Deep Learning Approach for Detection of Underground Natural Gas Micro-Leakage Using Infrared Thermal Images
<p>The sketch map of the experimental area; the numbers in a 20 m × 5 m plot are marked leak point, and the 2.5 m × 2.5 m plots with odd numbers represent the experimental plots whereas these with even numbers represent control plots without natural gas.</p> "> Figure 2
<p>(<b>a</b>) Gas concentration data collection using GXH-3050E gas analyzer; (<b>b</b>) Infrared thermal images acquisition using Fluke ti55ft thermal imager.</p> "> Figure 3
<p>The architecture of the GLNB model.</p> "> Figure 4
<p>Architecture of the inception.</p> "> Figure 5
<p>Infrared thermal images of experimental groups: (<b>a</b>) grass; (<b>c</b>) soybean; (<b>e</b>) corn and (<b>g</b>) wheat. Infrared thermal images of control groups: (<b>b</b>) grass; (<b>d</b>) soybean; (<b>f</b>) corn and (<b>h</b>) wheat.</p> "> Figure 6
<p>Temperature profiles of experimental groups: (<b>a</b>) grass; (<b>c</b>) soybean; (<b>e</b>) corn and (<b>g</b>) wheat. Temperature profiles of control groups: (<b>b</b>) grass; (<b>d</b>) soybean; (<b>f</b>) corn and (<b>h</b>) wheat.</p> "> Figure 7
<p>(<b>a</b>) Spatial relationship between methane concentration in soil and stressed vegetation areas. (<b>b</b>) Correlation analysis results of methane concentration and canopy temperature.</p> "> Figure 8
<p>The classification accuracy and cross-entropy loss of the two models: (<b>a</b>) the GLNB; (<b>b</b>) the GLNB-based transfer learning model (GLNB-TL).</p> "> Figure 9
<p>Visualization of the used areas in random input images for classifier: (<b>a</b>) grass; (<b>b</b>) soybean; (<b>c</b>) corn and (<b>d</b>) wheat. Each image from left to right is the visual heat map based on Grad-CAM and the heat map fitting circle.</p> "> Figure 10
<p>Temporal and spatial variation of stressed vegetation range under natural gas micro-leakage: (<b>a</b>) grass; (<b>b</b>) soybean; (<b>c</b>) corn and (<b>d</b>) wheat.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Site Description
2.2. Test Setup and Experimental Procedure
2.3. Image Pre-Processing
2.4. GLNB Architectures for Classification
2.5. Implementation of the Transfer Learning
2.6. Visual Explanations and Gradient-Based Localization
2.7. Performance Evaluation
3. Results and Discussion
3.1. Stress Symptoms
3.2. Performance of the GLNB Method
3.3. Comparison with the Transfer Learning
3.4. Detection and Time-Series Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rui, Z.; Han, G.; Zhang, H.; Wang, S.; Pu, H.; Ling, K. A new model to evaluate two leak points in a gas pipeline. J. Nat. Gas Sci. Eng. 2017, 46, 491–497. [Google Scholar] [CrossRef]
- Bu, F.; Liu, Y.; Liu, Y.; Xu, Z.; Chen, S.; Jiang, M.; Guan, B. Leakage diffusion characteristics and harmful boundary analysis of buried natural gas pipeline under multiple working conditions. J. Nat. Gas Sci. Eng. 2021, 94, 104047. [Google Scholar] [CrossRef]
- Parvini, M.; Gharagouzlou, E. Gas leakage consequence modeling for buried gas pipelines. J. Loss Prev. Process Indust. 2015, 37, 110–118. [Google Scholar] [CrossRef]
- van den Brand, D.; Kutrowski, K.H. Safety in European gas transmission pipelines EGIG: European gas pipeline incident data group. In Proceedings of the 23rd World Gas Conference, Amsterdam, The Netherlands, 5–9 June 2006. [Google Scholar]
- Badida, P.; Balasubramaniam, Y.; Jayaprakash, J. Risk evaluation of oil and natural gas pipelines due to natural hazards using fuzzy fault tree analysis. J. Nat. Gas Sci. Eng. 2019, 66, 284–292. [Google Scholar] [CrossRef]
