Frequency Selective Auto-Encoder for Smart Meter Data Compression
<p>Illustrations of auto-encoder (AE) models.</p> "> Figure 2
<p>Overall diagram of the proposed method.</p> "> Figure 3
<p>Specific diagram for the frequency selective method.</p> "> Figure 4
<p>Application to the auto-encoder compression.</p> "> Figure 5
<p>The application process of the frequency selective (FS) method.</p> "> Figure 6
<p>The profile of sample data for the feasibility test.</p> "> Figure 7
<p>Comparison of the speed of convergence for the training and validation loss (mean absolute error (MAE)) by (<b>a</b>) the existing and the proposed method, (<b>b</b>) the high- and low-frequency part of the proposed method, each applied for half of the test data.</p> "> Figure 8
<p>Patterns of averaged power versus latent vector after compression using the encoder.</p> "> Figure 9
<p>Cumulative distribution function (CDF) plot for setting the decision boundary, based on the correlation coefficients in the decoder selection.</p> "> Figure 10
<p>Reconstructed profile of each AE model.</p> "> Figure 11
<p>Comparison of reconstruction errors (MAEs) of the existing and proposed methods at different thresholds.</p> "> Figure 12
<p>Reconstruction errors (MAEs) of the existing and proposed methods in decoding the spatial compression.</p> ">
Abstract
:1. Introduction
2. Backgrounds
2.1. Spatio-Temporal Compression for Smart Meter Data
2.2. Short-Time Fourier Transform and Power Spectral Density
2.3. Auto-Encoder for Data Compression
3. Proposed Methods
3.1. Network Architecture and Specifications
3.2. Frequency Selection (FS) Method
3.3. Auto-Encoder Compression
4. Experiments and Results
4.1. Experimental Setup
4.2. Frequency Selective Processing
4.3. Feasibility Test
4.4. Scalability Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Auto-encoder |
AMI | Advanced metering infrastructure |
CDF | Cumulative distribution function |
DCU | Data concentration unit |
DRED | Dutch residential energy dataset |
DWT | Discrete wavelet transformation |
FFT | Fast Fourier transformation |
FS | Frequency selective |
HF | High-frequency |
ICT | Information and communication technology |
IoT | Internet of things |
LF | Low-frequency |
MAE | Mean absolute error |
MSE | Mean squared error |
NILM | Non-intrusive load monitoring |
NN | Neural network |
PCA | Principal component analysis |
Probability density function | |
PReLU | Parametric rectified linear unit |
PSD | Power spectral density |
SCSAE | Stacked convolutional sparse auto-encoder |
STFT | Short-time Fourier transform |
SVD | Singular value decomposition |
SVM | Support vector machine |
T-SVD | Truncated singular value decomposition |
References
- Rahimi, F.A.; Ipakchi, A. Transactive energy techniques: Closing the gap between wholesale and retail markets. Electr. J. 2012, 25, 29–35. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Tripathi, S.; De, S. Adaptive Multivariate Data Compression in Smart Metering Internet of Things. IEEE Trans. Ind. Inform. 2020, 17, 1287–1297. [Google Scholar] [CrossRef]
- Zheng, J.; Gao, D.W.; Lin, L. Smart meters in smart grid: An overview. In Proceedings of the 2013 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 4–5 April 2013 2013; pp. 57–64. [Google Scholar]
- Limmer, S. Dynamic Pricing for Electric Vehicle Charging—A Literature Review. Energies 2019, 12, 3574. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.; Hwang, E. Load guided signal-based two-stage charging coordination of plug-in electric vehicles for smart buildings. IEEE Access 2019, 7, 144548–144560. [Google Scholar] [CrossRef]
- Ullah, A.; Haydarov, K.; Ul Haq, I.; Muhammad, K.; Rho, S.; Lee, M.; Baik, S.W. Deep Learning Assisted Buildings Energy Consumption Profiling Using Smart Meter Data. Sensors 2020, 20, 873. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Yoon, S.; Hwang, E. Hybrid load forecasting for mixed-use complex based on the characteristic load decomposition by pilot signals. IEEE Access 2019, 7, 12297–12306. [Google Scholar] [CrossRef]
