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Abstract: Emotion recognition is a key attribute for realizing advances in human–computer interac-
tion, especially when using non-intrusive physiological sensors, such as electroencephalograph (EEG)
and electrocardiograph. Although functional connectivity of EEG has been utilized for emotion recog-
nition, the graph theory analysis of EEG connectivity patterns has not been adequately explored. The
exploitation of brain network characteristics could provide valuable information regarding emotions,
while the combination of EEG and peripheral physiological signals can reveal correlation patterns
of human internal state. In this work, a graph theoretical analysis of EEG functional connectivity
patterns along with fusion between EEG and peripheral physiological signals for emotion recognition
has been proposed. After extracting functional connectivity from EEG signals, both global and
local graph theory features are extracted. Those features are concatenated with statistical features
from peripheral physiological signals and fed to different classifiers and a Convolutional Neural
Network (CNN) for emotion recognition. The average accuracy on the DEAP dataset using CNN
was 55.62% and 57.38% for subject-independent valence and arousal classification, respectively, and
83.94% and 83.87% for subject-dependent classification. Those scores went up to 75.44% and 78.77%
for subject-independent classification and 88.27% and 90.84% for subject-dependent classification
using a feature selection algorithm, exceeding the current state-of-the-art results.

Keywords: emotion recognition; EEG; multimodal physiological signals; functional connectivity;
graph theory; multimodal fusion

1. Introduction

Affective computing has been a growing field of research, aiming to develop systems
and devices being able to recognize, process, and simulate human emotions. Since the paper
of Rosalind Picard [1] in 1995, a plethora of research has been made in the field, including
applications such as healthcare [2], video games [3], product development [4], and human–
computer interaction (HCI) [5]. Such systems can offer to the development of artificial
intelligence since emotion recognition is a fundamental aspect of human intelligence [6].

To perform emotion recognition, it is important to understand the nature of emotions.
Emotions have a variety of ways to be described depending on the culture, language,
or even subject. Thus, distinguishing between emotions is a very difficult task. For this
manner, lots of researchers have adopted a 2D representation of the emotions based on
valence and arousal. This 2D model can offer a catholic way to describe emotions, thus
making the emotion recognition task feasible. Based on this model, emotions are described
by the pleasure or disliking they produce to the subject and their intensity. Valence describes
the nature of the emotion, being positive or negative, while arousal describes the intensity
of emotion, being weak or strong. The valence–arousal space can have either continuous
representations of emotions or discrete points.
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Since emotions are psychophysiological processes, there are physiological attributes
capable of describing the different emotional states. The recent development of non-
intrusive sensors to monitor physiological signals with minimum obtrusiveness has led
to the rise of emotion-recognition applications deploying physiological sensors, such as
electroencephalograph (EEG) [7], electrocardiograph (ECG) [8], galvanic skin response
(GSR) [9], and more. Recognizing emotions requires the extraction of meaningful patterns
from the gathered physiological data. The complex nature of emotions and their depiction
on physiological signals have led to the use of multiple sensors together to improve emotion
recognition performance. Multimodal emotion recognition can be complemented by the
unique physiological responses that each modality provides [10].

Connectivity analysis of EEG signals has been used for emotion recognition [11,12].
Nevertheless, the use of graph measures derived from the connectivity patterns of EEG has
not been adequately studied in the field of emotion recognition. EEG is known to be an
indicator of various diseases, such as dementia [13], or even motor imagery [14]. Motor
imagery can be considered a classification problem, therefore it can be addressed using
different machine learning techniques [15]. Apart from machine learning, fusion techniques,
such as majority voting [16], and optimization methods, such as genetic algorithm (GA) [17],
also have been studied for such applications. Graph measures, as an analysis process of
EEG signals, have also proved to be promising indexes of neurodegenerative diseases, such
as Down Syndrome [18] and Alzheimer Disease [19], epilepsy [20], and other disorders [21].
They also are promising biomarkers for explaining the development of the typical behavior
of infants [22]. Therefore, the possible role of these measures in the field of emotion
recognition is studied in this research.