- Boaz, L.; Kaijage, S.; Sinde, R. An overview of pipeline leak detection and location systems. In Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications (PACT 2014), Arusha, Tanzania, 14–18 July 2014. [Google Scholar]
- Jin, H.; Zhang, L.; Liang, W.; Ding, Q. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method. J. Loss Prev. Process Indust. 2014, 27, 74–88. [Google Scholar] [CrossRef]
- Yang, C.; Romanak, K.D.; Reedy, R.C.; Hovorka, S.D.; Trevino, R.H. Soil gas dynamics monitoring at a CO2-EOR site for leakage detection. Geomech. Geophys. Geo-Energy Geo-Resour. 2017, 3, 351–364. [Google Scholar] [CrossRef]
- Abdulshaheed, A.; Mustapha, F.; Ghavamian, A. A pressure-based method for monitoring leaks in a pipe distribution system: A Review. Renew. Sustain. Energy Rev. 2017, 69, 902–911. [Google Scholar] [CrossRef]
- dos Santos, P.L.; Azevedo-Perdicoulis, T.-P.; Ramos, J.A.; de Carvalho, J.L.M.; Jank, G.; Milhinhos, J. An LPV Modeling and Identification Approach to Leakage Detection in High Pressure Natural Gas Transportation Networks. IEEE Trans. Control Syst. Technol. 2011, 19, 77–92. [Google Scholar] [CrossRef]
- Xu, J.; Nie, Z.; Shan, F.; Li, J.; Luo, Y.; Yuan, Q.; Chen, H. Leak Detection Methods Overview and Summary. In Proceedings of the ICPTT 2012: Better Pipeline Infrastructure for a Better Life, Wuhan, China, 19–22 October 2012; pp. 1034–1050. [Google Scholar]
- King, B.A.; Tarkalson, D.D.; Sharma, V.; Bjorneberg, D.L. Thermal Crop Water Stress Index Base Line Temperatures for Sugarbeet in Arid Western U.S. Agric. Water Manag. 2021, 243, 106459. [Google Scholar] [CrossRef]
- Banerjee, K.; Krishnan, P. Normalized Sunlit Shaded Index (NSSI) for characterizing the moisture stress in wheat crop using classified thermal and visible images. Ecol. Indic. 2020, 110, 105947. [Google Scholar] [CrossRef]
- Poirier-Pocovi, M.; Volder, A.; Bailey, B.N. Modeling of reference temperatures for calculating crop water stress indices from infrared thermography. Agric. Water Manag. 2020, 233, 106070. [Google Scholar] [CrossRef]
- Appiah, S.A.; Li, J.; Lan, Y.; Darko, R.O.; Alordzinu, K.E.; Al Aasmi, A.; Asenso, E.; Issaka, F.; Afful, E.A.; Wang, H.; et al. Real-Time Assessment of Mandarin Crop Water Stress Index. Sensors 2022, 22, 4018. [Google Scholar] [CrossRef] [PubMed]
- Zia, S.; Romano, G.; Spreer, W.; Sanchez, C.; Cairns, J.; Araus, J.L.; Müller, J. Infrared Thermal Imaging as a Rapid Tool for Identifying Water-Stress Tolerant Maize Genotypes of Different Phenology. J. Agron. Crop Sci. 2013, 199, 75–84. [Google Scholar] [CrossRef]
- Leinonen, I.; Jones, H.G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 2004, 55, 1423–1431. [Google Scholar] [CrossRef] [Green Version]
- Ballester, C.; Jiménez-Bello, M.A.; Castel, J.R.; Intrigliolo, D.S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 2013, 168, 120–129. [Google Scholar] [CrossRef]
- Sobejano-Paz, V.; Mikkelsen, T.N.; Baum, A.; Mo, X.; Liu, S.; Köppl, C.J.; Johnson, M.S.; Gulyas, L.; García, M. Hyperspectral and Thermal Sensing of Stomatal Conductance, Transpiration, and Photosynthesis for Soybean and Maize under Drought. Remote Sens. 2020, 12, 3182. [Google Scholar] [CrossRef]
- Xu, R.; Li, C.; Bernardes, S. Development and Testing of a UAV-Based Multi-Sensor System for Plant Phenotyping and Precision Agriculture. Remote Sens. 2021, 13, 3517. [Google Scholar] [CrossRef]
- Alordzinu, K.E.; Li, J.; Lan, Y.; Appiah, S.A.; Al Aasmi, A.; Wang, H. Rapid Estimation of Crop Water Stress Index on Tomato Growth. Sensors 2021, 21, 5142. [Google Scholar] [CrossRef]
- Joalland, S.; Screpanti, C.; Varella, H.; Reuther, M.; Schwind, M.; Lang, C.; Walter, A.; Liebisch, F. Aerial and Ground Based Sensing of Tolerance to Beet Cyst Nematode in Sugar Beet. Remote Sens. 2018, 10, 787. [Google Scholar] [CrossRef] [Green Version]
