Determination of Fumonisin B1 by Aptamer-Based Fluorescence Resonance Energy Transfer
<p>Optimization of experimental conditions. (<b>A</b>) Relationship between fluorescence intensity and wavelength in the presence of FB<sub>1</sub>. (<b>B</b>) Optimization of the FAM-F10 concentration. (<b>C</b>) Optimization of the GO concentration. (<b>D</b>) Optimization of the incubation time.</p> "> Figure 2
<p>Specificity of the sensor for the detection of FB<sub>1</sub>. (Toxin mixture included AFB<sub>1</sub>, AFG<sub>1</sub>, ZEN, OTA and FB<sub>1</sub>, **** <span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>Sensitivity of the fluorescent aptasensor for FB<sub>1</sub> detection. (<b>A</b>) Linear relationship between the fluorescence and the FB<sub>1</sub> concentration (0, 10, 15, 40, 80, 100, and 200 ng/mL). (<b>B</b>) Detection range of the fluorescent aptasensor for FB<sub>1</sub> detection.</p> "> Scheme 1
<p>Schematic diagram of the FRET method for detecting FB<sub>1</sub> based on the aptamer.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatuses
2.2. Specificity of the Fluorescent Aptasensor for FB1 Detection
2.3. Sensitivity of the Fluorescent Chemosensor for FB1 Detection
2.4. Analysis of FB1 in the Corn Flour Samples
3. Results and Discussion
3.1. Principle of Fluorescent Sensors
3.2. Optimization of the FAM-F10 Conjugate Concentration
3.3. Optimization of GO Concentration
3.4. Optimization of the Incubation Time
3.5. Specificity of the Fluorescent Aptasensor for FB1 Detection
3.6. Sensitivity of the Fluorescent Aptasensor for FB1 Detection
3.7. Detection of FB1 in Corn Flour Ssamples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Wu, Q.; Wan, D.; Liu, Q.; Chen, D.; Liu, Z.; Martínez-Larrañaga, M.R.; Martínez, M.A.; Anadón, A.; Yuan, Z. Fumonisins: Oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch. Toxicol. 2015, 90, 81–101. [Google Scholar] [CrossRef] [PubMed]
- Acuña-Gutiérrez, C.; Schock, S.; Jiménez, V.M.; Müller, J. Detecting fumonisin B1 in black beans (Phaseolus vulgaris L.) by near-infrared spectroscopy (NIRS). Food Control 2021, 130, 108335. [Google Scholar] [CrossRef]
- Alsulami, T.; Nath, N.; Flemming, R.; Wang, H.; Zhou, W.; Yu, J.-H. Development of a novel homogeneous immunoassay using the engineered luminescent enzyme NanoLuc for the quantification of the mycotoxin fumonisin B1. Biosens. Bioelectron. 2020, 177, 112939. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, X.; Xie, J.; Li, X.; Huang, Z. Rapid simultaneous detection of fumonisin B1 and deoxynivalenol in grain by immunochromatographic test strip. Anal. Biochem. 2020, 606, 113878. [Google Scholar] [CrossRef] [PubMed]
- Munawar, H.; Smolinska-Kempisty, K.; Cruz, A.G.; Canfarotta, F.; Piletska, E.; Karim, K.; Piletsky, S.A. Molecularly imprinted polymer nanoparticle-based assay (MINA): Application for fumonisin B1 determination. Analyst 2018, 143, 3481–3488. [Google Scholar] [CrossRef]
- Yu, S.; Jia, B.; Liu, N.; Yu, D.; Zhang, S.; Wu, A. Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells. Sci. Total Environ. 2021, 787, 147405. [Google Scholar] [CrossRef]
- Marasas, W.F.; Kellerman, T.S.; Pienaar, J.G.; Naudé, T.W. Leukoencephalomalacia: A mycotoxicosis of Equidae caused by Fusarium moniliforme Sheldon. Onderstepoort J. Vet. Res. 1976, 43, 113–122. [Google Scholar]
- Kriek, N.P.; Kellerman, T.S.; Marasas, W.F. A comparative study of the toxicity of Fusarium verticillioides (=F. moniliforme) to horses, primates, pigs, sheep and rats. Onderstepoort J. Vet. Res. 1981, 48, 129–131. [Google Scholar]