In this work, a novel framework for emotion recognition is proposed based on func-
tional connectivity analysis of EEG signals and network science indices along with a fusion
scheme of EEG and peripheral physiological signals. Functional connectivity of EEG sig-
nals is computed using Mutual Information (MI) between the electrodes. The extracted
connectivity networks are further processed by computing graph theoretical measures,
which describe integration and segregation characteristics of the network. The graph
theory features extracted are concatenated with simple statistical features derived from
peripheral physiological signals. Subject-dependent and subject-independent models for
binary valence and arousal score classification were trained. The proposed framework was
evaluated on the publicly available dataset DEAP [23], which includes EEG and peripheral
physiological signals from 32 different subjects. Three different machine learning algo-
rithms, namely support vector machines (SVM), Random Forest (RF), and extreme gradient
boosting (XGB) decision trees, along with Convolutional Neural Network (CNN), are used
for the valence and arousal classification task.

The main contributions of this work could be summarized as follows:

• Assessing the performance of graph theory analysis of EEG signals for the problem of
emotion recognition.

• Proposing a novel framework for multimodal emotion recognition from EEG and
peripheral physiological signals. The novelty of the method stands in the exploitation
of graph theory measures for the feature extraction of EEG signals, along with a
fusion scheme of these graph theory features with statistical features from peripheral
physiological signals.

• Testing the accuracy of different classifiers and a CNN for the emotion recognition
problem based on the aforementioned analysis framework.

• Examining the performance the proposed framework in two different scenarios; a
subject-dependent scenario and a subject-independent scenario.

• Evaluating the two different scenarios of the proposed framework using the DEAP
dataset [23].

The rest of the paper is organized as follows: in Section 2 the related work is presented
followed by Section 3 where our proposed method is described. Section 4 presents the
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results of our method and compares them with other state-of-the-art methods using the
DEAP dataset. Finally, in Section 5, the conclusion and future work proposals are presented.

2. Related Work

Before describing the methods and the results of our work, delving into the current
state-of-the-art in the field of emotion recognition using physiological sensors is needed.
In the following section, a review of the main methods of the current state-of-the-art is
presented, separated into single modality and multimodal emotion recognition.

2.1. Single Modality Emotion Recognition

Over recent decades, various sensors have been deployed for emotion recognition
applications. They can mainly be separated into external and internal measurements.
The vast majority of applications using external measurements are based on computer
vision analysis [24] and speech recognition [25]. In this context, Kar et al. [26] proposed
a three stage method for facial expression recognition from facial images. Their system
is based on extracting features from the facial images and then reducing their volume
by applying principal component analysis (PCA) and linear discriminant analysis (LDA).
The final classification was performed using an SVM classifier. In [27], authors developed
an enhanced neural network architecture able to predict different emotions based on the
analysis of facial expressions from videos. Zhao et al. [28] developed a complex deep
learning model based on CNN to predict different emotions from speech data from two
public datasets achieving results of over 90% for both datasets.

Internal measurements are derived from physiological sensors. Such sensors provide
insights into the internal state of each subject. Emotion recognition applications based
on physiological sensors attempt to correlate these insights with the users sentiments by
proposing different methods based on the modality deployed. The physiological sensors
can further be divided into EEG and peripheral signals. EEG can provide insights into brain
function, which can be helpful in emotion recognition. In the work of [7], a two-channel
EEG was used for emotion recognition. Fourier and wavelet-based features were extracted
and fed to a gradient boosting decision tree (GBDT) classifier achieving an accuracy score
of 76.34% in predicting valence. Doma et al. [29] performed multiple tests of emotion
recognition using EEG data and classic machine learning algorithms on a publicly available
dataset. They found that, when performing PCA and also split data into time segments,
the accuracy was increased from 50–65% to 55–75% along with increases in precision
and f1-score. Deep learning methods have also been utilized to analyze and perform
emotion recognition using EEG signals. In [30], two different convolutional neural network
techniques were used, performing accuracy scores of 61.5% and 58.01% in arousal, and 58%
and 56.28% in valence estimation. In the work of Wang et al. [11], a connectivity analysis
on EEG signals was performed by computing the phase-locking value (PLV) between each
pair of electrodes. Then, a PLV-based graph CNN (P-GCNN) was trained for binary valence
and arousal classification, achieving 84.35% classification accuracy for SEED dataset, and
73.31%, 77.03%, and 79.20% average classification accuracies for valence, arousal, and
dominance classifications, respectively, on the DEAP database.

