Adaptive Reservation of Network Resources According to Video Classification Scenes
<p>The process of coding, classification, and evaluation of quality.</p> "> Figure 2
<p>Spatial information (SI).</p> "> Figure 3
<p>Temporal information (TI).</p> "> Figure 4
<p>Ultra HD, H.265, bitrate 3 Mbps.</p> "> Figure 5
<p>Ultra HD, H.265, bitrate 20 Mbps.</p> "> Figure 6
<p>Full HD, H.265, bitrate 3 Mbps.</p> "> Figure 7
<p>FULL HD, H.265, bitrate 20 Mbps.</p> "> Figure 8
<p>The legend of <a href="#sensors-21-01949-f004" class="html-fig">Figure 4</a>, <a href="#sensors-21-01949-f005" class="html-fig">Figure 5</a>, <a href="#sensors-21-01949-f006" class="html-fig">Figure 6</a> and <a href="#sensors-21-01949-f007" class="html-fig">Figure 7</a>.</p> "> Figure 9
<p>SSIM evaluation of Ultra Video Group (UVG) sequences—Full HD.</p> "> Figure 10
<p>SSIM evaluation of UVG sequences—Ultra HD.</p> "> Figure 11
<p>An example of the neural network.</p> "> Figure 12
<p>Bund Nightscape, subjective evaluation.</p> "> Figure 13
<p>Wood, subjective evaluation.</p> "> Figure 14
<p>Bund Nightscape, objective evaluation.</p> "> Figure 15
<p>Wood, objective evaluation.</p> "> Figure 16
<p>The average results of MOS.</p> "> Figure 17
<p>The average results of SSIM.</p> "> Figure 18
<p>The process of creating the neural network.</p> "> Figure 19
<p>Correlation diagram for MOS prediction, Ultra HD, H.264 + H.265.</p> "> Figure 20
<p>The probability density function for MOS prediction, Ultra HD, H.264 + H.265.</p> "> Figure 21
<p>Correlation diagram for bitrate prediction based on SSIM, <b>Ultra HD</b>, H.264 + H.265.</p> "> Figure 22
<p>Correlation diagram for bitrate prediction based on SSIM, <b>Full HD + Ultra HD</b>, H.264 + H.265.</p> "> Figure 23
<p>The probability density function for bitrate prediction based on SSIM, <b>Ultra HD</b>, H.264 + H.265.</p> "> Figure 24
<p>The probability density function for bitrate prediction based on SSIM, <b>Full HD + Ultra HD</b>, H.264 + H.265.</p> "> Figure 25
<p>Correlation diagram for bitrate prediction based on MOS, Ultra HD, H.264 + H.265.</p> "> Figure 26
<p>Correlation diagram for bitrate prediction based on MOS, Full HD + Ultra HD, H.264 + H.265.</p> "> Figure 27
<p>The probability density function for bitrate prediction based on MOS, Ultra HD, H.264 + H.265.</p> "> Figure 28
<p>The probability density function for bitrate prediction based on MOS, Full HD + Ultra HD, H.264 + H.265.</p> ">
Abstract
:1. Introduction
2. Scope and Contributions
- Creating a database of video sequences (Section 5.1).
- Video sequence classification by spatial information (SI) and temporal information (TI) (Section 5.2).
- Evaluation of the video scenes by objective and subjective metrics (Section 5.4).
- The proposal of a new classifier based on artificial intelligence (Section 6).
- Determining the correlations of the results for the objective and subjective evaluations of the video (Section 7), followed by a prediction of subjective quality.
- Creating an optimal mapping function for predicting objective and subjective evaluations of the quality (Section 8).
- −
- Prediction of bitrate based on requested quality estimated using the SSIM index.
- −
- Prediction of bitrate based on requested quality using MOS.
3. Related Work
4. The Aim of the Paper
5. Data Preprocessing
5.1. Creating the Database of Video Sequences
5.2. Video Sequence Classification
5.2.1. Spatial Information
5.2.2. Temporal Information
5.3. Evaluation Methodology
5.4. Evaluation Dataset
6. The Classifier Based on an Artificial Intelligence
- Batch gradient descent (traingd).