- Joalland, S.; Screpanti, C.; Liebisch, F.; Varella, H.V.; Gaume, A.; Walter, A. Comparison of visible imaging, thermography and spectrometry methods to evaluate the effect of Heterodera schachtii inoculation on sugar beets. Plant Methods 2017, 13, 73. [Google Scholar] [CrossRef]
- Maes, W.; Huete, A.; Avino, M.; Boer, M.; Dehaan, R.; Pendall, E.; Griebel, A.; Steppe, K. Can UAV-Based Infrared Thermography Be Used to Study Plant-Parasite Interactions between Mistletoe and Eucalypt Trees? Remote Sens. 2018, 10, 2062. [Google Scholar] [CrossRef] [Green Version]
- Smigaj, M.; Gaulton, R.; Suarez, J.; Barr, S. Use of Miniature Thermal Cameras for Detection of Physiological Stress in Conifers. Remote Sens. 2017, 9, 957. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Hou, M.; Qiu, Y.; Zhang, T.; Yuan, Y. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma 2020, 357, 113961. [Google Scholar] [CrossRef]
- Mangus, D.L.; Sharda, A.; Zhang, N. Development and evaluation of thermal infrared imaging system for high spatial and temporal resolution crop water stress monitoring of corn within a greenhouse. Comput. Electron. Agric. 2016, 121, 149–159. [Google Scholar] [CrossRef]
- Savian, F.; Martini, M.; Ermacora, P.; Paulus, S.; Mahlein, A.-K. Prediction of the Kiwifruit Decline Syndrome in Diseased Orchards by Remote Sensing. Remote Sens. 2020, 12, 2194. [Google Scholar] [CrossRef]
- Buitrago, M.F.; Groen, T.A.; Hecker, C.A.; Skidmore, A.K. Changes in thermal infrared spectra of plants caused by temperature and water stress. ISPRS J. Photogramm. Remote Sens. 2016, 111, 22–31. [Google Scholar] [CrossRef]
- Egea, G.; Padilla-Díaz, C.M.; Martinez-Guanter, J.; Fernández, J.E.; Pérez-Ruiz, M. Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards. Agric. Water Manag. 2017, 187, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Ondimu, S.; Murase, H. Water stress detection in Sunagoke moss (Rhacomitrium canescens) using combined thermal infrared and visible light imaging techniques. Biosys. Eng. 2008, 100, 4–13. [Google Scholar] [CrossRef]
- Hu, T.; van Dijk, A.I.J.M.; Renzullo, L.J.; Xu, Z.; He, J.; Tian, S.; Zhou, J.; Li, H. On agricultural drought monitoring in Australia using Himawari-8 geostationary thermal infrared observations. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102153. [Google Scholar] [CrossRef]
- Neinavaz, E.; Schlerf, M.; Darvishzadeh, R.; Gerhards, M.; Skidmore, A.K. Thermal infrared remote sensing of vegetation: Current status and perspectives. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102415. [Google Scholar] [CrossRef]
- Struthers, R.; Ivanova, A.; Tits, L.; Swennen, R.; Coppin, P. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 9–17. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Zhang, B.; Ding, C. Regional heavy metal pollution in crops by integrating physiological function variability with spatio-temporal stability using multi-temporal thermal remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 91–102. [Google Scholar] [CrossRef]
- Hatton, N.; Sharda, A.; Schapaugh, W.; van der Merwe, D. Remote thermal infrared imaging for rapid screening of sudden death syndrome in soybean. Comput. Electron. Agric. 2020, 178, 105738. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, H.; Ciechanowska, I.; Spaner, D. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine 2018, 51, 424–430. [Google Scholar] [CrossRef]
