EPSDNet: Efficient Campus Parking Space Detection via Convolutional Neural Networks and Vehicle Image Recognition for Intelligent Human–Computer Interactions
<p>Flowchart of the proposed PSD model.</p> "> Figure 2
<p>Bounding box of each parking space.</p> "> Figure 3
<p>Position and dimensions of each parking space.</p> "> Figure 4
<p>Random parking space numbers.</p> "> Figure 5
<p>Each vehicle number after sorting with the TimSort algorithm.</p> "> Figure 6
<p>Each vehicle number after sorting with the data layering method.</p> "> Figure 7
<p>Parking space number.</p> "> Figure 8
<p>Distribution of one vehicle in a parking space.</p> "> Figure 9
<p>Flowchart for the judgment of the parking space module.</p> "> Figure 10
<p>Time cost for different numbers of empty parking spaces.</p> "> Figure 11
<p>Judgment time for each parking space.</p> "> Figure 12
<p>Identification results for all the vehicles entering and leaving the parking spaces.</p> "> Figure 13
<p>Partial vehicle images in the data set.</p> "> Figure 14
<p>Identification effect of vehicles using the training model.</p> "> Figure 15
<p>Identification of vehicles under the condition of full parking.</p> "> Figure 16
<p>Random number of each parking space.</p> "> Figure 17
<p>Parking space numbering by the Timsort algorithm.</p> "> Figure 18
<p>Parking space numbers after data layering.</p> ">
Abstract
:1. Introduction
2. Proposed Method
2.1. Optimal Reading of the Video Stream
2.2. Vehicle Identification Based on the EfficientDet Model
2.3. Detection of Parking Spaces
2.3.1. Determination of Parking Space Position
2.3.2. Order and Number of Parking Spaces
2.3.3. Judgment of Parking Space Vacancy
3. Experimental Results and Discussion
3.1. Data Set Production
3.2. Detection of Vehicles
3.3. Detection of Parking Spaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samie, F.; Bauer, L.; Henkel, J. From Cloud Down to Things: An Overview of Machine Learning in Internet of Things. IEEE Internet Things J. 2019, 6, 4921–4934. [Google Scholar] [CrossRef]
- Timpner, J.; Wolf, L. Design and Evaluation of Charging Station Scheduling Strategies for Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2014, 15, 579–588. [Google Scholar] [CrossRef]
- Hsu, C.-M.; Chen, J.Y. Around View Monitoring-Based Vacant Parking Space Detection and Analysis. Appl. Sci. 2019, 9, 3403–3420. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, Y.; Hu, X.; Zhao, Y. A vision-based method for parking space surveillance and parking lot management. In Proceedings of the International Conference on Image and Graphics, Tianjin, China, 13–16 August 2015; pp. 516–528. [Google Scholar]
- Ghaffarian, S.; Kasar, I. Automatic vehicle detection based on automatic histogram-based fuzzy C-means algorithm and perceptual grouping using very high-resolution aerial imagery and road vector data. J. Appl. Remote Sens. 2016, 10, 12–21. [Google Scholar] [CrossRef]
- Song, T.; Feng, J.; Wang, S.; Xie, Y. Spatially weighted order binary pattern for color texture classification. Expert Syst. Appl. 2020, 147, 113167. [Google Scholar] [CrossRef]
- Almeida, P.; Oliveira, L.S.; Silva, E.; Britto, A.; Koerich, A. Parking space detection using textural descriptors. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Manchester, UK, 13–16 October 2013; pp. 3603–3608. [Google Scholar]