Apart from EEG, other peripheral physiological signals can also provide useful knowl-
edge in understanding and predicting emotional states, by providing information about
other vital signals, such as heart rate and respiration. Such signals include GSR, heart rate
(HR), ECG, and electromyography (EMG). In [9], photoplethysmography (PPG), which pro-
vides HR data and GSR were deployed along with various feature selection and machine
learning algorithms to perform three-class emotion recognition. Results indicated that
GSR features were able to recognize emotions successfully with SVM classifier performing
the best. ECG data along with transfer learning was used in [8]. The authors built two
different networks: the first dealing with unlabeled and the second with labeled data.
Their results outperformed state-of-the-art methods achieving accuracy scores of 96.3%
and 96% in the SWELL dataset, and 84% and 85.8% on the AMIGOS dataset in valence and
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arousal, respectively. Research by using facial EMG has shown that the number of subjects
influences the emotion recognition accuracy [31–33]. In [34], long short-term memory
(LSTM) network has shown not to be influenced by the number of subjects achieving an
accuracy from 92.28% for 9 emotions up to 99.09% for 2 emotions.

2.2. Multimodal Emotion Recognition

Apart from deploying a single modality, multimodal solutions for emotion recognition
have found a lot of use. By deploying multiple sensors and combining them with the
proper method the accuracy of emotion recognition can be increased, taking advantage
of the unique characteristics of each modality. Simple feature level fusion techniques,
such as concatenation [35], and decision level techniques [36], have been also used with
reasonable results. Gong et al. [37] perform a hybrid fusion of ECG, EMG, respiratory
changes (RSP), and skin conductivity (SC) taking advantage of both fusion methods. Apart
from simple fusion methods, some researchers have developed more advanced methods
for fusing different modalities to perform emotion recognition. In [38], the authors used the
ASCERTAIN dataset consisting of EEG, GSR, ECG, and facial expression (EMO) features.
The fusion method they proposed was vertex-weighted multimodal multi-task hypergraph
learning which is based on hypergraph construction reaching an accuracy of 74.34% on
valence and 79.46% on arousal.

Another commonly used method for multimodal emotion recognition is feature selec-
tion. When dealing with multiple modalities, the amount of features is usually quite big
and also often contains redundant information. By applying feature selection techniques
dimensionality reduction can be achieved retaining only the most useful of the features.
In this line, such methods have been adequately studied, such as the Fisher score [39]
and mutual information-based feature selection methods [40]. Torres-Valencia et al. [41]
performed margin-maximizing feature elimination and recursive feature elimination based
on an SVM classifier on two publicly available datasets. They found that the more relevant
features were those of the EEG for emotion recognition. In [42], a feature selection method
based on reinforcement learning was compared to other random selection, sequential, and
genetic algorithm (GA) based feature selection methods. They found that their Interactive
Feature Selection method performed better than the other feature selection methods.