- Grant, O.M.; Tronina, L.; Jones, H.G.; Chaves, M.M. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J. Exp. Bot. 2007, 58, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.; Xu, J.; Lv, Y.; Liu, X.; Wang, H.; Liu, S. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agric. Water Manag. 2021, 246, 106699. [Google Scholar] [CrossRef]
- Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- King, B.A.; Shellie, K.C. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index. Agric. Water Manag. 2016, 167, 38–52. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Lu, W.; Yang, J.; Li, Z.; Liang, B. A Deep Transfer Model With Wasserstein Distance Guided Multi-Adversarial Networks for Bearing Fault Diagnosis under Different Working Conditions. IEEE Access 2019, 7, 65303–65318. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Partial transfer learning in machinery cross-domain fault diagnostics using class-weighted adversarial networks. Neural. Netw. 2020, 129, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lee, C.-G.; Lei, Y.; Li, N.; Lu, N. Deep partial transfer learning network: A method to selectively transfer diagnostic knowledge across related machines. Mech. Syst. Signal Process. 2021, 156, 107618. [Google Scholar] [CrossRef]
- Jiang, Y.; Shuang, L.; Li, C.; Paterson, A.H.; Robertson, J. Deep learning for thermal image segmentation to measure canopy temperature of Brassica oleracea in the field. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018. [Google Scholar]
- Esgario, J.G.M.; Krohling, R.A.; Ventura, J.A. Deep learning for classification and severity estimation of coffee leaf biotic stress. Comput. Electron. Agric. 2020, 169, 105162. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, A.; Taheri-Garavand, A.; Omid, M.; Carlomagno, G.M. Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images. Appl. Therm. Eng. 2019, 163, 114410. [Google Scholar] [CrossRef]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Tenenbaum, J.B.; Freeman, W.T. Separating style and content with bilinear models. Neural Comput. 2000, 12, 1247–1283. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Yan, Y.; Ren, L.; Saponaro, P.; Sebe, N.; Kambhamettu, C. Where am I in the dark: Exploring active transfer learning on the use of indoor localization based on thermal imaging. Neurocomputing 2016, 173, 83–92. [Google Scholar] [CrossRef]
- Li, W.; Huang, R.; Li, J.; Liao, Y.; Chen, Z.; He, G.; Yan, R.; Gryllias, K. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges. Mech. Syst. Signal Process. 2022, 167, 108487. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Kai, L.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Alexander, T.; Maarten, A.H. Progress in color night vision. Opt. Eng. 2012, 51, 010901. [Google Scholar] [CrossRef]
- Portmann, J.; Lynen, S.; Chli, M.; Siegwart, R. People detection and tracking from aerial thermal views. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1794–1800. [Google Scholar]
- Davis, J.W.; Keck, M.A. A Two-Stage Template Approach to Person Detection in Thermal Imagery. In Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05), Breckenridge, CO, USA, 5–7 January 2005; Volume 1, pp. 364–369. [Google Scholar]
- Davis, J.W.; Sharma, V. Background-subtraction using contour-based fusion of thermal and visible imagery. Comput. Vis. Image Underst. 2007, 106, 162–182. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef] [Green Version]
- Noomen, M.F.; Smith, K.L.; Colls, J.J.; Steven, M.D.; Skidmore, A.K.; Van Der Meer, F.D. Hyperspectral indices for detecting changes in canopy reflectance as a result of underground natural gas leakage. Int. J. Remote Sens. 2008, 29, 5987–6008. [Google Scholar] [CrossRef]