- Shaaban, K.; Tounsi, H. Parking Space Detection System Using Video Images. Transp. Res. Rec. 2015, 2537, 137–147. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Zhang, Z.; Liu, T.; Xiong, N.N. Learning Knowledge Graph Embedding with Heterogeneous Relation Attention Networks. IEEE Trans. Neural Networks Learn. Syst. 2022, 33, 3961–3973. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Yang, B.; Wang, X. NGDNet: Nonuniform Gaussian-label distribution learning for infrared head pose estimation and on-task behavior understanding in the classroom. Neurocomputing 2021, 436, 210–220. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Li, Y.-F.; Chen, Z.; Zhang, Z.; Liu, S. Flexible FTIR Spectral Imaging Enhancement for Industrial Robot Infrared Vision Sensing. IEEE Trans. Ind. Inform. 2020, 16, 544–554. [Google Scholar] [CrossRef]
- Xiang, X.; Lv, N.; Zhai, M.; El Saddik, A. Real-time parking occupancy detection for gas stations based on Haar-AdaBoosting and CNN. IEEE Sens. J. 2017, 17, 6360–6367. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Huang, J.; Shen, Y.; Wang, D. Vision-Based Parking-Slot Detection: A Benchmark and A Learning-Based Approach. Symmetry 2018, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Zinelli, A.; Musto, L.; Pizzati, F. A Deep-Learning Approach for Parking Slot Detection on Surround-View Images. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019. [Google Scholar] [CrossRef]
- Suhr, J.K.; Jung, H.G. End-to-End Trainable One-Stage Parking Slot Detection Integrating Global and Local Information. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4570–4582. [Google Scholar] [CrossRef]
- Jang, C.; Sunwoo, M. Semantic segmentation-based parking space detection with standalone around view monitoring system. Mach. Vis. Appl. 2019, 30, 309–319. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Tian, B.; Yao, Q. Vehicle Detection Based on the and– or Graph for Congested Traffic Conditions. IEEE Trans. Intell. Transp. Syst. 2013, 14, 984–993. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yang, T.; Zhao, J.; Guan, L.; Jiang, W. Vh-hfcn based parking slot and lane markings segmentation on panoramic surround view. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1767–1772. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region-based fully convolutional networks. In Advances in Neural Information Processing Systems; Lee, D., Ed.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; pp. 379–387. [Google Scholar]
- Huang, J.; Zhang, L.; Shen, Y.; Zhang, H.; Zhao, S.; Yang, Y. DMPR-PS: A novel approach for parking slot detection using directional marking-point regression. In Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 212–217. [Google Scholar]
- Li, W.; Cao, H.; Liao, J.; Xia, J.; Cao, L.; Knoll, A. Parking Slot Detection on Around-View Images Using DCNN. Front. Neurorobotics 2020, 14, 46. [Google Scholar] [CrossRef]
- Karakaya, M.; Akıncı, F.C. Parking space occupancy detection using deep learning methods. In Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar]
- Liu, H.; Nie, H.; Zhang, Z.; Li, Y.-F. Anisotropic angle distribution learning for head pose estimation and attention understanding in human-computer interaction. Neurocomputing 2021, 433, 310–322. [Google Scholar] [CrossRef]
