Using Deep Learning to Predict Minimum Foot–Ground Clearance Event from Toe-Off Kinematics
<p>(<b>Left-top</b>) toe-off, (<b>left-middle</b>) heel contact, and (<b>left-bottom</b>) Minimum Foot Clearance (MFC) events; marker setup for foot modelling infrared emitting diodes (IREDs) and virtual markers; MFC, the intermittent event between toe-off and heel contact. (<b>Right</b>) Swing-phase kinematics showing: (<b>right-top</b>) MFC detection at the local mid-swing minimum vertical displacement, (<b>right-middle</b>) MFC coincident with maximum horizontal velocity, (<b>right-bottom</b>) MFC timing at zero horizontal acceleration.</p> "> Figure 2
<p>LSTM architecture with two LSTM layers (64 and 32 units each) stacked together followed by a drop-out layer to avoid overfitting, a dense layer, and a compiler. Below it is a representation of a unit LSTM architecture consisting of Forget gate to decide what must be removed from the (<math display="inline"><semantics> <mrow> <msub> <mi>h</mi> <mrow> <mi>t</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>) state, the Input gate to write from present input to current cell state, and the Output gate to decide what to output from cell state using the sigmoid function. The outputs of the Input and Forget Gate are summed together to determine each current Cell State.</p> "> Figure 3
<p>Definitions of foot kinematics data based on the segment coordination system. X, Y, Z in line with linear acceleration (+), arrows around the axes indicating positive (+) angular velocity direction.</p> "> Figure 4
<p>Performance comparison of Huber loss, MSE loss, and MAE loss functions on the training data with 50 past observations at different window lengths.</p> "> Figure 5
<p>MFC timing forecast from toe-off kinematics at five prediction horizons between 0.15 s and 0.35 s. MFC forecasting diminishes and transitions to a new cycle as the forecast horizon increases.</p> ">
Abstract
:1. Introduction
2. State of the Art, Research Question, Hypothesis
3. Materials and Methods
3.1. Participants
3.2. Experimental Procedures and Data Collection
3.3. MFC, Heel Contact and Toe-Off Event Definitions and Machine Learning Inputs
3.4. Neural Network Architecture
3.4.1. Background and Model Design
3.4.2. Evaluation and Performance Metrics
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, A.J.; Corso, P.S.; A Finkelstein, E.; Miller, T.R. The costs of fatal and non-fatal falls among older adults. Inj. Prev. 2006, 12, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Al-Aama, T. Falls in the elderly: Spectrum and prevention. Can. Fam. Physician 2011, 57, 771–776. [Google Scholar] [PubMed]
- Pelicioni, P.H.S.; Menant, J.C.; Latt, M.D.; Lord, S.R. Falls in Parkinson’s disease subtypes: Risk factors, locations and circum-stances. Int. J. Environ. Res. Public Health 2019, 16, 2216. [Google Scholar] [CrossRef] [PubMed]
- Mackintosh, S.; Hill, K.; Dodd, K.; Goldie, P.; Culham, E. Falls and injury prevention should be part of every stroke rehabili-tation plan. Clin. Rehabil. 2005, 19, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.P.; Alessio, H.M.; Mills, E.M.; Tong, C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 1997, 26, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.J.; Morgan, K.; Bendall, M.J.; Dallosso, H.; Ebrahim, S.B.J.; Arie, T.H.D.; Fentem, P.H.; Bassey, E.J. Falls by elderly people at home: Prevalence and associated factors. Age Ageing 1988, 17, 365–372. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R.K.; Sparrow, W.A.; Taylor, S. Ageing and limb dominance effects on foot-ground clearance during treadmill and overground walking. Clin. Biomech. 2011, 26, 962–968. [Google Scholar] [CrossRef]
- Begg, R.; Best, R.; Dell’Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the minimization of trip-related falls. Gait Posture 2007, 25, 191–198. [Google Scholar] [CrossRef]
- Winter, D.A. Chapter 9: Kinesiological Electromyography. In Biomechanics and Motor Control of Human Movement, 3rd ed.; Winter, D.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Killeen, T.; Easthope, C.S.; Demkó, L.; Filli, L.; Lőrincz, L.; Linnebank, M.; Curt, A.; Zörner, B.; Bolliger, M. Minimum toe clearance: Probing the neural control of locomotion. Sci. Rep. 2017, 7, 1922. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R.K. Shoe-Insole Technology for Injury Prevention in Walking. Sensors 2018, 18, 1468. [Google Scholar] [CrossRef] [Green Version]
