Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study
<p>Computation of the orientation of the trunk MIMU local frame in the OMCS reference frame <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> <mo>−</mo> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> during the static posture (at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math>). To determine the orientation matrix, the axes of the OMCS reference frame must be determined in the MIMU local frame. <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> <mo>−</mo> <mi>G</mi> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math> is retrieved from the orientation output of the MIMU at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (<b>a</b>). <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> <mo>−</mo> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> is unknown at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (<b>b</b>) but it might be approximated using (<b>c</b>). Using the orientation output of the MIMU, the vertical direction <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>G</mi> <mi>F</mi> </mrow> </msub> </mrow> </semantics></math> of the MIMU-sensed Earth-fixed frame is known in <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> </mrow> </semantics></math>. Furthermore, since MIMUs’ attitude is not affected by magnetic perturbations, the vertical direction detection by MIMUs is robust and is consistent with that of the OMCS global frame <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math>. Therefore, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>G</mi> <mi>F</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>z</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> </mrow> </semantics></math>. The manual alignment of the MIMU on body segments and the static posture taken by the participant allows assuming that the <math display="inline"><semantics> <mi>x</mi> </semantics></math> axis of the MIMU local frame <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> </mrow> </semantics></math> is in the plane defined by <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> axes. This in turn can be used to approximate <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> in <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> </mrow> </semantics></math> (<b>d</b>). Lastly, <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> <mo>−</mo> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> is obtained at <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math> as the inverse of <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>S</mi> <mo>−</mo> <mi>M</mi> <mi>I</mi> <mi>M</mi> <mi>U</mi> </mrow> </msub> </mrow> </semantics></math> (<b>e</b>).</p> "> Figure 2
<p>Rotation <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>z</mi> </msub> <mrow> <mo>(</mo> <mi>θ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of the trunk-MIMU-sensed Earth-fixed frame (<math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>G</mi> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>u</mi> <mi>n</mi> <mi>k</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> to align one of its axes with the direction of progression, using the orientation of the trunk MIMU local frame (<math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>M</mi> <mi>I</mi> <mi>M</mi> <msub> <mi>U</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>u</mi> <mi>n</mi> <mi>k</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math>).</p> "> Figure 3
<p>Full-body marker set and custom 3D-printed plastic MIMU housing.</p> "> Figure 4
<p>Acceleration of the body center of mass derived from force platform measures (gray straight line) and from the four different optimal sensor networks, consisting in the weighted sum of center of mass accelerations of the included segments (colored dashed and dotted lines), in the anteroposterior direction (AP), mediolateral direction (ML) and vertical direction (CC). Shaded regions represent the interval [mean − standard deviation; mean + standard deviation] for the estimates of the BCoM acceleration averaged over the 7 gait cycles of the participant.</p> "> Figure 5
<p>Body center of mass (BCoM) velocity as estimated by the selected sensor networks (upper-left corner (blue dotted lines): trunk, thighs, feet; upper-right corner (orange dashed lines): trunk, thighs, shanks; lower-left corner (yellow dashed lines): trunk and shanks; lower-right corner (green dashed lines): trunk) in comparison with the reference BCoM velocity obtained by optical motion capture (gray straight line). Shaded regions represent the interval [mean − standard deviation, mean + standard deviation] for each estimate of the BCoM velocity averaged over the thirteen prosthetic gait cycles of the participant in the anteroposterior (AP), mediolateral (ML) and vertical (CC) directions.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implementation of a Wearable Framework
- Computation of the 3D acceleration of each SCoM from MIMU data based on an inertial model;
- Expression and fusion of SCoM accelerations in a consistent common global frame RG;
- Estimation of the 3D BCoM acceleration and velocity from a weighted average of selected SCoM accelerations.