The development of deep learning over recent years has led researchers to apply such
methods for multimodal emotion recognition. In the work of Zhang [43], a combination
of EEG and facial expression has been proposed for emotion recognition. The model is
based on a decision tree and bimodal deep automatic encoder achieving an accuracy score
of 85.71% on discrete emotions. A hierarchical CNN has been proposed in [44] to combine
EEG and peripheral signals for emotion recognition. CNN has also been used in [45]
combined with LSTM for the fusion of video and audio signals for emotion recognition.
Authors in [46] present a new database for emotion recognition that includes face, body
gesture, voice, and physiological signals. They also proposed different deep belief networks
(DBN) with the convolutional DBN performing the best. In the work of [47], an accuracy of
89.53% was achieved using a DBN and SVM classification for the fusion of EDA, PPG, and
zygomaticus EMG sensors for emotion recognition. In [48], the authors proposed a bimodal
LSTM for emotion recognition based on physiological signals. They achieved 93.97% mean
accuracy on the SEED dataset and 83.53% on the DEAP dataset. Wu et al. [12] proposed
a method based on connectivity analysis from EEG, and the selection of critical emotion
subnetworks. Classification accuracies from the fusion of the proposed EEG analysis with
eye-movement analysis were 85.34 ± 2.90% and 86.61 ± 3.76% for arousal and valence on
the DEAP dataset, respectively.

3. Materials and Methods

In this section the methodology followed in this research is described in detail. This
section includes the description of the dataset and the data analysis procedure, which
includes the feature extraction methods and the experimental design.
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3.1. Dataset

In this study, the DEAP dataset was used for multimodal emotion recognition [23].
The DEAP dataset contains EEG signals from 32 electrodes and peripheral physiological
signals from 8 different sensors, those being vertical and horizontal EOG, Zygomaticus and
Trapezius EMG, GSR, respiration belt, Plethysomnograph, and body temperature. These
modalities are linked with different emotion responses by providing information regarding
head, mouth, and eye movements; heart rate and respiration rate; and temperature and
sweat gland activity [23]. A schematic representation of the different sensors deployed in
the DEAP dataset and their position on the human body can be seen in Figure 1.

Figure 1. Schematic representation of the deployed sensors in the DEAP dataset and their place on
the human body.

The data were collected from 32 participants using 40 different 1-minute-long video
stimuli. Each participant rated each video in terms of valence, arousal, dominance, and
liking. The ratings are on a scale from 1 to 9. In our study, only the valence and arousal
ratings were used to perform our experiments, which are the values used for the 2D
representation of emotions. Valence represents whether an emotion is positive or negative,
while arousal describes its intensity [49]. The dataset provides preprocessed data, where
all signals were resampled to 128 Hz. The EEG data were further preprocessed, removing
EOG artifacts and passing through a 4–45 Hz bandpass filter. From the 32 EEG channels,
the 14 channels included in the Emotiv epoc+ [50] were used, which can be seen in Figure 2.
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Figure 2. Location of the 14 channels of the Emotiv epoc+. Image from [50].

3.2. Data Analysis

The data analysis consists of two different steps; the extraction of useful features
from the EEG and peripheral physiological signals, and the train of algorithms for the
classification of valence and arousal. The analysis procedure is depicted in Figure 3.

Figure 3. Analysis pipeline. The analysis includes statistical feature extraction from the peripheral
physiological signals and graph measures extraction from the connectivity matrices of EEG signals.
The features are concatenated before being fed to the classifier for the binary valence and arousal
classification.

3.2.1. Feature Extraction

Feature extraction from both the EEG and peripheral signals was performed using
a sliding window technique. The window applied was 4 s long with a step of 2 s. The
features extracted were both time and frequency domain features. The same 12 time-
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domain features were extracted from all peripheral physiological signals, those being mean;
variance; standard deviation; max; min; skewness; kurtosis; 25%, 50%, and 75% quantile
range; zero-crossing rate; and approximate entropy. These features describe basic statistical
attributes of the input signals, thus giving an insight to the behavior of the signals. This
results in 12 features × 8 peripheral physiological signals for a total of 96 features from
peripheral physiological signals.