- Batch gradient descent with momentum (traingdm).
- Gradient descent with variable learning rate (traingdx).
6.1. Data Processing
6.2. The Classifier
- Bitrate, which depends on the type of scene and its quality evaluated by an objective SSIM metric.
- Bitstream based on the kind of sequence and its quality estimated using the MOS scale quality score (value achieved with the subjective ACR metric).
7. Correlation of the Results between the Objective and Subjective Evaluation of the Video
7.1. Subjective Quality Prediction
7.2. Selection of a Suitable Topology for the Neural Network
- 5-1;
- 5-1-1;
- 5-3-1;
- 5-3-2-1;
- 5-5-3-1.
8. Creating an Optimal Mapping Function
8.1. Prediction of Bitrate Based on Requested Quality Estimated Using the SSIM Index
8.2. Prediction of Bitrate Based on Requested Quality Using MOS
9. Model Verification
9.1. The Prediction of the Subjective Value
9.1.1. The Descriptive Statistics
9.1.2. The Correlation Diagram and Root Mean Square Error (RMSE)
9.1.3. Probability Density Function
9.2. Prediction of Bitrate Based on SI, TI, and Video Quality Characterized by Objective SSIM
9.2.1. The Descriptive Statistics
9.2.2. The Correlation Diagram and RMSE
9.2.3. Probability Density Function
9.3. Prediction of Bitrate Based on SI, TI and Video Quality Characterized by MOS
9.3.1. The Descriptive Statistics
9.3.2. The Correlation Diagram and RMSE
9.3.3. Probability Density Function
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Rango, F. Digital Video; BoD–Books on Demand: Norderstedt, Germany, 2010. [Google Scholar]
- De Rango, F.; Tropea, M.; Fazio, P. Bio-inspired routing over fanet in emergency situations to support multimedia traffic. In Proceedings of the ACM MobiHoc Workshop on Innovative Aerial Communication Solutions for FIrst REsponders Network in Emergency Scenarios, Catania, Italy, 2–5 July 2019; pp. 12–17. [Google Scholar]
- De Rango, F.; Tropea, M.; Fazio, P.; Marano, S. Call admission control for aggregate MPEG-2 traffic over multimedia geo-satellite networks. IEEE Trans. Broadcast. 2008, 54, 612–622. [Google Scholar] [CrossRef]
- CISCO. Cisco Annual Internet Report (2018–2023) White Paper. cisco.com. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 8 February 2021).
- Sevcik, L.; Uhrina, M.; Bienik, J.; Voznak, M. Optimal Mapping Function for Predictions of the Subjective Quality Evaluation Using Artificial Intelligence. Adv. Intell. Syst. Comput. 2020, 1069, 263–275. [Google Scholar] [CrossRef]
- Barakabitze, A.A.; Barman, N.; Ahmad, A.; Zadtootaghaj, S.; Sun, L.; Martini, M.G.; Atzori, L. QoE Management of Multimedia Streaming Services in Future Networks: A Tutorial and Survey. IEEE Commun. Surv. Tutor. 2020, 22, 526–565. [Google Scholar] [CrossRef] [Green Version]
- Seufert, M.; Egger, S.; Slanina, M.; Zinner, T.; Hobfeld, T.; Tran-Gia, P. A Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Commun. Surv. Tutor. 2015, 17, 469–492. [Google Scholar] [CrossRef]
- Duanmu, Z.; Rehman, A.; Wang, Z. A Quality-of-Experience Database for Adaptive Video Streaming. IEEE Trans. Broadcast. 2018, 64, 474–487. [Google Scholar] [CrossRef]
- Vega, M.T.; Perra, C.; Turck, F.D.; Liotta, A. A Review of Predictive Quality of Experience Management in Video Streaming Services. IEEE Trans. Broadcast. 2018, 64, 432–445. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Sun, Y.; Pan, J. Continuous Prediction for Quality of Experience in Wireless Video Streaming. IEEE Access 2019, 7, 70343–70354. [Google Scholar] [CrossRef]
- ITU-T. Vocabulary for Performance, Quality of Service and Quality of Experience, Amendment 2: New Definitions for Inclusion in Recommendation ITU-T P.10/G.100. 2019. Available online: Https://www.itu.int/rec/T-REC-P.10 (accessed on 8 February 2021).