2.1.1. Computation of 3D SCoM Acceleration in the MIMU Local Frames
2.1.2. Merging SCoM Accelerations in a Consistent Common Global Frame
2.1.3. Estimating 3D BCoM Acceleration and Velocity
Selected Sensor Networks
3D BCoM Acceleration
3D BCoM Velocity
2.2. Evaluation of the Wearable Framework
2.2.1. Experimental Protocol
2.2.2. Data Processing
3. Results
3.1. SCoM and BCoM Acceleration
3.2. BCoM Velocity
4. Discussion
4.1. SCoM and BCoM Acceleration
4.2. BCoM Velocity
4.3. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Minetti, A.E.; Cisotti, C.; Mian, O.S. The mathematical description of the body centre of mass 3D path in human and animal locomotion. J. Biomech. 2011, 44, 1471–1477. [Google Scholar] [CrossRef]
- Pavei, G.; Seminati, E.; Cazzola, D.; Minetti, A.E. On the estimation accuracy of the 3D body center of mass trajectory during human locomotion: Inverse vs. forward dynamics. Front. Physiol. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesio, L.; Rota, V. The Motion of Body Center of Mass During Walking: A Review Oriented to Clinical Applications. Front. Neurol. 2019, 10, 1–22. [Google Scholar] [CrossRef]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hak, L.; van Dieën, J.H.; van der Wurff, P.; Houdijk, H. Stepping Asymmetry Among Individuals With Unilateral Transtibial Limb Loss Might Be Functional in Terms of Gait Stability. Phys. Ther. 2014, 94, 1480–1488. [Google Scholar] [CrossRef] [Green Version]
- Al Abiad, N.; Pillet, H.; Watier, B. A mechanical descriptor of instability in human locomotion: Experimental findings in control subjects and people with transfemoral amputation. Appl. Sci. 2020, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Donelan, J.M.; Kram, R.; Kuo, A.D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J. Exp. Biol. 2002, 205, 3717–3727. [Google Scholar] [CrossRef]
- Bonnet, X.; Villa, C.; Fodé, P.; Lavaste, F.; Pillet, H. Mechanical work performed by individual limbs of transfemoral amputees during step-to-step transitions: Effect of walking velocity. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2014, 228, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askew, G.N.; McFarlane, L.A.; Minetti, A.E.; Buckley, J.G. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid “ankle”: Insights from body centre of mass dynamics. J. Neuroeng. Rehabil. 2019, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, V.; Gailey, R.; O’Toole, C.; Gaunaurd, I.; Dowell, T. Symmetry in external work (SEW): A novel method of quantifying gait differences between prosthetic feet. Prosthet. Orthot. Int. 2009, 33, 148–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Tisserand, R.; Robert, T.; Dumas, R.; Chèze, L. A simplified marker set to define the center of mass for stability analysis in dynamic situations. Gait Posture 2016, 48, 64–67. [Google Scholar] [CrossRef] [Green Version]
- Jeong, B.; Ko, C.Y.; Chang, Y.; Ryu, J.; Kim, G. Comparison of segmental analysis and sacral marker methods for determining the center of mass during level and slope walking. Gait Posture 2018, 62, 333–341. [Google Scholar] [CrossRef]
- Huntley, A.H.; Schinkel-Ivy, A.; Aqui, A.; Mansfield, A. Validation of simplified centre of mass models during gait in individuals with chronic stroke. Clin. Biomech. 2017, 48, 97–102. [Google Scholar] [CrossRef]
- Eames, M.H.A.; Cosgrove, A.; Baker, R. Comparing methods of estimating the total body centre of mass in three-dimensions in normal and pathological gaits. Hum. Mov. Sci. 1999, 18, 637–646. [Google Scholar] [CrossRef]
- Catena, R.D.; Chen, S.H.; Chou, L.S. Does the anthropometric model influence whole-body center of mass calculations in gait? J. Biomech. 2017, 59, 23–28. [Google Scholar] [CrossRef]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’flynn, B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: A systematic review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef] [Green Version]
- Shahabpoor, E.; Pavic, A. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies. Sensors 2017, 17, 2085. [Google Scholar] [CrossRef] [Green Version]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A.M. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, A.M. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 2011, 11, 1489–1525. [Google Scholar] [CrossRef] [Green Version]
- Karatsidis, A.; Bellusci, G.; Schepers, H.M.; de Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors 2017, 17, 75. [Google Scholar] [CrossRef] [Green Version]
- Lintmeijer, L.L.; Faber, G.S.; Kruk, H.R.; van Soest, A.J.K.; Hofmijster, M.J. An accurate estimation of the horizontal acceleration of a rower’s centre of mass using inertial sensors: A validation. Eur. J. Sport Sci. 2018, 18, 940–946. [Google Scholar] [CrossRef] [Green Version]
- Fasel, B.; Spörri, J.; Schütz, P.; Lorenzetti, S.; Aminian, K. An Inertial Sensor-Based Method for Estimating the Athlete’s Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing. Front. Physiol. 2017, 8, 850. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A.; Brownjohn, J.M.W.; Billings, S.A.; Guo, L.Z.; Bocian, M. Real-life measurement of tri-axial walking ground reaction forces using optimal network of wearable inertial measurement units. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Xsens MVN BIOMECH Product Webpage. Available online: https://www.xsens.com/products/mvn-analyze (accessed on 9 April 2021).