- Park, S.; Park, S.; Hwang, E. Normalized Residue Analysis for Deep Learning Based Probabilistic Forecasting of Photovoltaic Generations. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Pusan, Korea, 19–22 February 2020; pp. 483–486. [Google Scholar]
- Tang, R.; Wang, S.; Li, H. Game theory based interactive demand side management responding to dynamic pricing in price-based demand response of smart grids. Appl. Energy 2019, 250, 118–130. [Google Scholar] [CrossRef]
- Tang, R.; Wang, S. Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids. Appl. Energy 2019, 242, 873–882. [Google Scholar] [CrossRef]
- Yu, C.N.; Mirowski, P.; Ho, T.K. A sparse coding approach to household electricity demand forecasting in smart grids. IEEE Trans. Smart Grid 2016, 8, 738–748. [Google Scholar] [CrossRef]
- Pallonetto, F.; De Rosa, M.; Milano, F.; Finn, D.P. Demand response algorithms for smart-grid ready residential buildings using machine learning models. Appl. Energy 2019, 239, 1265–1282. [Google Scholar] [CrossRef]
- Shin, C.; Lee, E.; Han, J.; Yim, J.; Rhee, W.; Lee, H. The ENERTALK dataset, 15 Hz electricity consumption data from 22 houses in Korea. Sci. Data 2019, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Aiello, M.; Pagani, G.A. The smart grid’s data generating potentials. In Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 9–16. [Google Scholar]
- Joshi, A.; Das, L.; Natarajan, B.; Srinivasan, B. A framework for efficient information aggregation in smart grid. IEEE Trans. Ind. Inform. 2018, 15, 2233–2243. [Google Scholar] [CrossRef]
- Bookstein, A.; Storer, J.A. Data Compression. Inform. Process. Manag. 1992, 28, 675–680. [Google Scholar] [CrossRef]
- Jumar, R.; Maaß, H.; Hagenmeyer, V. Comparison of lossless compression schemes for high rate electrical grid time series for smart grid monitoring and analysis. Comput. Electr. Eng. 2018, 71, 465–476. [Google Scholar] [CrossRef]
- Abuadbba, A.; Khalil, I.; Yu, X. Gaussian approximation-based lossless compression of smart meter readings. IEEE Trans. Smart Grid 2017, 9, 5047–5056. [Google Scholar] [CrossRef]
- Tcheou, M.P.; Lovisolo, L.; Ribeiro, M.V.; Da Silva, E.A.; Rodrigues, M.A.; Romano, J.M.; Diniz, P.S. The compression of electric signal waveforms for smart grids: State of the art and future trends. IEEE Trans. Smart Grid 2013, 5, 291–302. [Google Scholar] [CrossRef]
- de Souza, J.C.S.; Assis, T.M.L.; Pal, B.C. Data compression in smart distribution systems via singular value decomposition. IEEE Trans. Smart Grid 2015, 8, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Rao, P.N. Principal component analysis based compression scheme for power system steady state operational data. In Proceedings of the Innovative Smart Grid Technologies (ISGT), Kerala, India, 1–3 December 2011; pp. 95–100. [Google Scholar]
- Lee, Y.; Hwang, E.; Choi, J. A unified approach for compression and authentication of smart meter reading in AMI. IEEE Access 2019, 7, 34383–34394. [Google Scholar] [CrossRef]
- Li, C.; Zheng, R. Load Data Compression Based on Integrated Neural Network Model. In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 6203–6209. [Google Scholar]
- Huang, X.; Hu, T.; Ye, C.; Xu, G.; Wang, X.; Chen, L. Electric load data compression and classification based on deep stacked auto-encoders. Energies 2019, 12, 653. [Google Scholar] [CrossRef] [Green Version]
- Das, L.; Garg, D.; Srinivasan, B. NeuralCompression: A machine learning approach to compress high frequency measurements in smart grid. Appl. Energy 2020, 257, 113966. [Google Scholar] [CrossRef]
- Tripathi, S.; De, S. An efficient data characterization and reduction scheme for smart metering infrastructure. IEEE Trans. Ind. Inform. 2018, 14, 4300–4308. [Google Scholar] [CrossRef]
- Pawar, K.; Attar, V.Z. Assessment of Autoencoder Architectures for Data Representation. In Deep Learning: Concepts and Architectures; Springer: Berlin/Heidelberg, Germany, 2020; pp. 101–132. [Google Scholar]
- Uttama Nambi, A.S.; Reyes Lua, A.; Prasad, V.R. Loced: Location-aware energy disaggregation framework. In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built Environments, Seoul, Korea, 4–5 November 2015; pp. 45–54. [Google Scholar]