- Moldovan, A.N.; Ghergulescu, I.; Muntean, C.H. VQAMap: A Novel Mechanism for Mapping Objective Video Quality Metrics to Subjective MOS Scale. IEEE Trans. Broadcast. 2016, 62, 610–627. [Google Scholar] [CrossRef]
- Yao, J.; Liu, G. Bitrate-Based No-Reference Video Quality Assessment Combining the Visual Perception of Video Contents. IEEE Trans. Broadcast. 2019, 65, 546–557. [Google Scholar] [CrossRef]
- Yao, C.; Xiao, J.; Zhao, Y.; Ming, A. Video Streaming Adaptation Strategy for Multiview Navigation Over DASH. IEEE Trans. Broadcast. 2019, 65, 521–533. [Google Scholar] [CrossRef]
- Aabed, M.A.; AlRegib, G. PeQASO: Perceptual Quality Assessment of Streamed Videos Using Optical Flow Features. IEEE Trans. Broadcast. 2019, 65, 534–545. [Google Scholar] [CrossRef]
- Staelens, N.; Meulenaere, J.D.; Claeys, M.; Wallendael, G.V.; den Broeck, W.V.; Cock, J.D.; de Walle, R.V.; Demeester, P.; Turck, F.D. Subjective Quality Assessment of Longer Duration Video Sequences Delivered Over HTTP Adaptive Streaming to Tablet Devices. IEEE Trans. Broadcast. 2014, 60, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.P.M.; Mahapatra, S. Quality of Experience Driven Rate Adaptation for Adaptive HTTP Streaming. IEEE Trans. Broadcast. 2018, 64, 602–620. [Google Scholar] [CrossRef]
- Ge, C.; Wang, N.; Selinis, I.; Cahill, J.; Kavanagh, M.; Liolis, K.; Politis, C.; Nunes, J.; Evans, B.; Rahulan, Y.; et al. QoE-Assured Live Streaming via Satellite Backhaul in 5G Networks. IEEE Trans. Broadcast. 2019, 65, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Zheng, Y.; Gu, K.; Liao, K.; Wang, W.; Yu, M. Full-Reference Image Quality Assessment by Combining Features in Spatial and Frequency Domains. IEEE Trans. Broadcast. 2019, 65, 138–151. [Google Scholar] [CrossRef]
- Paudyal, P.; Battisti, F.; Carli, M. Reduced Reference Quality Assessment of Light Field Images. IEEE Trans. Broadcast. 2019, 65, 152–165. [Google Scholar] [CrossRef]
- Yang, J.; Ji, C.; Jiang, B.; Lu, W.; Meng, Q. No Reference Quality Assessment of Stereo Video Based on Saliency and Sparsity. IEEE Trans. Broadcast. 2018, 64, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, J. Study of the Subjective Visibility of Packet Loss Artifacts in Decoded Video Sequences. IEEE Trans. Broadcast. 2018, 64, 354–366. [Google Scholar] [CrossRef]
- Wu, Q.; Li, H.; Meng, F.; Ngan, K.N. Toward a Blind Quality Metric for Temporally Distorted Streaming Video. IEEE Trans. Broadcast. 2018, 64, 367–378. [Google Scholar] [CrossRef]
- Narwaria, M. Toward Better Statistical Validation of Machine Learning-Based Multimedia Quality Estimators. IEEE Trans. Broadcast. 2018, 64, 446–460. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liu, F.; Liu, Z.; Li, Y.; Yang, D.; Chen, Z. Subjective Panoramic Video Quality Assessment Database for Coding Applications. IEEE Trans. Broadcast. 2018, 64, 461–473. [Google Scholar] [CrossRef]