For the EEG-based feature extraction, a graph measure approach was applied. For
each time window, at first, a connectivity analysis between the electrodes was performed.
The connectivity between the electrodes was extracted by applying the mutual information
algorithm. Mutual information is a non-directional connectivity measure, which reveals
both linear and non-linear statistical dependencies. Because the information flow within
the brain includes many highly non-linear processes, the use of mutual information can
be helpful in detecting functional coupling between different brain regions [51]. The
computation of mutual information between all different pairs of electrodes led to an
adjacency matrix for each window. Then, graph measures of the network were computed,
including global and local efficiency, transitivity, clustering coefficient, betweenness and
degree centrality, characteristic path length, modularity, and density.

Characteristic path length is the average shortest path length of the edges connecting
the nodes of the network [52]. Global efficiency is the average inverse shortest path length
of the network [53]. Local efficiency of a node is the computation of global efficiency on
a local level [53]. Transitivity of a graph is the ratio of closed triplets to the maximum
number of triplets (open and closed) [54]. An open triplet is three nodes with one and/or
two connections between them, while a closed triplet is three nodes with three connections
between them (i.e., a triangle). The clustering coefficient of a node is ratio of its connected
neighbors to the maximum number of possible connections [52]. Modularity is a measure
of the degree to which the network can be divided into clearly defined modules [55].
Betweenness centrality measures the importance of a node in the communication of the
network other nodes and corresponds to the fraction of all shortest path that passes through
the node [54]. Degree centrality of an individual node is equal to the number of links
connected to that node [54]. Finally, the density of each graph is the sum of all the weights
of the graph.

All the computed features, along with their total number can be seen in Table 1. We
resulted in a total of 224 features per window; 128 graph measure features, and 96 features
from the peripheral physiological signals. Each window obtained the valence and arousal
score of the corresponding video.

Table 1. Features computed along with their total number for each time window. The features of the
peripheral physiological signals were computed once for each one of the 8 different modalities.

Peripheral Physiological Signals Features

Feature Total Number of Features

Mean 8
Variance 8

Standard deviation 8
Maximum value 8
Minimum value 8

Skewness 8
Kurtosis 8

25% quantile range 8
50% quantile range 8
75% quantile range 8
Zero-crossing rate 8

Approximate entropy 8
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Table 1. Cont.

Global Graph Measures

Graph Measure Total Number of Features

Characteristic path length 1
Global efficiency 1

Transitivity 1
Modularity 1

Density 1

Local Graph Measures

Graph Measure Total Number of Features

Clustering coefficient 32
Local efficiency 32

Betweenness centrality 32
Degree centrality 32

Total 224

3.2.2. Experimental Design

After extracting the features for all subjects, the valence and arousal scores were
dichotomized into low (≤4.5) and high (>4.5) scores, to perform binary classification of the
valence and arousal scores.

Our experimental design consists of testing three different feature sets to define which
set of features performs the best; those feature sets being the features from peripheral
physiological signals, the graph theory features extracted from the EEG signals and their
fusion. For the fusion of peripheral physiological signals features and the graph theory
features, concatenation was tested for feature level fusion and a feature selection method.
Feature selection is a process responsible for selecting a feature subset which performs the
best by reducing the input size and also removing the redundant information from the
initial feature set. GA was chosen to be applied for the feature selection method.

The GA algorithm is an optimization algorithm finding application in various fields,
such as machinery condition monitoring [56] and servo systems [57]. The GA algorithm
is based on the natural selection and aims to maximize a fitness function. The fitness
function chosen is the classification accuracy. The process of natural selection starts with
the selection of the individuals performing the best from a initial population. During each
iteration of the GA, which is named generation, a new population is produced from the
previous selected individuals, which are called parents, through the process of crossover
and mutation. Through each generation the best performing set of individuals is chosen
according to the fitness function. When the total number of generations is completed, the
best performing from all the chosen individuals is our final optimization solution. In the
case of feature selection, the chosen individual through each generation is the feature subset
that achieves the highest accuracy score.