- Liu, T.; Yang, B.; Liu, H.; Ju, J.; Tang, J.; Subramanian, S.; Zhang, Z. GMDL: Toward precise head pose estimation via Gaussian mixed distribution learning for students’ attention understanding. Infrared Phys. Technol. 2022, 122, 104099. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Liu, H.; Xiong, N.N. Multi-Scale Dynamic Convolutional Network for Knowledge Graph Embedding. IEEE Trans. Knowl. Data Eng. 2020, 34, 2335–2347. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, C.; Li, D.; Shen, X.; Lin, K.; Wang, J.; Zhang, Z.; Zhang, Z.; Xiong, N. EDMF: Efficient Deep Matrix Factorization with Review Feature Learning for Industrial Recommender System. IEEE Trans. Ind. Inf. 2022, 18, 4361–4371. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.; Zhang, Z.; Sangaiah, A.K.; Yang, B.; Li, Y. ARHPE: Asymmetric Relation-Aware Representation Learning for Head Pose Estimation in Industrial Human–Computer Interaction. IEEE Trans. Ind. Inform. 2022, 18, 7107–7117. [Google Scholar] [CrossRef]
- Liu, H.; Fang, S.; Zhang, Z.; Li, D.; Lin, K.; Wang, J. MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation. IEEE Trans. Multimed. 2022, 24, 2449–2460. [Google Scholar] [CrossRef]
- Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving into High Quality Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar]
- Du, X.; Lin, T.-Y.; Jin, P.; Ghiasi, G.; Tan, M.; Cui, Y.; Le, Q.V.; Song, X. SpineNet: Learning scale-permuted backbone for recognition and localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11592–11601. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Yu, F.; Wang, D.; Shelhamer, E.; Darrell, T. Deep layer aggregation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2403–2412. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2818–2826. [Google Scholar]
- Howard, A.; Zhu, M.; Jacob, B.; Kligys, S.; Chen, B.; Tang, M.; Adam, H.; Kalenichenko, D. MobileNets: Efficient convolutional neural networks for mobile vision applications. In Proceedings of the IEEE Conference on Computer Vision and Pattern Identification (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, J.; Song, Y.; Guadarrama, S.; et al. Speed/Accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Identification (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3296–3297. [Google Scholar]
- Loffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- An, Q.; Chen, X.J.; Zhang, J.Q.; Shi, R.Z.; Yang, Y.J.; Huang, W. A Robust Fire Detection Model via Convolution Neural Networks for Intelligent Robot Vision Sensing. Sensors 2022, 22, 2929. [Google Scholar] [CrossRef]
- Nyambal, J.; Klein, R. Automated parking space detection using convolutional neural networks. In Proceedings of the 2017 Pattern Identification Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), Bloemfontein, South Africa, 30 November–1 December 2017; pp. 1–6. [Google Scholar]
- Chen, X.; Wu, H.; Lichti, D.; Han, X.; Ban, Y.; Li, P.; Deng, H. Extraction of indoor objects based on the exponential function density clustering model. Inf. Sci. 2022, 607, 1111–1135. [Google Scholar] [CrossRef]
- Martinez, J.; Zoeke, D.; Vossiek, M. Convolutional neural networks for parking space detection in down fire urban radar. Int. J. Microw. Wirel. Technol. 2018, 10, 1–8. [Google Scholar] [CrossRef]
Model Name | Speed/ms | COCO mAP |
---|---|---|
Cascade R-CNN_ResNet-101 | 410 | 42.8 |
CenterNet_DLA-34 | 31 | 41.6 |
RetinaNet_ResNet-101 | 32 | 39.9 |
EfficientDet-D1 | 16 | 40.5 |
EfficientDet-D3 | 37 | 45.6 |
EfficientDet-D7x | 285 | 55.1 |
1 | 2 | 3 | …… | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|
xmin | 493.33 | 493.92 | 187.25 | …… | 793.33 | 40.58 | 640.58 |
ymin | 48.00 | 400.58 | 413.92 | …… | 53.92 | 59.42 | 422.75 |