- Partila, P.; Tovarek, J.; Ilk, G.H.; Rozhon, J.; Voznak, M. Deep Learning Serves Voice Cloning: How Vulnerable Are Automatic Speaker Verification Systems to Spoofing Trials? IEEE Commun. Mag. 2020, 58, 100–105. [Google Scholar] [CrossRef]
- Sevcik, L.; Voznak, M.; Frnda, J. QoE prediction model for multimedia services in IP network applying queuing policy. In Proceedings of the International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS 2014), Monterey, CA, USA, 6–10 July 2014. [Google Scholar]
- Frnda, J.; Voznak, M.; Voznak, M.; Sevcik, L.; Sevcik, L.; Fazio, P.; Fazio, P. Prediction Model of Triple play services for QoS Assessment in IP Based Networks. J. Netw. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, J.; Salva-Garcia, P.; Calero, J.M.A.; Wang, Q. 5G-QoE: QoE Modelling for Ultra-HD Video Streaming in 5G Networks. IEEE Trans. Broadcast. 2018, 64, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.; Triyason, T.; Vanijja, V. Quality evaluation of high resolution videos viewed on a mobile device in an online streaming environment. In Proceedings of the 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Bhubaneswar, India, 17–20 December 2017. [Google Scholar]
- International Telecommunication Union (ITU). Recommendation ITU-T P.910. Subjective Video Quality Assessment Methods for Multimedia Applications. Available online: https://www.itu.int/rec/T-REC-P.910-200804-I/en (accessed on 8 February 2021).
- International Telecommunication Union (ITU). Recommendation ITU-R BT.500-14. Methodology for the Subjective Assessment of the Quality of Television Images. Available online: https://www.itu.int/rec/R-REC-BT.500-14-201910-I/en (accessed on 8 February 2021).
- SJTU Media Lab. Database of the Test Sequences. Available online: http://medialab.sjtu.edu.cn/web4k/index.html (accessed on 8 February 2021).
- Tampere University (TUT), Ultra Video Group. The open Ultra Video Group (UVG) Dataset. Available online: http://ultravideo.cs.tut.fi/#testsequences (accessed on 8 February 2021).
- FFmpeg. A Complete, Cross-Platform Solution to Record, Convert and Stream Audio and Video. Available online: https://www.ffmpeg.org (accessed on 8 February 2021).
- MitsuTool. Video Quality Indicators. Available online: http://vq.kt.agh.edu.pl/metrics.html (accessed on 8 February 2021).
- MSU Video Quality Measurement Tool. Program for Objective Video Quality Assessment. Available online: http://www.compression.ru/video/quality_measure/video_measurement_tool.html (accessed on 8 February 2021).