Three different classifiers were tested, namely RF, SVM, and XGB. We also applied a
1D-CNN fed with the features and also performed a feature selection using GA. The CNN
consists of three convolutional layers each one followed by a pooling layer. The optimizer
applied was the Adam optimizer and the loss function was the binary cross-entropy loss
function. The architecture of the CNN can be seen in Figure 4.

Our method was tested using two different experimental framework; subject-dependent
and subject-independent framework. In the subject-dependent framework the data of each
subject is used to train a subject-specific model and test its performance using data of the
same subject. In the subject-independent framework, the data of one subject are used as
test data, and the model is trained using the data of the rest of the subjects.
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Figure 4. Architecture of the CNN used for the valence and arousal classification.

4. Results and Discussion

In this section, the main results of both the subject-dependent and the subject-independent
frameworks. A comparative analysis with other state-of-the-art methods for both frame-
works is also performed, after which the results of this study are discussed.

4.1. Subject-Dependent Results

After extracting features from the different signals, the performance of the different
feature sets was tested in the binary classification of valence and arousal. At first, the
performance of each feature set was tested separately; namely the peripheral physiological
signals features and the graph theory features from the EEG signals, and their fusion in
a subject-dependent binary classification of valence and arousal. The extracted features
of each subject were split to training and testing sets with a ratio of 85/15. The mean and
standard deviation accuracy results of the binary valence and arousal subject-dependent
classification across all subjects are presented in Table 2. From the results, it is clear that the
concatenation of peripheral physiological signals features and the graph theory features
from the EEG signals improve the classification accuracy. The best performing algorithm
for the binary classification is the CNN, achieving the best performance throughout all
different feature sets.

Table 2. Accuracy results from the experimental analysis of all subjects (mean ± standard deviation)
using different feature sets. The first column pair represents the results of the peripheral physiological
feature set, the second pair represents the results of the graph theory feature set and the last column
pair includes the results of the concatenation of these feature sets.

Physiological Features Graph Theory Features Concatenation

Valence Arousal Valence Arousal Valence Arousal

SVM 68.5 ± 4.76 71.12 ± 6.42 71.5 ± 5.21 72.58 ± 7.12 82.4 ± 5.39 81.15 ± 8.39
RF 72.7 ± 5.18 73.64 ± 5.12 75.2 ± 5.19 78.27 ± 6.26 82.68 ± 5.77 81.9 ± 7.09

XGB 73.2 ± 4.76 75.34 ± 8.07 79.8 ± 4.98 80.12 ± 8.51 83.41 ± 6.09 82.92 ± 7.41
CNN 76.5 ± 5.14 78.24 ± 7.35 81.2 ± 5.41 80.89 ± 6.72 83.94 ± 6.77 83.87 ± 7.72
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Since the best performing feature set is the concatenation of peripheral physiological
signals features and graph theory features, the GA-based feature selection algorithm was
applied to this feature set. For the GA parameters the number of generations was set
to 200, the number of solutions per generation was set to 10, the size of each generation
was set to 100, the size of pooling was set to 4, and the number of mutations was set to 3.
A comparison of the results of the use of GA-based feature selection method versus the
results of the whole feature set are presented in Table 3. In the table, the mean and standard
deviation of the binary classification accuracy across all subjects are presented. From
Table 3 it is clear that the use of GA-based feature selection improves the overall accuracy
of the binary valence and arousal classification, by removing the redundant information
from the feature set. The best performing algorithm is again the CNN.

Table 3. Comparative accuracy results from the experimental analysis of all subjects (mean ± standard
deviation) with and without the use of GA-based feature selection. The first two columns refer to the
case where no feature selection method was implemented. The last two columns refer to the case
where feature selection method was implemented.