- Noraxon myoMOTION Features Webpage. Available online: https://www.noraxon.com/our-products/myomotion/#1541097720904-fe85b033-bcdd (accessed on 9 April 2021).
- Teufl, W.; Miezal, M.; Taetz, B.; Frohlichi, M.; Bleser, G. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements. PLoS ONE 2019, 14, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejnabadi, H.; Jolles, B.M.; Casanova, E.; Fua, P.; Aminian, K. Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors. IEEE Trans. Biomed. Eng. 2006, 53, 1385–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picerno, P.; Cereatti, A.; Cappozzo, A. A spot check for assessing static orientation consistency of inertial and magnetic sensing units. Gait Posture 2011, 33, 373–378. [Google Scholar] [CrossRef]
- Lebel, K.; Hamel, M.; Duval, C.; Nguyen, H.; Boissy, P. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems. Gait Posture 2018, 59, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Guaitolini, M.; Aprigliano, F.; Mannini, A.; Micera, S.; Monaco, V.; Sabatini, A.M. Ambulatory Assessment of the Dynamic Margin of Stability Using an Inertial Sensor Network. Sensors 2019, 19, 4117. [Google Scholar] [CrossRef] [Green Version]
- Palermo, E.; Rossi, S.; Marini, F.; Patanè, F.; Cappa, P. Experimental evaluation of accuracy and repeatability of a novel body-to-sensor calibration procedure for inertial sensor-based gait analysis. Measurement 2014, 52, 145–155. [Google Scholar] [CrossRef]
- Ligorio, G.; Bergamini, E.; Truppa, L.; Guaitolini, M.; Raggi, M.; Mannini, A.; Sabatini, A.M.; Vannozzi, G.; Garofalo, P. A Wearable Magnetometer-Free Motion Capture System: Innovative Solutions for Real-World Applications. IEEE Sens. J. 2020, 20, 8844–8857. [Google Scholar] [CrossRef]
- Floor-Westerdijk, M.J.; Schepers, H.M.; Veltink, P.H.; van Asseldonk, E.H.F.; Buurke, J.H. Use of inertial sensors for ambulatory assessment of center-of-mass displacements during walking. IEEE Trans. Biomed. Eng. 2012, 59, 2080–2084. [Google Scholar] [CrossRef]
- Refai, M.I.M.; Van Beijnum, B.J.F.; Buurke, J.H.; Veltink, P.H. Portable Gait Lab: Estimating 3D GRF Using a Pelvis IMU in a Foot IMU Defined Frame. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Esser, P.; Dawes, H.; Collett, J.; Howells, K. IMU: Inertial sensing of vertical CoM movement. J. Biomech. 2009, 42, 1578–1581. [Google Scholar] [CrossRef]
- Meichtry, A.; Romkes, J.; Gobelet, C.; Brunner, R.; Müller, R. Criterion validity of 3D trunk accelerations to assess external work and power in able-bodied gait. Gait Posture 2007, 25, 25–32. [Google Scholar] [CrossRef]
- Sabatini, A.M.; Mannini, A. Ambulatory Assessment of Instantaneous Velocity during Walking Using Inertial Sensor Measurements. Sensors 2016, 16, 2206. [Google Scholar] [CrossRef] [Green Version]
- Najafi, B.; Lee-Eng, J.; Wrobel, J.S.; Goebel, R. Estimation of Center of Mass Trajectory using Wearable Sensors during Golf Swing. J. Sports Sci. Med. 2015, 14, 354–363. [Google Scholar]