- Valderrama, D.J.L.B.; Gómez, N.G. Nonintrusive Method Based on Neural Networks for Video Quality of Experience Assessment. Adv. Multimed. 2016, 2016, 1–17. [Google Scholar] [CrossRef]
Our Paper | Paper [29] | Paper [30] | |
---|---|---|---|
The main idea of the paper | Setting an appropriate bitrate based on a new classifier for predicting the boundaries SI and TI followed the quality requirements | The method of estimating the perceived quality of experience of users of UHD video flows in the emerging 5G networks is presented | The paper describes streaming of the video sequences using both the classical and the adaptive streaming approach; 3 type of Bandwidth scenarios |
Source of the video sequences | Media Lab (8)/Ultra Video Group (4) | Ultra Video Group (4)/Mitch Martinez (5) | N/A |
Number of video sequences | 12 | 9 | 5 |
Duration of the video sequences [sec.] | 10 | 10 | 60 |
Definition of the individual video sequences | SI, TI, qualitative parameters | N/A | SI, TI |
Software for the encoding | FFmpeg | A modified version of the scalable HEVC reference software (version SHM 6.1) | N/A |
Compression standards | H.264, H.265 | H.265 | N/A |
The resolution | Full HD, Ultra HD | Full HD, Ultra HD | Quad HD |
Frame rate | 30 | 30/24 | 30/24 |
Subjective evaluators | 30 | 64 | 40 |
Methods of the evaluation | Subjective (ACR), Objective (SSIM) | Subjective (ACR) | Subjective (ACR) |
Performance | Each simulation is statistically verified with a high success rate of predicting the simulated variables | The results of subjective testing achieve an accuracy of up to 94%. MOS scores of the test subject have the maximum variance of 0.06 and 0.17. | The adaptive streaming case outperforms the standard for all the scenarios |
Parameter | Description |
---|---|
Resolution | Full HD, Ultra HD |
Type of codec | H.264 (AVC), H.265 (HEVC) |
Bitrate [Mb/s] | 1, 3, 5, 8, 10, 12, 15, 20 |
Chroma subsampling | 4:2:0 |
Bit depth | 10 |
Framerate | 30 fps |
Duration | 10 s |
Parameter | Description |
---|---|
The maximum value in the time | |
Standard deviation over pixels | |
Sobel | The Sobel filter |
Number of frames in time n |
Codec | Topology | [-] | Time [s] | Num. of Epochs [-] |
---|---|---|---|---|
H.264 + H.265 | 5-1 | 0.97 | 64.962 | 681 |
51-25 | 0.996 | 12.446 | 302 | |
5-1-1 | 0.974 | 99.480 | 762 | |
5-3-1 | 0.977 | 108.160 | 965 | |
5-3-2-1 | 0.974 | 91.926 | 820 | |
5-5-3-1 | 0.98 | 106.551 | 924 | |
H.264 | 5-1 | 0.934 | 93.305 | 853 |
31-15 | 0.993 | 281.610 | 273 | |
5-1-1 | 0.953 | 91.826 | 963 | |
5-3-1 | 0.934 | 135.354 | 1101 | |
5-3-2-1 | 0.957 | 152.567 | 1118 | |
5-5-3-1 | 0.953 | 94.658 | 888 | |
H.265 | 5-1 | 0.971 | 96.904 | 808 |
39-19 | 0.992 | 30.651 | 278 | |
5-1-1 | 0.969 | 91.443 | 836 | |
5-3-1 | 0.975 | 116.228 | 1037 | |
5-3-2-1 | 0.984 | 103.205 | 827 | |
5-5-3-1 | 0.989 | 118.936 | 918 |
Resolution | Codec | Topology | MSE | [-] | [-] | [-] |
---|---|---|---|---|---|---|
Ultra HD | H.264 + H.265 | 51-25 | 0.002 | 0.996 | 0.996 | 0.997 |
H.264 | 31-15 | 0.004 | 0.994 | 0.987 | 0.999 | |
H.265 | 39-19 | 0.004 | 0.993 | 0.998 | 0.997 | |
Full HD+ Ultra HD | H.264 + H.265 | 47-23 | 0.006 | 0.986 | 0.991 | 0.993 |
Resolution | Codec | Topology | MSE | [-] | [-] | [-] |