- Nagano, H.; Begg, R. A shoe-insole to improve ankle joint mechanics for injury prevention among older adults. Ergonomics 2021, 64, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Sarashina, E.; Mizukami, K.; Yoshizawa, Y.; Sakurai, J.; Tsuji, A.; Begg, R. Feasibility of Pilates for Late-Stage Frail Older Adults to Minimize Falls and Enhance Cognitive Functions. Appl. Sci. 2022, 12, 6716. [Google Scholar] [CrossRef]
- Begg, R.K.; Tirosh, O.; Said, C.M.; Sparrow, W.A.; Steinberg, N.; Levinger, P.; Galea, M.P. Gait training with real-time aug-mented toe-ground clearance information decreases tripping risk in older adults and a person with chronic stroke. Front. Hum. Neurosci. 2014, 8, 243. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; Said, C.M.; James, L.; Begg, R.K. Feasibility of Using Foot–Ground Clearance Biofeedback Training in Treadmill Walking for Post-Stroke Gait Rehabilitation. Brain Sci. 2020, 10, 978. [Google Scholar] [CrossRef]
- Delfi, G.; Kamachi, M.; Dutta, T. Development of an automated minimum foot clearance measurement system: Proof of prin-ciple. Sensors 2021, 21, 976. [Google Scholar] [CrossRef] [PubMed]
- Delfi, G.; Al Bochi, A.; Dutta, T. A Scoping Review on Minimum Foot Clearance Measurement: Sensing Modalities. Int. J. Environ. Res. Public Health 2021, 18, 10848. [Google Scholar] [CrossRef]
- Benoussaad, M.; Sijobert, B.; Mombaur, K.; Coste, C.A. Robust Foot Clearance Estimation Based on the Integration of Foot-Mounted IMU Acceleration Data. Sensors 2016, 16, 12. [Google Scholar] [CrossRef]
- Santhiranayagam, B.K.; Lai, D.T.; Sparrow, W.; Begg, R.K. A machine learning approach to estimate Minimum Toe Clearance using Inertial Measurement Units. J. Biomech. 2015, 48, 4309–4316. [Google Scholar] [CrossRef]
- Wang, W.; Admczyk, P.G. Analyzing gait in the real world using wearable movement sensors and frequently repeated movement paths. Sensors 2019, 19, 1925. [Google Scholar] [CrossRef]
- Moosabhoy, M.A.; Gard, S.A. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 2006, 24, 493–501. [Google Scholar] [CrossRef]
- Nagano, H.; Begg, R.K.; Sparrow, W.A.; Taylor, S. A Comparison of Treadmill and Overground Walking Effects on Step Cycle Asymmetry in Young and Older Individuals. J. Appl. Biomech. 2013, 29, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; James, L.; Sparrow, A.W.; Begg, R.K. Effects of walking-induced fatigue on gait function and tripping risks in older adults. J. Neuroeng. Rehabil. 2014, 11, 155. [Google Scholar] [CrossRef]
- Zaroug, A.; Garofolini, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Prediction of gait trajectories based on the Long Short Term Memory neural networks. PLoS ONE 2021, 16, e0255597. [Google Scholar] [CrossRef] [PubMed]
- Kececi, A.; Yildirak, A.; Ozyazici, K.; Ayluctarhan, G.; Agbulut, O.; Zincir, I. Implementation of machine learning algorithms for gait recognition. Eng. Sci. Technol. Int. J. 2020, 23, 931–937. [Google Scholar] [CrossRef]
- Lee, S.-S.; Choi, S.T. Classification of Gait Type Based on Deep Learning Using Various Sensors with Smart Insole. Sensors 2019, 19, 1757. [Google Scholar] [CrossRef]
- Nagano, H.; Tatsumi, I.; Sarashina, E.; Sparrow, W.; Begg, R.K. Modelling knee flexion effects on joint power absorption and adduction moment. Knee 2015, 22, 490–493. [Google Scholar] [CrossRef]
- Jafarnezhadgero, A.; Fatollahi, A.; Amirzadeh, N.; Siahkouhian, M.; Granacher, U. Ground reaction forces and muscle activity while walking on sand versus stable ground in individuals with pronated feet compared with healthy controls. PLoS ONE 2019, 14, e0223219. [Google Scholar] [CrossRef]
- De Witt, J.K. Determination of toe-off event time during treadmill locomotion using kinematic data. J. Biomech. 2010, 43, 3067–3069. [Google Scholar] [CrossRef]
- Sarshar, M.; Polturi, S.; Schega, L. Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis—Proof of Concept. Sensors 2021, 21, 5749. [Google Scholar] [CrossRef]
- Welcome to Python.org. Python.org. Available online: https://www.python.org/ (accessed on 3 April 2022).