- Kaufman, K.R.; Frittoli, S.; Frigo, C.A. Gait asymmetry of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Clin. Biomech. 2012, 27, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Goujon-Pillet, H.; Sapin, E.; Fodé, P.; Lavaste, F. Three-Dimensional Motions of Trunk and Pelvis During Transfemoral Amputee Gait. Arch. Phys. Med. Rehabil. 2008, 89, 87–94. [Google Scholar] [CrossRef]
- Shahabpoor, E.; Pavic, A. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor. J. Biomech. 2018, 79, 181–190. [Google Scholar] [CrossRef]
- Zijlstra, W.; Bisseling, R.W.; Schlumbohm, S.; Baldus, H. A body-fixed-sensor-based analysis of power during sit-to-stand movements. Gait Posture 2010, 31, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, E.; Bergamini, E.; Bascou, J.; Vannozzi, G.; Pillet, H. Optimal sensor networks for the estimation of 3D body center of mass acceleration in people with transfemoral amputation. Gait Posture 2021. under review. [Google Scholar]
- Yang, S.; Li, Q. Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review. Sensors 2012, 12, 6102–6116. [Google Scholar] [CrossRef] [Green Version]
- Pillet, H.; Bonnet, X.; Lavaste, F.; Skalli, W. Evaluation of force plate-less estimation of the trajectory of the centre of pressure during gait. Comparison of two anthropometric models. Gait Posture 2010, 31, 147–152. [Google Scholar] [CrossRef]
- Picerno, P. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait Posture 2017, 51, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Miezal, M.; Taetz, B.; Bleser, G. On Inertial Body Tracking in the Presence of Model Calibration Errors. Sensors 2016, 16, 1132. [Google Scholar] [CrossRef]
- Trojaniello, D.; Cereatti, A.; Pelosin, E.; Avanzino, L.; Mirelman, A.; Hausdorff, J.M.; Della Croce, U. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabil. 2014, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Simonetti, E.; Villa, C.; Bascou, J.; Vannozzi, G.; Bergamini, E.; Pillet, H. Gait event detection using inertial measurement units in people with transfemoral amputation: A comparative study. Med. Biol. Eng. Comput. 2020, 58, 461–470. [Google Scholar] [CrossRef]
- Duraffourg, C.; Bonnet, X.; Dauriac, B.; Pillet, H. Real time estimation of the pose of a lower limb prosthesis from a single shank mounted IMU. Sensors 2019, 19, 2865. [Google Scholar] [CrossRef] [Green Version]
- Steins, D.; Sheret, I.; Dawes, H.; Esser, P.; Collett, J. A smart device inertial-sensing method for gait analysis. J. Biomech. 2014, 47, 3780–3785. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Jones, R.K.; Howard, D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 2008, 41, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Tunca, C.; Pehlivan, N.; Ak, N.; Arnrich, B.; Salur, G.; Ersoy, C. Inertial sensor-based robust gait analysis in non-hospital settings for neurological disorders. Sensors 2017, 17, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keklicek, H.; Kirdi, E.; Yalcin, A.; Topuz, S.; Ulger, O.; Erbahceci, F.; Sener, G. Comparison of gait variability and symmetry in trained individuals with transtibial and transfemoral limb loss. J. Orthop. Surg. 2019, 27, 230949901983266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, N.; Ogihara, N. