Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees
<p>(<b>a</b>) Graphical representation of UAV image acquisition for each flight mission at each sensor angle (nadir and oblique angles) and (<b>b</b>) different tile points for three different imaging angles. The blue points indicate the GPS positions from the UAV (initial camera position) and the green points are the calibrated positions extracted using the Pix4Dmapper.</p> "> Figure 2
<p>The methodology utilized in this study to extract the canopy architectural traits from the individual trees using UAV and LiDAR data.</p> "> Figure 3
<p>Individual tree boundary (polygon, bounding box, and circle) used to extract the tree height and canopy crown volume.</p> "> Figure 4
<p>(<b>a</b>) Boundary representing the individual peach trees for segmentation, (<b>b</b>) 3D point cloud, and (<b>c</b>) 3D point cloud of an individual tree after segmentation.</p> "> Figure 5
<p>Canopy height model generated using the T1 (Pix4D) and T2 (point sampling) approaches.</p> "> Figure 6
<p>(<b>a</b>) Violin box plot showing the tree height range (m) and the (<b>b</b>) correlation matrix showing the correlation between the ground reference data and estimated T1-based tree height at individual angles (45°, 65°, and 90°) and the integration of nadir and oblique images. Significant probability level: * 0.05, ** 0.01, and *** 0.001.</p> "> Figure 7
<p>(<b>a</b>) Violin box plot showing the tree height range (m) and (<b>b</b>) correlation matrix showing the correlation between the ground reference data and estimated T2-based tree height at individual angles (45°, 65°, and 90°) and the integration of nadir and oblique images. Significant probability level: * 0.05, ** 0.01, and *** 0.001.</p> "> Figure 8
<p>(<b>a</b>) Violin box plot showing the tree height range (m) and (<b>b</b>) correlation matrix showing the correlation between the ground reference data and UAV point cloud-based estimated tree height at individual angles (45°, 65°, and 90°) and the integration of nadir and oblique images. Significant probability level: ** 0.01, and *** 0.001.</p> "> Figure 9
<p>Relationship between the ground reference data and estimated tree height (<b>a</b>) and volume (<b>b</b>) acquired at 45° and the integrated nadir and oblique datasets using T1 (circular), T2 (polygon), and point cloud datasets, respectively.</p> "> Figure 10
<p>(<b>a</b>) Violin box plot showing the canopy crown volume range (m) and the (<b>b</b>) correlation matrix showing correlation between ground reference data and estimated volume with a 45° sensor angle dataset using T1, T2, and point cloud (PC) UAV-based approaches with canopy area estimated using polygon, box, and circular canopy area. Significant probability level: * 0.05, ** 0.01, and *** 0.001.</p> "> Figure 11
<p>(<b>a</b>) Violin box plot showing the canopy crown volume range (m) and the (<b>b</b>) correlation matrix showing the correlation between ground the reference data and estimated volume with the integrated sensor angle dataset using the T1, T2, and point cloud (PC) UAV-based approaches with canopy area estimated using the polygon, box and circular canopy area. Significant probability level: * 0.05, ** 0.01, and *** 0.001.</p> "> Figure 12
<p>(<b>a</b>,<b>b</b>) Tree canopy crown delineation and (<b>c</b>) voxel grid model creating the boundary to measure the volume of the canopy crown.</p> "> Figure 13
<p>Visualization of a representative peach tree 3D data captured using the 3D LiDAR system. The color scale refers to height (z) data in m above sea level.</p> "> Figure 14
<p>Relationship between the ground reference data with the estimated tree height (<b>a</b>) and tree volume (<b>b</b>) data acquired using the point cloud dataset from the LiDAR system.</p> ">
Abstract
:1. Introduction
2. Materials and Materials
2.1. Study Area and Ground Reference Data
2.2. UAV Imagery and LiDAR Data Acquisition
2.3. Preprocessing of UAV Images and 3D LiDAR Data
2.4. Extraction of Architectural Features
2.4.1. Height and Volume Estimation from 2D Datasets
2.4.2. Height and Volume Estimation from UAV-Based 3D Point Cloud
2.4.3. Height and Volume Estimation from LiDAR System-Based 3D Point Cloud
2.5. Statistical Analysis
3. Results
3.1. UAV Data Analysis
3.1.1. Tree Segmentation
3.1.2. Tree Height Estimation
3.1.3. Canopy Crown Volume Estimation
3.2. LiDAR Data Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precis. Agric. 2021, 22, 2007–2052. [Google Scholar] [CrossRef]
- Sun, G.; Wang, X.; Ding, Y.; Lu, W.; Sun, Y. Remote Measurement of apple orchard canopy information using unmanned aerial vehicle photogrammetry. Agronomy 2019, 9, 774. [Google Scholar] [CrossRef] [Green Version]
- Underwood, J.P.; Hung, C.; Whelan, B.; Sukkarieh, S. Mapping almond orchard canopy volume, flowers, fruit, and yield using lidar and vision sensors. Comput. Electron. Agric. 2016, 130, 83–96. [Google Scholar] [CrossRef]
- Ghanbari Parmehr, E.; Amati, M. Individual Tree Canopy Parameters Estimation using UAV-based photogrammetric and LiDAR point clouds in an urban park. Remote Sens. 2021, 13, 2062. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Pforte, F.; Selbeck, J.; Hensel, O. Comparison of two different measurement techniques for automated determination of plum tree canopy cover. Biosyst. Eng. 2012, 113, 325–333. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; de Castro, A.I.; Pena, J.M.; Jimenez-Brenes, F.M.; Arquero, O.; Lovera, M.; Lopez-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- Gallo, R.; Grigolato, S.; Cavalli, R.; Mazzetto, F. GNSS-based operational monitoring devices for forest logging operation chains. J. Agric. Eng. 2013, 44, e27. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Nati, C.; Dainelli, R.; Pastonchi, L.; Berton, A.; Toscano, P.; Matese, A. An automatic UAV based segmentation approach for pruning biomass estimation in irregularly spaced chestnut orchards. Forests 2020, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.P.; Pearse, G.D.; Watt, M.S. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sens. 2018, 10, 1216. [Google Scholar] [CrossRef] [Green Version]