Without GA Feature Selection With GA Feature Selection

Valence Arousal Valence Arousal

SVM 82.4 ± 5.39 81.15 ± 8.39 85.71 ± 5.27 84.37 ± 7.32
RF 82.68 ± 5.77 81.9 ± 7.09 87.65 ± 4.68 86.92 ± 6.06

XGB 83.41 ± 6.09 82.92 ± 7.41 87.78 ± 4.99 87.72 ± 6.39
CNN 83.94 ± 6.77 83.87 ± 7.72 88.27 ± 5.43 90.84 ± 6.15

In Table 4, a comparison of our work with other state-of-the-art works with subject-
dependent models using the same dataset is presented. It can be seen that our method
exceeds the state-of-the-art methods for both the valence and arousal score prediction.

The results of Table 4 reveal the superiority of our method compared to other state-
of-the-art methods for the binary classification of valence and arousal using peripheral
physiological signals and EEG signals. However, these results are based on subject-specific
models, meaning that each subject has its own model which is trained only from his/her
data and is specifically built for him/her. It is important to also study the performance
of our method in a subject-independent scenario, where the trained model is unaware of
the data of the test subject. To this line, a Leave-One-Out Cross Validation (LOOCV) was
performed for all subjects, where each time the data of a specific subject was the test data
and all the data of rest subjects were the train data.

4.2. Subject-Independent Results

Since, in all cases (with and without GA-based feature selection), the CNN was the
best performing algorithm only the CNN was tested to assess its performance for the
LOOCV experimental design. The performance of the whole feature set of the concatenated
peripheral physiological signals features and the graph theory features was tested, along
with the GA-based feature selection algorithm. For the feature selection process, the train
dataset was split into an input dataset and an evaluation dataset using a 85/15 ratio.
After the feature selection process was finished, the training and testing procedure was
performed normally.

The mean and standard deviation accuracy results of all subjects are presented in
Table 5. From the results it can be seen that the feature selection method massively in-
crease the accuracy results to a reasonable level of 75.44% for valence and 78.76% for
arousal classification.
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Table 4. Comparison of our accuracy results with other state-of-the-art methods using subject-
dependent models. In the second column the method used for the valence and arousal classification
is presented. The last two columns refer to the best accuracy results (mean±standard deviation) for
the valence and arousal classification.

Paper Method Valence Arousal

Wang et al. [11]
• Connectivity analysis of EEG signals with PLV
• P-GCNN for binary valence and arousal classification 73.31 ± 11.66 77.03 ± 11.49

Tang et al. [50]

• Differential entropy features from EEG signals for ϑ, α, β, and γ
frequency bands

• Time-domain statistical features from peripheral physiological
signals

• Bimodal-LSTM network for binary valence and arousal classification

83.82 ± 5.01 83.23 ± 2.61

Zhang et al. [44]

• Statistical features from EEG and peripheral physiological signals
• Hierarchical features from EEG using Hierarchical CNN
• Weight-based feature fusion
• RF model for binary valence and arousal classification

84.71 ± – 83.28 ± –

Wu et al. [12]

• Connectivity analysis of EEG signals with Pearson correlation
• Emotion-relevant critical subnetwork selection
• Eye-movement features
• Deep canonical correlation analysis model for binary valence and

arousal classification

85.34 ± 2.90 86.61 ± 3.76

Our work

• Connectivity analysis of EEG signals with MI
• Graph-theory features from EEG
• Statistical features from peripheral physiological signals
• Concatenation and feature selection with GA
• 1D-CNN for binary valence and arousal classification

88.27 ± 5.43 90.84 ± 6.15

Table 5. Comparative accuracy results of the LOOCV experimental setup with and without the use
of GA-based feature selection. The results refer to the mean and standard deviation of the accuracy
results across all subjects.

Without GA Feature Selection With GA Feature Selection

Valence Arousal Valence Arousal

CNN 55.62 ± 4.42 57.38 ± 6.12 75.44 ± 5.14 78.76 ± 5.42

The subject-independent models have lower performance compared to the subject-
dependent models, which is in line with other works [58,59]. This result is expected since
physiological signals are highly dependent on each subject. The physiological responses to
a specific stimuli differ for each different subject. Thus, subject-specific models can better
detect the unique physiological responses to the different emotional stimuli. Nevertheless,
it is important, also, to have high-accuracy subject-independent models for emotion recog-
nition in real life applications, where, in most of the cases, the train of a subject-specific
model is not possible. Therefore, the comparison of our subject-independent model results
with other state-of-the-art methods is of great importance.