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot. Gait Posture 2016, 45, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Yang, S.; Li, Q. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Robert, T.; Leborgne, P.; Beurier, G.; Dumas, R. Estimation of body segment inertia parameters from 3D body scanner images: A semi-automatic method dedicated to human movement analysis applications. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 177–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kianifar, R.; Joukov, V.; Lee, A.; Raina, S.; Kulić, D. Inertial measurement unit-based pose estimation: Analyzing and reducing sensitivity to sensor placement and body measures. J. Rehabil. Assist. Technol. Eng. 2019, 6, 205566831881345. [Google Scholar] [CrossRef]
- Loiret, I.; Villa, C.; Dauriac, B.; Bonnet, X.; Martinet, N.; Paysant, J.; Pillet, H. Are wearable insoles a validated tool for quantifying transfemoral amputee gait asymmetry? Prosthet. Orthot. Int. 2019, 43, 492–499. [Google Scholar] [CrossRef]
- Donelan, J.M.; Kram, R.; Kuo, A.D. Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 2002, 35, 117–124. [Google Scholar] [CrossRef]
- Cavagna, G.A.; Thys, H.; Zamboni, A. The sources of external work in level walking and running. J. Physiol. 1976, 262, 639–657. [Google Scholar] [CrossRef] [PubMed]
- Ladlow, P.; Nightingale, T.E.; McGuigan, M.P.; Bennett, A.N.; Phillip, R.; Bilzon, J.L.J.J. Impact of anatomical placement of an accelerometer on prediction of physical activity energy expenditure in lower-limb amputees. PLoS ONE 2017, 12, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number of Sensors | Instrumented Segments |
---|---|
5 | Trunk, thighs, shanks |
5 | Trunk, thighs, feet |
3 | Trunk, shanks |
1 | Trunk |
Segment | RMSE (m·s−2) | NRMSE (%) | Pearson’s ρ | ||||||
---|---|---|---|---|---|---|---|---|---|
Anteroposterior | Mediolateral | Vertical | Anteroposterior | Mediolateral | Vertical | Anteroposterior | Mediolateral | Vertical | |
Prosthetic foot | 2.94 (0.61) | 2.74 (0.65) | 2.00 (0.21) | 5.2 (1.1) | 26.1 (4.0) | 6.6 (0.7) | 0.97 (0.01) | 0.27 (0.14) | 0.96 (0.01) |
Sound foot | 3.64 (1.10) | 3.99 (0.70) | 3.31 (1.05) | 6.3 (1.9) | 22.1 (5.4) | 8.4 (1.4) | 0.96 (0.03) | 0.19 (0.18) | 0.90 (0.06) |
Prosthetic shank | 1.58 (0.33) | 1.21 (0.39) | 1.38 (0.08) | 5.0 (1.0) | 16.7 (5.3) | 12.4 (0.8) | 0.97 (0.01) | 0.71 (0.16) | 0.88 (0.02) |
Sound shank | 2.08 (0.43) | 1.49 (0.43) | 1.56 (0.19) | 8.9 (1.6) | 18.9 (4.1) | 12.4 (1.9) | 0.93 (0.03) | 0.42 (0.20) | 0.83 (0.05) |
Prosthetic thigh | 1.94 (0.07) | 0.50 (0.11) | 0.79 (0.02) | 18.5 (0.6) | 7.6 (1.7) | 7.5 (0.4) | 0.83 (0.03) | 0.94 (0.04) | 0.96 (0.00) |