- Smith, K.L.; Steven, M.D.; Colls, J.J. Plant spectral responses to gas leaks and other stresses. Int. J. Remote Sens. 2007, 26, 4067–4081. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ferchichi, N.; Toukabri, W.; Boularess, M.; Smaoui, A.; Mhamdi, R.; Trabelsi, D. Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch. Microbiol. 2019, 201, 1333–1349. [Google Scholar] [CrossRef]
- Smith, K.L.; Steven, M.D.; Colls, J.J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sens. Environ. 2004, 92, 207–217. [Google Scholar] [CrossRef]
Vegetation Type | Plots | Mean/°C | Standard Deviation/°C | Minimum/°C | Maximum/°C |
---|---|---|---|---|---|
Grass | Experimental plot | 31.07 | 3.35 | 26.00 | 37.13 |
Control plot | 27.53 | 0.67 | 26.06 | 29.44 | |
Soybean | Experimental plot | 35.36 | 4.07 | 29.63 | 46.38 |
Control plot | 32.02 | 0.96 | 30.06 | 34.88 | |
Corn | Experimental plot | 30.56 | 3.51 | 26.13 | 38.38 |
Control plot | 27.46 | 0.52 | 25.44 | 29.00 | |
Wheat | Experimental plot | 30.98 | 2.97 | 25.31 | 38.38 |
Control plot | 27.58 | 1.48 | 25.31 | 34.81 |
Vegetation Type | Evaluation Indicators | AlexNet | VGG16 | GoogLeNet | ResNet | GLNB |
---|---|---|---|---|---|---|
Grass | Accuracy (%) | 94.39 | 90.65 | 89.72 | 91.59 | 95.33 |
Recall (%) | 96.15 | 92.31 | 88.46 | 90.38 | 96.15 | |
Specificity (%) | 92.73 | 89.09 | 90.91 | 92.73 | 94.55 | |
Soybean | Accuracy (%) | 85.05 | 82.24 | 86.92 | 79.44 | 90.65 |
Recall (%) | 85.71 | 76.79 | 83.93 | 78.57 | 89.29 | |
Specificity (%) | 84.31 | 88.24 | 90.20 | 80.39 | 92.16 | |
Corn | Accuracy (%) | 85.98 | 86.92 | 81.31 | 83.18 | 88.79 |
Recall (%) | 90.63 | 87.50 | 81.25 | 90.63 | 90.63 | |
Specificity (%) | 84.00 | 86.67 | 81.33 | 80.00 | 88.00 | |
Wheat | Accuracy (%) | 85.98 | 90.65 | 87.85 | 84.11 | 91.59 |
Recall (%) | 88.14 | 91.53 | 89.83 | 86.44 | 93.22 | |
Specificity (%) | 83.33 | 89.58 | 85.42 | 81.25 | 89.58 | |
Average per-class | Accuracy (%) | 87.85 | 87.62 | 86.45 | 84.58 | 91.59 |
Recall (%) | 90.16 | 87.03 | 85.87 | 86.51 | 92.32 | |
Specificity (%) | 86.09 | 88.40 | 86.97 | 83.59 | 91.07 |
Vegetation Type | Evaluation Indicators | GLNB | GLNB-TL |
---|---|---|---|
Grass | Accuracy (%) | 95.33 | 98.13 |
Recall (%) | 96.15 | 98.08 | |
Specificity (%) | 94.55 | 98.18 | |
Soybean | Accuracy (%) | 90.65 | 96.26 |
Recall (%) | 89.29 | 96.43 | |
Specificity (%) | 92.16 | 96.08 | |
Corn | Accuracy (%) | 88.79 | 91.59 |
Recall (%) | 90.63 | 90.63 | |
Specificity (%) | 88.00 | 92.00 | |
Wheat | Accuracy (%) | 91.59 | 95.33 |
Recall (%) | 93.22 | 94.92 | |
Specificity (%) | 89.58 | 95.83 | |
Average per-class | Accuracy (%) | 91.59 | 95.33 |
Recall (%) | 92.32 | 95.02 | |
Specificity (%) | 91.07 | 95.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, K.; Jiang, J.; Pan, Y.; Yang, Y.; Chen, X.; Yu, Z. Deep Learning Approach for Detection of Underground Natural Gas Micro-Leakage Using Infrared Thermal Images. Sensors 2022, 22, 5322. https://doi.org/10.3390/s22145322
Xiong K, Jiang J, Pan Y, Yang Y, Chen X, Yu Z. Deep Learning Approach for Detection of Underground Natural Gas Micro-Leakage Using Infrared Thermal Images. Sensors. 2022; 22(14):5322. https://doi.org/10.3390/s22145322
Chicago/Turabian StyleXiong, Kangni, Jinbao Jiang, Yingyang Pan, Yande Yang, Xuhui Chen, and Zijian Yu. 2022. "Deep Learning Approach for Detection of Underground Natural Gas Micro-Leakage Using Infrared Thermal Images" Sensors 22, no. 14: 5322. https://doi.org/10.3390/s22145322
APA StyleXiong, K., Jiang, J., Pan, Y., Yang, Y., Chen, X., & Yu, Z. (2022). Deep Learning Approach for Detection of Underground Natural Gas Micro-Leakage Using Infrared Thermal Images. Sensors, 22(14), 5322. https://doi.org/10.3390/s22145322