- Scipy. Available online: https://scipy.org/ (accessed on 28 June 2022).
- Pandas. Available online: https://pandas.pydata.org/ (accessed on 28 June 2022).
- Keras Documentation. Available online: https://keras.io (accessed on 26 December 2018).
- TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 10 March 2018).
- Miyake, T.; Fujie, M.G.; Sugano, S. Prediction Algorithm of Parameters of Toe Clearance in the Swing Phase. Appl. Bionics Biomech. 2019, 2019, 4502719. [Google Scholar] [CrossRef] [Green Version]
- Azlan, A.; Yusof, Y.; Mohsin, M.F.M. Determining the impact of window length on time series forecasting using deep learning. Int. J. Adv. Comput. Res. 2019, 9, 260–267. [Google Scholar] [CrossRef]
- Gokcesu, K.; Gokcesu, H. Generalized huber loss for robust learning and its efficient minimiza-tion for a robust statistics. arXiv 2021, arXiv:2108.12627. [Google Scholar]
- Meyer, G.P. An alternative probabilistic interpretation of the huber loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 5261–5269. [Google Scholar]
- Smeesters, C.; Hayes, W.C.; McMahon, T.A. Disturbance type and gait speed affect fall direction and impact location. J. Biomech. 2001, 34, 309–317. [Google Scholar] [CrossRef]
- Kubota, S.; Kadone, H.; Shimizu, Y.; Koda, M.; Noguchi, H.; Takahashi, H.; Watanabe, H.; Hada, Y.; Sankai, Y.; Yamazaki, M. Development of a New Ankle Joint Hybrid Assistive Limb. Medicina 2022, 58, 395. [Google Scholar] [CrossRef] [PubMed]
- York, G.; Chakrabarty, S. A survey on foot drop and functional electrical stimulation. Int. J. Intell. Robot. Appl. 2019, 3, 4–10. [Google Scholar] [CrossRef]
- Nymark, J.R.; Balmer, S.J.; Melis, E.H.; Lemaire, E.D.; Millar, S. Electromyographic and kinematic nondisabled gait dif-ferences at extremely slow overground and treadmill walking speeds. J. Rehabil. Res. Dev. 2005, 42, 523–534. [Google Scholar] [CrossRef]
- Pilkar, R.; Yarossi, M.; Nolan, K.J. EMG of the tibialis anterior demonstrates a training effect after utilization of a foot drop stimulator. NeuroRehabilitation 2014, 35, 299–305. [Google Scholar] [CrossRef]
Event Label | Encode | CG AccX (m/s²) | CG AccY (m/s²) | CG AccZ (m/s²) | Ang VelX (°/s) | Ang VelY (°/s) | Ang VelZ (°/s) | |
---|---|---|---|---|---|---|---|---|
HC | 2 | Mean | −0.82 | 13.35 | −4.39 | −1.74 | 0.63 | −0.17 |
SD | 5.10 | 11.00 | 9.15 | 3.33 | 1.22 | 1.00 | ||
TO | 1 | Mean | 0.29 | 14.36 | −1.14 | −5.73 | −0.25 | 0.46 |
SD | 3.79 | 5.21 | 6.01 | 3.83 | 0.98 | 1.07 | ||
MFC | 0 | Mean | −0.12 | 5.09 | −0.14 | 5.70 | 0.41 | −0.23 |
SD | 2.73 | 2.45 | 4.73 | 0.78 | 0.62 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asogwa, C.O.; Nagano, H.; Wang, K.; Begg, R. Using Deep Learning to Predict Minimum Foot–Ground Clearance Event from Toe-Off Kinematics. Sensors 2022, 22, 6960. https://doi.org/10.3390/s22186960
Asogwa CO, Nagano H, Wang K, Begg R. Using Deep Learning to Predict Minimum Foot–Ground Clearance Event from Toe-Off Kinematics. Sensors. 2022; 22(18):6960. https://doi.org/10.3390/s22186960
Chicago/Turabian StyleAsogwa, Clement Ogugua, Hanatsu Nagano, Kai Wang, and Rezaul Begg. 2022. "Using Deep Learning to Predict Minimum Foot–Ground Clearance Event from Toe-Off Kinematics" Sensors 22, no. 18: 6960. https://doi.org/10.3390/s22186960