An Adaptive and Robust Control Strategy for Real-Time Hybrid Simulation
<p>Tracking results for the forced Van der Pol oscillator.</p> "> Figure 2
<p>True values and estimations of the original plant’s parameters.</p> "> Figure 3
<p>Estimations of the reformed plant 1’s parameters.</p> "> Figure 4
<p>Estimations of the reformed plant 2’s parameters.</p> "> Figure 5
<p>RTHS block diagram.</p> "> Figure 6
<p>RTHS partitioning scheme.</p> "> Figure 7
<p>Force–displacement and force–velocity responses of the MR damper under sinusoidal displacement input: <math display="inline"><semantics> <mrow> <mn>5</mn> <mspace width="0.166667em"/> <mo form="prefix">sin</mo> <mrow> <mn>2.5</mn> <mi>π</mi> <mi>t</mi> </mrow> </mrow> </semantics></math> (mm).</p> "> Figure 8
<p>Third-floor displacement responses of Intact w/o d and Intact w/ d (El Centro earthquake, Case 4).</p> "> Figure 9
<p>Third-floor displacement responses of Intact w/ d and Damaged w/ d (El Centro earthquake, Case 4).</p> "> Figure 10
<p>Block diagram of the physical plant for Intact w/ d.</p> "> Figure 11
<p>Frequency responses of physical and reformed plants (<b>left</b>: nominal models; <b>right</b>: models with uncertainties).</p> "> Figure 12
<p>Frequency response of the low-pass filter: <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1600</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>10</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>.</p> "> Figure 13
<p>Block diagram of the control system in RTHS.</p> "> Figure 14
<p>Third-floor displacement responses of Intact w/o d (El Centro earthquake, Case 4, perturbed plant).</p> "> Figure 15
<p>Third-floor displacement responses of Intact w/ d (El Centro earthquake, Case 4, perturbed plant).</p> "> Figure 16
<p>Third-floor displacement responses of Damaged w/ d (El Centro earthquake, Case 4, perturbed plant).</p> "> Figure 17
<p>Parameter estimations for Intact w/o d, Intact w/ d and Damaged w/d (El Centro earthquake, Case 4, perturbed plant).</p> ">
Abstract
:1. Introduction
2. Adaptive and Robust Control Strategy
2.1. Adaptation Layer
2.2. Robustness Layer
2.3. Control Strategy
2.4. An Illustrative Example
3. Application to Real-Time Hybride Simulation
3.1. Reference Structures
3.2. Physical Plant and Reformed Plant
3.3. Control System Design
3.3.1. BLS Estimator
3.3.2. Time-Varying Kalman Filter
3.3.3. Sliding Mode Controller
3.4. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RTHS | Real-time hybrid simulation |
BLS | Bounded-gain forgetting least-squares |
CSI | Control–structure interaction |
MR | Magnetorheological |
PSI | Predictive stability indicator |
Appendix A
Control | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plant | (msec) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
Nominal | 0 | 0.49 | 0.58 | 3.61 | 2.22 | 3.51 | 3.50 | 1.94 | 1.88 |
Pert. 1 | 0 | 0.50 | 0.58 | 3.26 | 2.25 | 3.22 | 3.23 | 1.99 | 1.92 |
Pert. 2 | 0 | 0.50 | 0.58 | 3.43 | 2.20 | 3.35 | 3.34 | 1.92 | 1.85 |
Pert. 3 | 0 | 0.50 | 0.58 | 3.36 | 2.18 | 3.28 | 3.27 | 1.90 | 1.84 |
Pert. 4 | 0 | 0.49 | 0.58 | 3.98 | 2.16 | 3.81 | 3.78 | 1.87 | 1.79 |
Pert. 5 | 0 | 0.50 | 0.58 | 3.52 | 2.40 | 3.45 | 3.45 | 2.16 | 2.06 |
Control | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plant | (msec) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
Nominal | 0 | 0.51 | 0.59 | 3.42 | 2.14 | 3.16 | 3.15 | 1.82 | 1.73 |
