) | TAR (%) | TBR (%) |
---|---|---|---|---|---|
1 | 4 | 29 | 80 | 19 | 1 |
2 | 23 | 32 | 79 | 20 | 1 |
3 | 3 | 30 | 80 | 18 | 2 |
4 | 8 | 39 | 75 | 22 | 3 |
5 | 18 | 35 | 78 | 20 | 2 |
6 | 21 | 31 | 84 | 15 | 1 |
7 | 25 | 32 | 70 | 30 | 1 |
8 | 12 | 31 | 83 | 15 | 2 |
9 | 35 | 36 | 83 | 16 | 1 |
10 | 25 | 38 | 70 | 27 | 3 |
11 | 15 | 31 | 85 | 13 | 2 |
12 | 22 | 37 | 72 | 26 | 2 |
13 | 19 | 33 | 80 | 19 | 1 |
Mean (SD) | 17.6 (9) | 33.3 (3.4) | 78.4 (5.1) | 20 (5) | 1.6 (0.8) |
Models | RMSE (mg/dL) | |||
---|---|---|---|---|
PH = 30 min | PH = 45 min | PH = 60 min | PH = 75 min | |
ARIMA | 19.64 | 26.91 | 33.67 | 38.82 |
[18.42–20.54] | [23.86–28.59] | [29.82–35.11] | [32.48–41.59] | |
NN | 20.11 | 26.41 | 32.11 | 35.18 |
[17.58–20.99] | [25.10–28.31] | [30.94–33.26] | [32.55–37.74] | |
C–SARIMA | 20.13 (*,″) | 27.23 (″) | 31.96 (+) | 33.91 (+,^) |
[18.63–21.38] | [24.63–28.74] | [29.55–33.95] | [31.97–37.29] | |
ARIMAX | 18.73 | 26.46 | 30.82 | 34.73 |
[17.31–20.06] | [22.96–27.03] | [29.30–31.92] | [31.31–39.09] | |
NN–X | 17.78 | 25.68 | 30.67 | 34.06 |
[16.79–21.04] | [24.85–27.62] | [28.98–34.93] | [32.71–35.54] |
Models | RMSE (mg/dL) | |||
---|---|---|---|---|
PH = 30 min | PH = 45 min | PH = 60 min | PH = 75 min | |
ARIMA | 21.02 | 29.42 | 35.38 | 44.01 |
[20.03–24.86] | [27.40–33.24] | [34.63–40.48] | [39.50–45.86] | |
NN | 21.78 | 30.64 | 34.21 | 42.60 |
[19.35–24.23] | [26.88–34.11] | [29.92–38.68] | [35.97–44.42] | |
C–SARIMA | 21.63 | 29.67 (″) | 33.47 (+) | 40.18 (+,^,″) |
[20.00–25.90] | [25.83–34.07] | [29.59–39.62] | [32.92–42.42] | |
ARIMAX | 20.83 | 28.13 | 33.57 | 39.99 |
[17.80–23.40] | [24.22–32.65] | [28.54–40.44] | [31.36–43.40] | |
NN–X | 21.12 | 27.98 | 33.37 | 38.41 |
[17.49–23.89] | [23.52–34.63] | [27.36–34.63] | [30.38–41.71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prendin, F.; Díez, J.-L.; Del Favero, S.; Sparacino, G.; Facchinetti, A.; Bondia, J. Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions. Sensors 2022, 22, 8682. https://doi.org/10.3390/s22228682
Prendin F, Díez J-L, Del Favero S, Sparacino G, Facchinetti A, Bondia J. Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions. Sensors. 2022; 22(22):8682. https://doi.org/10.3390/s22228682
Chicago/Turabian StylePrendin, Francesco, José-Luis Díez, Simone Del Favero, Giovanni Sparacino, Andrea Facchinetti, and Jorge Bondia. 2022. "Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions" Sensors 22, no. 22: 8682. https://doi.org/10.3390/s22228682
APA StylePrendin, F., Díez, J. -L., Del Favero, S., Sparacino, G., Facchinetti, A., & Bondia, J. (2022). Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions. Sensors, 22(22), 8682. https://doi.org/10.3390/s22228682