xmax | 612.75 | 612.75 | 303.92 | …… | 911.42 | 159.42 | 759.42 |
ymax | 318.25 | 670.00 | 683.92 | …… | 324.58 | 330.00 | 690.00 |
1 | 2 | 3 | …… | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|
xmin | 493.33 | 187.25 | 647.25 | …… | 947.25 | 640.58 | 796.08 |
ymin | 48.00 | 48.58 | 53.92 | …… | 413.92 | 422.75 | 426.83 |
xmax | 612.75 | 304.00 | 765.33 | …… | 1066.08 | 759.42 | 910.58 |
ymax | 318.25 | 319.42 | 324.75 | …… | 682.75 | 690.00 | 696.08 |
1 | 2 | 3 | …… | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|
xmin | 40.58 | 187.25 | 347.25 | …… | 640.58 | 796.08 | 947.25 |
ymin | 59.42 | 48.58 | 55.08 | …… | 422.75 | 426.83 | 413.92 |
xmax | 159.42 | 304.00 | 465.92 | …… | 759.42 | 910.58 | 1066.08 |
ymax | 330.00 | 319.42 | 324.58 | …… | 690.00 | 696.08 | 682.75 |
Data layer | 0 | 0 | 0 | …… | 1 | 1 | 1 |
Parking Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ymin | 186.7453 | 186.3284 | 204.6493 | 216.4648 | 235.2376 | 237.4085 | 460.5099 | 504.3114 | 516.6836 | 523.6484 | 530.2592 | 532.6093 |
xmin | 1096.534 | 1324.633 | 882.5272 | 663.6877 | 433.7274 | 212.866 | 1356.459 | 1121.151 | 879.7378 | 655.9752 | 172.1902 | 380.7485 |
ymax | 453.757 | 460.8913 | 440.2206 | 448.5158 | 472.4123 | 490.6271 | 787.125 | 797.4492 | 798.6421 | 801.9327 | 820.0494 | 797.8188 |
xmax | 1286.16 | 1522.195 | 1059.158 | 836.6179 | 626.4663 | 431.8626 | 1564.168 | 1299.886 | 1052.452 | 835.4104 | 370.5828 | 583.7634 |
Scores | 0.96967 | 0.815933 | 0.925088 | 0.928011 | 0.907685 | 0.926269 | 0.962921 | 0.928651 | 0.989354 | 0.991868 | 0.938664 | 0.954729 |
Parking Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ymin | 237.4085 | 235.2376 | 216.4648 | 204.6493 | 186.7453 | 186.3284 | 530.2592 | 532.6093 | 523.6484 | 516.6836 | 504.3114 | 460.5099 |
xmin | 212.866 | 433.7274 | 663.6877 | 882.5272 | 1096.534 | 1324.633 | 172.1902 | 380.7485 | 655.9752 | 879.7378 | 1121.151 | 1356.459 |
ymax | 490.6271 | 472.4123 | 448.5158 | 440.2206 | 453.757 | 460.8913 | 820.0494 | 797.8188 | 801.9327 | 798.6421 | 797.4492 | 787.125 |
xmax | 431.8626 | 626.4663 | 836.6179 | 1059.158 | 1286.16 | 1522.195 | 370.5828 | 583.7634 | 835.4104 | 1052.452 | 1299.886 | 1564.168 |
Scores | 0.926269 | 0.907685 | 0.928011 | 0.925088 | 0.96967 | 0.815933 | 0.938664 | 0.954729 | 0.991868 | 0.989354 | 0.928651 | 0.962921 |
Data layer | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Q.; Wang, H.; Chen, X. EPSDNet: Efficient Campus Parking Space Detection via Convolutional Neural Networks and Vehicle Image Recognition for Intelligent Human–Computer Interactions. Sensors 2022, 22, 9835. https://doi.org/10.3390/s22249835
An Q, Wang H, Chen X. EPSDNet: Efficient Campus Parking Space Detection via Convolutional Neural Networks and Vehicle Image Recognition for Intelligent Human–Computer Interactions. Sensors. 2022; 22(24):9835. https://doi.org/10.3390/s22249835
Chicago/Turabian StyleAn, Qing, Haojun Wang, and Xijiang Chen. 2022. "EPSDNet: Efficient Campus Parking Space Detection via Convolutional Neural Networks and Vehicle Image Recognition for Intelligent Human–Computer Interactions" Sensors 22, no. 24: 9835. https://doi.org/10.3390/s22249835
APA StyleAn, Q., Wang, H., & Chen, X. (2022). EPSDNet: Efficient Campus Parking Space Detection via Convolutional Neural Networks and Vehicle Image Recognition for Intelligent Human–Computer Interactions. Sensors, 22(24), 9835. https://doi.org/10.3390/s22249835