Pert. 1 | 0 | 0.51 | 0.59 | 3.43 | 2.36 | 3.20 | 3.19 | 1.98 | 1.98 |
Pert. 2 | 0 | 0.51 | 0.59 | 3.41 | 2.12 | 3.16 | 3.15 | 1.81 | 1.73 |
Pert. 3 | 0 | 0.51 | 0.59 | 3.62 | 2.27 | 3.35 | 3.35 | 1.92 | 1.99 |
Pert. 4 | 0 | 0.50 | 0.59 | 3.72 | 2.10 | 3.46 | 3.43 | 1.84 | 1.84 |
Pert. 5 | 0 | 0.51 | 0.59 | 3.28 | 2.08 | 3.03 | 3.02 | 1.80 | 1.72 |
Control | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plant | (msec) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
Nominal | 0 | 0.59 | 0.59 | 4.06 | 4.86 | 3.76 | 3.82 | 4.32 | 4.45 |
Pert. 1 | 0 | 0.59 | 0.59 | 3.98 | 4.81 | 3.69 | 3.76 | 4.29 | 4.42 |
Pert. 2 | 0 | 0.59 | 0.59 | 4.18 | 5.04 | 3.88 | 3.94 | 4.50 | 4.60 |
Pert. 3 | 0 | 0.59 | 0.59 | 3.69 | 4.38 | 3.39 | 3.45 | 3.93 | 4.07 |
Pert. 4 | 0 | 0.59 | 0.59 | 4.58 | 5.54 | 4.27 | 4.32 | 4.94 | 4.96 |
Pert. 5 | 0 | 0.59 | 0.59 | 4.62 | 5.52 | 4.32 | 4.37 | 4.94 | 4.97 |
References
- Christenson, R.; Lin, Y.Z.; Emmons, A.; Bass, B. Large-scale experimental verification of semiactive control through real-time hybrid simulation. J. Struct. Eng. 2008, 134, 522–534. [Google Scholar] [CrossRef]
- Tang, Z.; Dietz, M.; Hong, Y.; Li, Z. Performance extension of shaking table-based real-time dynamic hybrid testing through full state control via simulation. Struct. Control. Health Monit. 2020, 27, e2611. [Google Scholar] [CrossRef]
- Dong, Y.R.; Xu, Z.D.; Guo, Y.Q.; Xu, Y.S.; Chen, S.; Li, Q.Q. Experimental study on viscoelastic dampers for structural seismic response control using a user-programmable hybrid simulation platform. Eng. Struct. 2020, 216, 110710. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.T.; Jin, F.; Chi, F.D.; Zhang, C.H. Real-time dynamic hybrid testing for soil–structure interaction analysis. Soil Dyn. Earthq. Eng. 2011, 31, 1690–1702. [Google Scholar] [CrossRef]
- Ayasun, S.; Ozturk, B. Evaluation of time delay margin for added damping of SDOF systems in real-time dynamic hybrid testing (RTDHT) under seismic excitation. In Proceedings of the Fifteenth World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Asai, T.; Chang, C.M.; Phillips, B.M.; Spencer, B., Jr. Real-time hybrid simulation of a smart outrigger damping system for high-rise buildings. Eng. Struct. 2013, 57, 177–188. [Google Scholar] [CrossRef]
- Eem, S.; Jung, H.J.; Koo, J. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation. Smart Mater. Struct. 2013, 22, 055003. [Google Scholar] [CrossRef]
- Gu, X.; Li, J.; Li, Y. Experimental realisation of the real-time controlled smart magnetorheological elastomer seismic isolation system with shake table. Struct. Control Health Monit. 2020, 27, e2476. [Google Scholar]
- Gao, X.; Castaneda, N.; Dyke, S.J. Real time hybrid simulation: From dynamic system, motion control to experimental error. Earthq. Eng. Struct. Dyn. 2013, 42, 815–832. [Google Scholar] [CrossRef]
- Chae, Y.; Kazemibidokhti, K.; Ricles, J.M. Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation. Earthq. Eng. Struct. Dyn. 2013, 42, 1697–1715. [Google Scholar] [CrossRef]
- Botelho, R.M.; Christenson, R.E. Robust stability and performance analysis for multi-actuator real-time hybrid substructuring. In Dynamics of Coupled Structures, Volume 4; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–7. [Google Scholar]
- Fermandois, G.A.; Spencer, B.F. Model-based framework for multi-axial real-time hybrid simulation testing. Earthq. Eng. Eng. Vib. 2017, 16, 671–691. [Google Scholar] [CrossRef]