- Campos, I.; Neale, C.M.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Gioli, B. Intercomparison of UAV, aircraft, and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Huang, J.; Zong, S.; Huang, H.; Luo, Y. Detecting shoot beetle damage on Yunnan pine using Landsat time-series data. Forests 2018, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ren, Y.; Yin, Z.Y.; Lin, Z.; Zheng, D. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971–2004. J. Geophys. Res. Atmos. 2009, 114, D15105. [Google Scholar] [CrossRef]
- Hardin, P.J.; Jensen, R.R. Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. GIScience Remote Sens. 2011, 48, 99–111. [Google Scholar] [CrossRef]
- Knoth, C.; Klein, B.; Prinz, T.; Kleinebecker, T. Unmanned aerial vehicles as innovative remote sensing platforms for highresolution infrared imagery to support restoration monitoring in cut-over bogs. Appl. Veg. Sci. 2013, 16, 509–517. [Google Scholar] [CrossRef]
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mamm. Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
- Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; LeClair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B. Remote sensing of the environment with small, unmanned aircraft systems (UASs), part 2: Scientific and commercial applications. J. Unmanned Veh. Syst. 2014, 2, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, M.; Théau, J.; Ménard, P. Recent applications of unmanned aerial imagery in natural resource management. GIScience Remote Sens. 2014, 51, 339–365. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef] [Green Version]
- Persad, R.A.; Armenakis, C. Alignment of point cloud DSMs from TLS and UAV platforms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 369. [Google Scholar] [CrossRef] [Green Version]
- Vacca, G.; Dessì, A.; Sacco, A. The use of nadir and oblique UAV images for building knowledge. ISPRS Int. J. Geo-Inf. 2017, 6, 393. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.; Quirós, J.J.; Sankaran, S.; Khot, L.R. High resolution aerial photogrammetry-based 3D mapping of fruit crop canopies for precision inputs management. Inf. Processing Agric. 2021, 9, 11–23. [Google Scholar] [CrossRef]
- Zhang, C.; Serra, S.; Quirós-Vargas, J.; Sangjan, W.; Musacchi, S.; Sankaran, S. Non-invasive sensing techniques to phenotype multiple apple tree architectures. Inf. Processing Agric. 2022. [Google Scholar] [CrossRef]
- Chakraborty, M.; Khot, L.R.; Sankaran, S.; Jacoby, P.W. Evaluation of mobile 3D light detection and ranging based canopy mapping system for tree fruit crops. Comput. Electron. Agric. 2019, 158, 284–293. [Google Scholar] [CrossRef]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. Eur. J. Remote Sens. 2017, 50, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Craine, W.A.; McGee, R.J.; Vandemark, G.J.; Davis, J.B.; Brown, J.; Sankaran, S. High-throughput phenotyping of canopy height in cool-season crops using sensing techniques. Agron. J. 2021, 113, 3269–3280. [Google Scholar] [CrossRef]
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Opportunities of UAVs in orchard management. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 673–680. [Google Scholar] [CrossRef] [Green Version]
- Rosell, J.R.; Sanz, R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric. 2012, 81, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Sangjan, W.; Sankaran, S. Phenotyping architecture traits of tree species using remote sensing techniques. Trans. ASABE 2021, 64, 1611–1624. [Google Scholar] [CrossRef]
- Tu, Y.H.; Phinn, S.; Johansen, K.; Robson, A.; Wu, D. Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS J. Photogramm. Remote Sens. 2020, 160, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Díaz, G.M.; Mohr-Bell, D.; Garrett, M.; Muñoz, L.; Lencinas, J.D. Customizing unmanned aircraft systems to reduce forest inventory costs: Can oblique images substantially improve the 3D reconstruction of the canopy? Int. J. Remote Sens. 2020, 41, 3480–3510. [Google Scholar] [CrossRef]
- Wallace, L.; Bellman, C.; Hally, B.; Hernandez, J.; Jones, S.; Hillman, S. Assessing the ability of image-based point clouds captured from a UAV to measure the terrain in the presence of canopy cover. Forests 2019, 10, 284. [Google Scholar] [CrossRef] [Green Version]
Mission | Type | Altitude | Sensor Inclination | GSD (cm/Pixel) | Flight Speed | Overlap (Forward/Side) |
---|---|---|---|---|---|---|
1 | Double grid | 15 m | 90° | 0.29 | 2.5 m/s | 80% |
2 | 65° | 0.37 | ||||
3 | 45° | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raman, M.G.; Carlos, E.F.; Sankaran, S. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees. Sensors 2022, 22, 4619. https://doi.org/10.3390/s22124619
Raman MG, Carlos EF, Sankaran S. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees. Sensors. 2022; 22(12):4619. https://doi.org/10.3390/s22124619
Chicago/Turabian StyleRaman, Mugilan Govindasamy, Eduardo Fermino Carlos, and Sindhuja Sankaran. 2022. "Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees" Sensors 22, no. 12: 4619. https://doi.org/10.3390/s22124619
APA StyleRaman, M. G., Carlos, E. F., & Sankaran, S. (2022). Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees. Sensors, 22(12), 4619. https://doi.org/10.3390/s22124619