- Gelderblom, W.C.A.; Snyman, S.D. Mutagenicity of potentially carcinogenic mycotoxins produced by Fusarium monil-iforme. Mycotoxin Res. 1991, 7, 46–52. [Google Scholar]
- Edrington, T.S.; Kamps-Holtzapple, C.A.; Harvey, R.B.; Kubena, L.F.; Elissalde, M.H.; Rottinghaus, G.E. Acute hepatic and renal toxicity in lambs dosed with fumonisin-containing culture material. J. Anim. Sci. 1995, 73, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Marijanovic, D.R.; Holt, P.; Norred, W.P.; Bacon, C.W.; Voss, K.A.; Stancel, P.C.; Ragland, W.L. Immunosuppressive Effects of Fusarium moniliforme Corn Cultures in Chickens. Poult. Sci. 1991, 70, 1895–1901. [Google Scholar] [CrossRef] [PubMed]
- Espada, Y.; Ruiz de Gopegui, R.; Cuadradas, C.; Cabañes, F.J. Fumonisin mycotoxicosis in broilers: Plasma proteins and co-agulation modifications. Avian Dis. 1997, 41, 73–79. [Google Scholar] [PubMed]
- Javed, T.; Bennett, G.A.; Richard, J.L.; Dombrink-Kurtzman, M.A.; Buck, W.B. Mortality in broiler chicks on feed amended withFusarium proliferatum culture material or with purified fumonisin B1 and moniliformin. Mycopathologia 1993, 123, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Shu, M.; Xu, Y.; Liu, X.; Li, Y.; He, Q.; Tu, Z.; Fu, J.; Gee, S.J.; Hammock, B.D. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: Development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal. Anal. Chim. Acta 2016, 924, 53–59. [Google Scholar] [CrossRef]
- Canfarotta, F.; Poma, A.; Guerreiro, A.; Piletsky, S. Solid-phase synthesis of molecularly imprinted nanoparticles. Nat. Protoc. 2016, 11, 443–455. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, J.; Liu, X.; Gao, X.; Ma, T.; Lu, X.; Li, J. Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody. Food Chem. 2017, 228, 62–69. [Google Scholar] [CrossRef]
- Qian, M.R.; Wu, L.Q.; Hu, Z.; Fei, L.; Rui, L.; Zhi-Min, C.; Fang, L.Z. Determination of Fumonisins B-1, B-2 and Their Hydrolysed Metabolites in Bovine Milk by Liquid Chromatography-Tandem Mass Spectrometry. Chin. J. Anal. Chem. 2012, 40, 757–761. [Google Scholar]
- Zheng, Y.; Shi, Z.; Wu, W.; He, C.; Zhang, H. Label-Free DNA Electrochemical Aptasensor for Fumonisin B1 De-tection in Maize Based on Graphene and Gold Nanocomposite. J. Anal. Chem. 2021, 76, 252–257. [Google Scholar]
- Ren, W.; Xu, Y.; Huang, Z.; Li, Y.; Tu, Z.; Zou, L.; He, Q.; Fu, J.; Liu, S.; Hammock, B.D. Single-chain variable fragment an-tibody-based immunochromatographic strip for rapid detection of fumonisin B(1) in maize samples. Food chem. 2020, 319, 126546. [Google Scholar] [CrossRef]
- Kinghorn, A.B.; Fraser, L.A.; Liang, S.; Shiu, S.C.-C.; Tanner, J.A. Aptamer Bioinformatics. Int. J. Mol. Sci. 2017, 18, 2516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, F.; Dever, B.; Li, X.-F.; Le, X.C. DNA-Mediated Homogeneous Binding Assays for Nucleic Acids and Proteins. Chem. Rev. 2012, 113, 2812–2841. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Bahreyni, A.; Ramezani, M.; Alibolandi, M.; Emrani, A.S.; Abnous, K. Co-delivery of doxorubicin and α-PCNA aptamer using AS1411-modified pH-responsive nanoparticles for cancer synergistic therapy. J. Drug Deliv. Sci. Technol. 2020, 58, 101816. [Google Scholar] [CrossRef]
- Farzin, L.; Sadjadi, S.; Shamsipur, M.; Sheibani, S.; Mousazadeh, M.H. Employing AgNPs doped amidoxime-modified poly-acrylonitrile (PAN-oxime) nanofibers for target induced strand displacement-based electrochemical aptasensing of CA125 in ovarian cancer patients. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 679–687. [Google Scholar] [PubMed]