- Fermandois, G.A. Application of model-based compensation methods to real-time hybrid simulation benchmark. Mech. Syst. Signal Process. 2019, 131, 394–416. [Google Scholar] [CrossRef]
- Silva, C.E.; Gomez, D.; Maghareh, A.; Dyke, S.J.; Spencer, B.F., Jr. Benchmark control problem for real-time hybrid simulation. Mech. Syst. Signal Process. 2020, 135, 106381. [Google Scholar] [CrossRef]
- Li, H.W.; Maghareh, A.; Montoya, H.; Uribe, J.W.C.; Dyke, S.J.; Xu, Z.D. Sliding mode control design for the benchmark problem in real-time hybrid simulation. Mech. Syst. Signal Process. 2021, 151, 107364. [Google Scholar] [CrossRef]
- Li, H.W.; Maghareh, A.; Uribe, J.W.; Montoya, H.; Dyke, S.J.; Xu, Z.D. Advancing real-time hybrid simulation for coupled nonlinear soil-isolator-structure system. Smart Struct. Syst. 2021, 28, 105–119. [Google Scholar]
- Li, H.W.; Maghareh, A.; Wilfredo Condori Uribe, J.; Montoya, H.; Dyke, S.J.; Xu, Z.D. An adaptive sliding mode control system and its application to real-time hybrid simulation. Struct. Control Health Monit. 2022, 29, e2851. [Google Scholar] [CrossRef]
- Slotine, J.J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Hu, M.; Lee, K.; Ahn, H.; Choi, A.; Kim, H.; You, K. Stabilization and Tracking of a Quadrotor Using Modified Sigmoid Sliding Mode Control. Sensors 2022, 22, 3618. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, D.; Karimi, H.R.; Li, B. RBF Neural Network Sliding Mode Control for Passification of Nonlinear Time-Varying Delay Systems with Application to Offshore Cranes. Sensors 2022, 22, 5253. [Google Scholar] [CrossRef]
- Dyke, S.; Spencer, B., Jr.; Quast, P.; Sain, M. Role of control-structure interaction in protective system design. J. Eng. Mech. 1995, 121, 322–338. [Google Scholar] [CrossRef]
- Stehman, M.; Nakata, N. IIR compensation in real-time hybrid simulation using shake tables with complex control-structure-interaction. J. Earthq. Eng. 2016, 20, 633–653. [Google Scholar] [CrossRef]
- Maghareh, A. Nonlinear Robust Framework for Real-Time Hybrid Simulation of Structural Systems: Design, Implementation, and Validation. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2017. [Google Scholar]
- Maghareh, A.; Dyke, S.J.; Prakash, A.; Rhoads, J.F. Establishing a stability switch criterion for effective implementation of real-time hybrid simulation. Smart Struct. Syst. 2014, 14, 1221–1245. [Google Scholar] [CrossRef]
- Maghareh, A.; Dyke, S.J.; Rabieniaharatbar, S.; Prakash, A. Predictive stability indicator: A novel approach to configuring a real-time hybrid simulation. Earthq. Eng. Struct. Dyn. 2017, 46, 95–116. [Google Scholar] [CrossRef]
Original Plant | Reformed Plant 1 | Reformed Plant 2 | |
---|---|---|---|
Peak dis. err. (%) | 0.617 | 0.673 | 0.584 |
Peak vel. err. (%) | 0.723 | 0.881 | 0.948 |
2.2 | 92 | 100 |
Partitioning Case | Floor Mass (kg) | Damping Ratio (%) |
---|---|---|
Case 1 | 1000 | 5 |
Case 2 | 1100 | 4 |
Case 3 | 1300 | 3 |
Case 4 | 1000 | 3 |
Label | Description |
---|---|
Intact w/o d | The physical substructure is intact, and no damper is installed. |
Intact w/ d | The physical substructure is intact, and an MR damper is installed. |
Damaged w/ d | An MR damper is installed. The physical substructure is damaged at 14 s. |
When damage occurs, the stiffness and damping of the physical substructure | |