- Oppenheim, A.V.; Buck, J.R.; Schafer, R.W. Discrete-Time Signal Processing. Vol. 2; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Kriechbaumer, T.; Jorde, D.; Jacobsen, H.A. Waveform signal entropy and compression study of whole-building energy datasets. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, Phoenix, AZ, USA, 25–28 June 2019; pp. 58–67. [Google Scholar]
- Yin, Y.; Liu, F.; Zhou, X.; Li, Q. An efficient data compression model based on spatial clustering and principal component analysis in wireless sensor networks. Sensors 2015, 15, 19443–19465. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, H.; Wu, L.; Wang, J. A novel smart meter data compression method via stacked convolutional sparse auto-encoder. Int. J. Electr. Power Energy Syst. 2020, 118, 105761. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F.; Yan, J.; Wang, D. CBN-VAE: A Data Compression Model with Efficient Convolutional Structure for Wireless Sensor Networks. Sensors 2019, 19, 3445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Chen, F.; Wang, D. Data compression based on stacked RBM-AE model for wireless sensor networks. Sensors 2018, 18, 4273. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makhzani, A.; Frey, B. K-sparse autoencoders. arXiv 2013, arXiv:1312.5663. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Inglada, J.; Mercier, G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1432–1445. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Cai, C.; Gao, Y.; Su, S.; Wu, J. Variational autoencoder for low bit-rate image compression. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2617–2620. [Google Scholar]
- Balachandran, K.; Olsen, R.L.; Pedersen, J.M. Bandwidth analysis of smart meter network infrastructure. In Proceedings of the 16th International Conference on Advanced Communication Technology, PyeongChang, Korea, 16–19 February 2014; pp. 928–933. [Google Scholar]
- Taubman, D.S.; Marcellin, M.W. JPEG2000: Standard for interactive imaging. Proc. IEEE 2002, 90, 1336–1357. [Google Scholar] [CrossRef]
- Kim, K.I.; Franz, M.O.; Scholkopf, B. Iterative kernel principal component analysis for image modeling. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1351–1366. [Google Scholar] [PubMed]
Non-Overlapped | Non-Overlapped | Overlapped | Overlapped | |
---|---|---|---|---|
& Non-Smoothed | & Smoothed | & Non-Smoothed | & Smoothed | |
MAE | 5.94 | 5.19 | 5.21 | 4.29 |
MSE | 211.91 | 169.02 | 183.41 | 134.62 |
Model Structures | Encoder Layer | Decoder Layer | Epochs | MAE |
---|---|---|---|---|
256→150→100→50→100→150→256 | 3 | 3 | 4.41 | |
256→50→256 | 1 | 1 | 3000 | 3.52 |
256→50→100→150→256 | 1 | 3 | 3.38 |
AE | FS-AE | |||
---|---|---|---|---|
Overall (10k) | Overall (10k) | High Part (10k) | Low Part (10k) | |
MAE | 148.44 | 124.92 | 169.39 | 3.88 |
Original [bit] | Latent [bit] | Reconstructed [bit] | |
---|---|---|---|
AE | 9.9411 | 11.8917 | 13.2871 |
FS-AE | 9.9411 | 11.8917 | 13.2861 |
Threshold | Section | AE | FS-AE | |
---|---|---|---|---|
MAE | one-half | [ 1/2, 1 ] | 21.55 | 19.74 |
one-third | [ 1/3, 2/3, 1 ] | 19.84 | ||
one-quarter | [ 1/4, 2/4, ..., 1 ] | 19.21 | ||
one-ninth | [ 1/9, 2/9, ..., 1 ] | 18.83 |
Method | Training Set | Test Set | Overall Dataset |
---|---|---|---|
Kernel-PCA | 9.93 | 49.19 | 17.84 |
T-SVD | 9.94 | 49.11 | 17.83 |
SCSAE | 18.31 | 9.80 | 16.59 |
FS-SCSAE | 17.68 | 8.94 | 15.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Yoon, S.; Hwang, E. Frequency Selective Auto-Encoder for Smart Meter Data Compression. Sensors 2021, 21, 1521. https://doi.org/10.3390/s21041521
Lee J, Yoon S, Hwang E. Frequency Selective Auto-Encoder for Smart Meter Data Compression. Sensors. 2021; 21(4):1521. https://doi.org/10.3390/s21041521
Chicago/Turabian StyleLee, Jihoon, Seungwook Yoon, and Euiseok Hwang. 2021. "Frequency Selective Auto-Encoder for Smart Meter Data Compression" Sensors 21, no. 4: 1521. https://doi.org/10.3390/s21041521
APA StyleLee, J., Yoon, S., & Hwang, E. (2021). Frequency Selective Auto-Encoder for Smart Meter Data Compression. Sensors, 21(4), 1521. https://doi.org/10.3390/s21041521