Sound thigh | 2.10 (0.66) | 0.72 (0.12) | 0.94 (0.33) | 10.5 (1.5) | 14.6 (1.8) | 9.5 (1.7) | 0.85 (0.10) | 0.74 (0.08) | 0.90 (0.07) |
Trunk | 0.95 (0.05) | 0.48 (0.04) | 0.43 (0.22) | 12.8 (1.1) | 12.9 (1.1) | 5.7 (2.4) | 0.73 (0.04) | 0.89 (0.02) | 0.97 (0.03) |
Average (all segments) | 2.04 (0.99) | 1.47 (1.25) | 1.39 (0.95) | 10.0 (4.6) | 16.6 (6.3) | 9.1 (2.8) | 0.87 (0.10) | 0.62 (0.30) | 0.92 (0.06) |
Sensor Network | RMSE (m·s−2) | NRMSE (%) | Pearson’s ρ | ||||||
---|---|---|---|---|---|---|---|---|---|
Anteroposterior | Mediolateral | Vertical | Anteroposterior | Mediolateral | Vertical | Anteroposterior | Mediolateral | Vertical | |
Trunk, thighs, shanks | 0.54 (0.02) | 0.32 (0.03) | 0.57 (0.06) | 13.7 (0.9) | 14.0 (2.1) | 8.5 (0.5) | 0.93 (0.01) | 0. 89 (0.04) | 0.95 (0.01) |
Trunk, thighs, feet | 0.33 (0.02) | 0.37 (0.03) | 0.51 (0.05) | 9.7 (0.7) | 13.7 (0.7) | 7.4 (0.4) | 0.93 (0.01) | 0.88 (0.02) | 0.96 (0.01) |
Trunk, shanks | 0.40 (0.06) | 0.50 (0.05) | 0.54 (0.04) | 11.6 (2.1) | 21.5 (2.7) | 7.7 (0.4) | 0.89 (0.03) | 0.74 (0.08) | 0.96 (0.00) |
Trunk | 0.66 (0.05) | 0.70 (0.05) | 0.63 (0.06) | 17.0 (1.2) | 23.5 (2.0) | 8.8 (0.6) | 0.78 (0.02) | 0.76 (0.05) | 0.95 (0.00) |
Sensor Network | RMSE (m s−1) | ARMSE (%) | NRMSE (%) | Pearson’s ρ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Anteroposterior | Mediolateral | Vertical | Anteroposterior | Anteroposterior | Mediolateral | Vertical | Anteroposterior | Mediolateral | Vertical | |
Trunk, thighs, shanks | 0.05 (0.02) | 0.05 (0.01) | 0.03 (0.02) | 3.7 (1.0) | 14.9 (4.2) | 13.2 (3.0) | 6.0 (0.8) | 0.94 (0.04) | 0.96 (0.03) | 0.99 (0.00) |
Trunk, thighs, feet | 0.05 (0.01) | 0.06 (0.02) | 0.03 (0.01) | 3.8 (0.8) | 18.6 (5.3) | 15.6 (3.9) | 6.0 (0.6) | 0.84 (0.05) | 0.90 (0.04) | 0.99 (0.01) |
Trunk, shanks | 0.04 (0.01) | 0.05 (0.01) | 0.03 (0.01) | 3.0 (1.1) | 13.2 (5.0) | 13.7 (2.4) | 6.7 (1.0) | 0.92 (0.03) | 0.94 (0.01) | 0.99 (0.00) |
Trunk | 0.08 (0.01) | 0.09 (0.01) | 0.04 (0.01) | 6.4 (0.6) | 26.4 (2.8) | 20.8 (1.7) | 7.6 (0.8) | 0.57 (0.06) | 0.92 (0.02) | 0.99 (0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonetti, E.; Bergamini, E.; Vannozzi, G.; Bascou, J.; Pillet, H. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study. Sensors 2021, 21, 3129. https://doi.org/10.3390/s21093129
Simonetti E, Bergamini E, Vannozzi G, Bascou J, Pillet H. Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study. Sensors. 2021; 21(9):3129. https://doi.org/10.3390/s21093129
Chicago/Turabian StyleSimonetti, Emeline, Elena Bergamini, Giuseppe Vannozzi, Joseph Bascou, and Hélène Pillet. 2021. "Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study" Sensors 21, no. 9: 3129. https://doi.org/10.3390/s21093129
APA StyleSimonetti, E., Bergamini, E., Vannozzi, G., Bascou, J., & Pillet, H. (2021). Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study. Sensors, 21(9), 3129. https://doi.org/10.3390/s21093129