drop to 10%, and the MR damper stops working. |
Parameter | Nominal Value | Standard Deviation | Unit |
---|---|---|---|
— | |||
— | |||
3.3 | 1.3 | ||
425 | 3.3 | ||
29.1 | — | kg | |
114.6 | — | kg/s | |
Parameter | Nominal Value | Boundary | Unit |
---|---|---|---|
54,290 | 5429 | ||
221.64 | 79.79 | ||
53,354 | — | ||
— | s | ||
— | s |
Control | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plant | (msec) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
Nominal | 0 | 0.45 | 0.62 | 2.77 | 2.67 | 2.87 | 2.86 | 2.74 | 2.62 |
Pert. 1 | 0 | 0.45 | 0.62 | 2.93 | 2.86 | 3.03 | 3.02 | 2.92 | 2.79 |
Pert. 2 | 0 | 0.44 | 0.62 | 2.88 | 2.94 | 2.97 | 2.95 | 2.98 | 2.84 |
Pert. 3 | 0 | 0.45 | 0.62 | 2.71 | 2.78 | 2.79 | 2.78 | 2.82 | 2.69 |
Pert. 4 | 0 | 0.45 | 0.62 | 2.54 | 2.47 | 2.63 | 2.62 | 2.54 | 2.43 |
Pert. 5 | 0 | 0.45 | 0.62 | 2.91 | 2.79 | 3.00 | 2.99 | 2.86 | 2.73 |
Control | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plant | (msec) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
Nominal | 0 | 0.43 | 0.61 | 2.95 | 3.21 | 3.01 | 3.00 | 3.19 | 3.07 |
Pert. 1 | 0 | 0.43 | 0.61 | 2.95 | 3.27 | 2.97 | 2.96 | 3.22 | 3.10 |
Pert. 2 | 0 | 0.44 | 0.61 | 2.61 | 2.83 | 2.66 | 2.66 | 2.82 | 2.72 |
Pert. 3 | 0 | 0.44 | 0.61 | 2.58 | 2.82 | 2.63 | 2.62 | 2.80 | 2.70 |
Pert. 4 | 0 | 0.44 | 0.61 | 2.83 | 3.03 | 2.90 | 2.89 | 3.02 | 2.91 |
Pert. 5 | 0 | 0.44 | 0.61 | 2.51 | 2.50 | 2.61 | 2.61 | 2.57 | 2.48 |
Control | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plant | (msec) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
Nominal | 0 | 0.40 | 0.57 | 2.38 | 2.18 | 2.33 | 2.34 | 1.97 | 1.89 |
Pert. 1 | 0 | 0.40 | 0.57 | 2.44 | 2.25 | 2.40 | 2.40 | 2.04 | 1.92 |
Pert. 2 | 0 | 0.40 | 0.57 | 2.34 | 2.14 | 2.29 | 2.29 | 1.93 | 1.85 |
Pert. 3 | 0 | 0.40 | 0.56 | 2.24 | 1.96 | 2.20 | 2.20 | 1.79 | 1.81 |
Pert. 4 | 0 | 0.41 | 0.57 | 2.28 | 2.07 | 2.21 | 2.21 | 1.86 | 1.79 |
Pert. 5 | 0 | 0.40 | 0.57 | 2.43 | 2.25 | 2.39 | 2.40 | 2.04 | 1.92 |
Control | |||||||||
---|---|---|---|---|---|---|---|---|---|
Plant | (msec) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
Nominal | 0 | 0.46 | 0.56 | 3.62 | 3.74 | 3.75 | 3.74 | 3.94 | 3.86 |
Pert. 1 | 0 | 0.45 | 0.55 | 3.78 | 3.86 | 3.91 | 3.90 | 4.06 | 4.04 |
Pert. 2 | 0 | 0.45 | 0.55 | 3.61 | 3.74 | 3.73 | 3.71 | 3.91 | 3.89 |
Pert. 3 | 0 | 0.46 | 0.59 | 3.40 | 3.56 | 3.54 | 3.53 | 3.68 | 3.53 |
Pert. 4 | 0 | 0.46 | 0.56 | 3.42 | 3.61 | 3.54 | 3.53 | 3.79 | 3.70 |
Pert. 5 | 0 | 0.46 | 0.57 | 3.58 | 3.71 | 3.71 | 3.70 | 3.91 | 3.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.-W.; Wang, F.; Ni, Y.-Q.; Wang, Y.-W.; Xu, Z.-D. An Adaptive and Robust Control Strategy for Real-Time Hybrid Simulation. Sensors 2022, 22, 6569. https://doi.org/10.3390/s22176569
Li H-W, Wang F, Ni Y-Q, Wang Y-W, Xu Z-D. An Adaptive and Robust Control Strategy for Real-Time Hybrid Simulation. Sensors. 2022; 22(17):6569. https://doi.org/10.3390/s22176569
Chicago/Turabian StyleLi, Hong-Wei, Fang Wang, Yi-Qing Ni, You-Wu Wang, and Zhao-Dong Xu. 2022. "An Adaptive and Robust Control Strategy for Real-Time Hybrid Simulation" Sensors 22, no. 17: 6569. https://doi.org/10.3390/s22176569
APA StyleLi, H. -W., Wang, F., Ni, Y. -Q., Wang, Y. -W., & Xu, Z. -D. (2022). An Adaptive and Robust Control Strategy for Real-Time Hybrid Simulation. Sensors, 22(17), 6569. https://doi.org/10.3390/s22176569