---|---|---|---|---|---|---|
Ultra HD | H.264 + H.265 | 43-21 | 0.041 | 0.949 | 0.944 | 0.963 |
H.264 | 79-39 | 0.0001 | 0.999 | 0.999 | 0.999 | |
H.265 | 63-31 | 0.001 | 0.999 | 0.999 | 0.999 | |
Full HD+ Ultra HD | H.264 + H.265 | 47-23 | 0.029 | 0.963 | 0.957 | 0.985 |
Resolution | Codec | Topology | [-] | Time[s] | Num. of Epochs[-] |
---|---|---|---|---|---|
Ultra HD | H.264 + H.265 | 43-21 | 0.946 | 191.265 | 338 |
H.264 | 79-39 | 0.970 | 363.562 | 266 | |
H.265 | 63-31 | 0.939 | 627.246 | 360 | |
Full HD + Ultra HD | H.264 + H.265 | 47-23 | 0.965 | 217.427 | 294 |
Resolution | Codec | Topology | [-] | Time[s] | Num. of Epochs [-] |
---|---|---|---|---|---|
Ultra HD | H.264 + H.265 | 47-23 | 0.988 | 12.163 | 270 |
H.264 | 35-17 | 0.992 | 18.957 | 330 | |
H.265 | 71-35 | 0.990 | 20.299 | 347 | |
Full HD + Ultra HD | H.264 + H.265 | 71-35 | 0.990 | 29.113 | 250 |
Resolution | Codec | Topology | MSE | [-] | [-] | [-] |
---|---|---|---|---|---|---|
Ultra HD | H.264 + H.265 | 47-23 | 0.013 | 0.982 | 0.991 | 0.992 |
H.264 | 35-17 | 0.006 | 0.992 | 0.991 | 0.996 | |
H.265 | 71-35 | 0.011 | 0.988 | 0.982 | 0.993 | |
Full HD+ Ultra HD | H.264 + H.265 | 71-35 | 0.008 | 0.989 | 0.99 | 0.995 |
Reference Set | Test Set | |
---|---|---|
Average value [-] | 3.481 | 3.501 |
Minimum [-] | 1.333 | 1.382 |
Maximum [-] | 4.900 | 4.920 |
Median [-] | 3.700 | 3.850 |
Confidence interval [-] | <3.067; 3.896> | <3.091; 3.910> |
Pearson’s correlation coef. [-] | 0.999 | |
Spearman’s correlation coef. [-] | 0.976 |
Ultra HD | Full HD + Ultra HD | |||
---|---|---|---|---|
Reference Set | Test Set | Reference Set | Test Set | |
Average value [-] | 9.438 | 9.664 | 8.583 | 9.14 |
Minimum [-] | 1.000 | 0.369 | 1 | 0.73 |
Maximum [-] | 20.000 | 19.884 | 20.00 | 22.11 |
Median [-] | 10.000 | 10.744 | 8.00 | 22.84 |
Confidence interval [-] | <7.708; 11.167> | <8.071; 11.257> | <5.43; 7.22> | <5.39; 7.18> |
Pearson’s correlation coef. [-] | 0.964 | 0.985 | ||
Spearman’s correlation coef. [-] | 0.976 | 0.970 |
Ultra HD | Full HD + Ultra HD | |||
---|---|---|---|---|
Reference Set | Test Set | Reference Set | Test Set | |
Average value [-] | 9.656 | 9.594 | 8.73 | 8.74 |
Minimum [-] | 1 | 0.667 | 1.00 | 0.93 |
Maximum [-] | 20 | 20.467 | 20.00 | 19.83 |
Median [-] | 8 | 8.106 | 8.00 | 8.05 |
Confidence interval [-] | <7.380; 11.932> | <7.307; 11.881> | <7.28; 10.19> | <7.31; 10.18> |
Pearson’s correlation coef. [-] | 0.994 | 0.99 | ||
Spearman’s correlation coef. [-] | 0.99 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevcik, L.; Voznak, M. Adaptive Reservation of Network Resources According to Video Classification Scenes. Sensors 2021, 21, 1949. https://doi.org/10.3390/s21061949
Sevcik L, Voznak M. Adaptive Reservation of Network Resources According to Video Classification Scenes. Sensors. 2021; 21(6):1949. https://doi.org/10.3390/s21061949
Chicago/Turabian StyleSevcik, Lukas, and Miroslav Voznak. 2021. "Adaptive Reservation of Network Resources According to Video Classification Scenes" Sensors 21, no. 6: 1949. https://doi.org/10.3390/s21061949
APA StyleSevcik, L., & Voznak, M. (2021). Adaptive Reservation of Network Resources According to Video Classification Scenes. Sensors, 21(6), 1949. https://doi.org/10.3390/s21061949