In Table 6, a comparison of our method with other state-of-the-art methods having
also subject-independent models and using the same dataset. From the table it can be seen
that our method performs better than most of the current state-of-the-art method and has
comparable results with the best performing method reported.
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Table 6. Comparison of our accuracy results with other state-of-the-art methods using subject-
independent models. In the second column, the method used for the valence and arousal classification
is presented. The last two columns refer to the best accuracy results (mean ± standard deviation) for
the valence and arousal classification.

Paper Method Valence Arousal

Pandey et al. [60]
• Variational Mode Decomposition feature extraction from EEG signal
• Deep neural network for binary valence and arousal classification 62.5 61.25

Chao et al. [61]
• Frequency domain features from EEG signal
• Feature mapping using multi-band feature matrices
• CapsNet network for binary valence and arousal classification

66.73 68.28

Joshi et al. [62]

• Power spectral density and Hjorth parameter features from EEG for
ϑ, α, β, and γ frequency bands

• Differential entropy and Differential and rational asymmetry fea-
tures from EEG

• Bimodal-LSTM network for binary valence and arousal classification

75.5 76

Xing et al. [63]
• Stack auto-encoder decomposition method for EEG decomposition
• Frequency band powers from the decomposed EEG signals
• LSTM network for binary valence and arousal classification

81.1 74.38

Our work

• Connectivity analysis of EEG signals with MI
• Graph-theory features from EEG
• Statistical features from peripheral physiological signals
• Concatenation and feature selection with GA
• 1D-CNN for binary valence and arousal classification

75.44 ± 5.14 78.76 ± 5.42

5. Conclusions

Affective computing through the analysis of physiological sensors is a fundamental
aspect of the development of HCI. The exploitation of EEG and peripheral physiological
signals can provide insights into human internal state, thus contributing to the task of
emotion recognition. Among the most common techniques of EEG analysis is functional
connectivity computation, which leads to the formation of networks between brain regions.
Nevertheless, the application of network science indices calculation from these networks
has not been studied in detail for emotion recognition. Even though graph theory is a
known method in the analysis of EEG, its results in predicting emotional states has not
been studied in depth.

In this work, a novel framework of EEG analysis and fusion with peripheral phys-
iological signals is proposed. The novelty of the presented work lies in the exploitation
of graph theory measures from EEG signals for the classification of valence and arousal.
The analysis is based on the computation of EEG functional connectivity networks and the
extraction of graph theory-based features from these networks. The graph theory measures
are concatenated with statistical features extracted from peripheral physiological signals.
Our method was tested in two different experimental frameworks, with subject-dependent
and subject-independent models. Average accuracy results of the subject-dependent frame-
work from the DEAP dataset across all subjects using a CNN were 88.27% and 90.84%
for valence and arousal binary classification, respectively. These results exceed results of
current state-of-the-art studies of subject-dependent models using the same dataset. The
results of our subject-independent framework using GA-based feature selection and CNN
for binary valence and arousal classification are 75.44% and 78.76%, respectively. These
results are comparable with current state-of-the-art methods on the same dataset using
subject-independent models. This study demonstrates that the use of network characteris-
tics of functional connectivity patterns of EEG signals provides valuable information for
the application of emotion recognition and that the proposed feature level fusion scheme
of EEG and peripheral physiological signals represents a promising technique for the task
of emotion recognition. Therefore, the beneficial role of graph theory indexes derived from
connectivity analysis of EEG signals and different feature and decision level fusion tech-
niques for the combination of EEG and peripheral physiological signals in the application
of emotion recognition need to be studied.
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