- Talari, F.F.; Bozorg, A.; Faridbod, F.; Vossoughi, M. A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. J. Environ. Chem. Eng. 2020, 9, 104878. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Duan, N.; Wu, S.; Xia, Y.; Ma, X.; Zhu, C.; Jiang, Y.; Ding, Z.; Wang, Z. Selection and characterization of single stranded DNA aptamers recognizing funionism B1. Microchim. Acta 2014, 181, 1317–1324. [Google Scholar] [CrossRef]
- Dong, H.; Gao, W.; Yan, F.; Ji, H.; Ju, H. Fluorescence Resonance Energy Transfer between Quantum Dots and Graphene Oxide for Sensing Biomolecules. Anal. Chem. 2010, 82, 5511–5517. [Google Scholar] [CrossRef]
- Zha, C.; An, X.; Zhang, J.; Wei, L.; Zhang, Q.; Yang, Q.; Li, F.; Sun, X.; Guo, Y. Indirect signal amplification strategy with a universal probe-based lateral flow immunoassay for the rapid quantitative detection of fumonisin B1. Anal. Methods 2021, 14, 708–716. [Google Scholar] [CrossRef]
- Qin, Y.; Li, S.; Wang, Y.; Peng, Y.; Han, D.; Zhou, H.; Bai, J.; Ren, S.; Li, S.; Chen, R.; et al. A highly sensitive flu-orometric biosensor for Fumonisin B1 detection based on upconversion nanoparticles-graphene oxide and catalytic hairpin assembly. Anal. Chim. Acta 2022, 1207, 339811. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, J.; Li, W.; Cao, B.; Wang, D.D.; Yang, Y.; Lin, Q.X.; Li, J.L.; Zheng, T.S. Simultaneous Detection of Ochratoxin A and Fumonisin B1 in Cereal Samples Using an Aptamer–Photonic Crystal Encoded Suspension Array. Anal. Chem. 2014, 86, 11797–11802. [Google Scholar] [CrossRef]
- Er Demirhan, B.; Demirhan, B. Investigation of Twelve Significant Mycotoxin Contamination in Nut-Based Products by the LC-MS/MS. Method. Metab. 2022, 12, 120. [Google Scholar]
- Zhao, X.; Gao, J.; Song, Y.; Zhang, J.; Han, Q. Establishment of an Improved ELONA Method for Detecting Fumonisin B1 Based on Aptamers and Hemin-CDs Conjugates. Sensors 2022, 22, 6714. [Google Scholar] [CrossRef] [PubMed]
Sample | Addition Amount (ng/mL) | Detection Value (ng/mL) | Recovery (%) | Detection Value (ELISA) (ng/mL) | Recovery (%) |
---|---|---|---|---|---|
Sample 1 | 20 | 19.73 ± 5.46 | 98.66 | 19.74 ± 0.09 | 98.35 |
80 | 71.25 ± 5.82 | 89.13 | 79.90 ± 0.08 | 100.00 | |
200 | 195.01 ± 2.19 | 96.61 | 197.41 ± 0.09 | 98.71 | |
Sample 2 | 20 | 18.25 ± 6.17 | 91.23 | 19.55 ± 0.44 | 97.73 |
80 | 72.56 ± 2.58 | 90.7 | 79.53 ± 0.39 | 99.42 | |
200 | 204.15 ± 11.51 | 102.08 | 195.46 ± 0.44 | 97.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Gao, J.; Song, Y.; Zhang, J.; Han, Q. Determination of Fumonisin B1 by Aptamer-Based Fluorescence Resonance Energy Transfer. Sensors 2022, 22, 8598. https://doi.org/10.3390/s22228598
Zhao X, Gao J, Song Y, Zhang J, Han Q. Determination of Fumonisin B1 by Aptamer-Based Fluorescence Resonance Energy Transfer. Sensors. 2022; 22(22):8598. https://doi.org/10.3390/s22228598
Chicago/Turabian StyleZhao, Xinyue, Jiale Gao, Yuzhu Song, Jinyang Zhang, and Qinqin Han. 2022. "Determination of Fumonisin B1 by Aptamer-Based Fluorescence Resonance Energy Transfer" Sensors 22, no. 22: 8598. https://doi.org/10.3390/s22228598
APA StyleZhao, X., Gao, J., Song, Y., Zhang, J., & Han, Q. (2022). Determination of Fumonisin B1 by Aptamer-Based Fluorescence Resonance Energy Transfer. Sensors, 22(22), 8598. https://doi.org/10.3390/s22228598