Unsupervised Classification of Polarimetric SAR Image Based on Geodesic Distance and Non-Gaussian Distribution Feature
<p>Geographic extents of the three study areas. (<b>a</b>) Gaofen-3 data over San Francisco Bay Area, (<b>b</b>) ESAR data over Oberpfaffenhofen in Southern Germany, (<b>c</b>) AirSAR data over Flevoland in the Netherlands.</p> "> Figure 1 Cont.
<p>Geographic extents of the three study areas. (<b>a</b>) Gaofen-3 data over San Francisco Bay Area, (<b>b</b>) ESAR data over Oberpfaffenhofen in Southern Germany, (<b>c</b>) AirSAR data over Flevoland in the Netherlands.</p> "> Figure 2
<p>Experiment results of Gaofen-3 data. Zone A in rectangles is enlarged and shown in <a href="#sensors-21-01317-f003" class="html-fig">Figure 3</a>. (<b>a</b>) Pauli decomposition, (<b>b</b>) Freeman–Durden decomposition (FDD)-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) geodesic distance (GD)-Wishart, (<b>f</b>) proposed method, (<b>g</b>) color set for (<b>b</b>,<b>d</b>–<b>f</b>).</p> "> Figure 2 Cont.
<p>Experiment results of Gaofen-3 data. Zone A in rectangles is enlarged and shown in <a href="#sensors-21-01317-f003" class="html-fig">Figure 3</a>. (<b>a</b>) Pauli decomposition, (<b>b</b>) Freeman–Durden decomposition (FDD)-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) geodesic distance (GD)-Wishart, (<b>f</b>) proposed method, (<b>g</b>) color set for (<b>b</b>,<b>d</b>–<b>f</b>).</p> "> Figure 3
<p>Results of Zone A. (<b>a</b>) Pauli decomposition, (<b>b</b>) FDD-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) GD-Wishart, (<b>f</b>) proposed method, (<b>g</b>) color set for (<b>b</b>,<b>d</b>–<b>f</b>).</p> "> Figure 3 Cont.
<p>Results of Zone A. (<b>a</b>) Pauli decomposition, (<b>b</b>) FDD-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) GD-Wishart, (<b>f</b>) proposed method, (<b>g</b>) color set for (<b>b</b>,<b>d</b>–<b>f</b>).</p> "> Figure 4
<p>Experiment results of ESAR data. Areas marked by ellipses are selected for specific analysis. (<b>a</b>) Pauli decomposition, (<b>b</b>) FDD-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) GD-Wishart, (<b>f</b>) proposed method, (<b>g</b>) color set for (<b>b</b>,<b>d</b>–<b>f</b>).</p> "> Figure 5
<p>Experiment results of AIRSAR data. Areas in ellipses are taken as a comparison example. Zone B in rectangles is selected for further analysis in <a href="#sensors-21-01317-f006" class="html-fig">Figure 6</a> and <a href="#sensors-21-01317-t001" class="html-table">Table 1</a>. (<b>a</b>) Pauli decomposition, (<b>b</b>) FDD-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) GD-Wishart, (<b>f</b>) proposed method, (<b>g</b>) ground truth, (<b>h</b>) ground truth legend.</p> "> Figure 5 Cont.
<p>Experiment results of AIRSAR data. Areas in ellipses are taken as a comparison example. Zone B in rectangles is selected for further analysis in <a href="#sensors-21-01317-f006" class="html-fig">Figure 6</a> and <a href="#sensors-21-01317-t001" class="html-table">Table 1</a>. (<b>a</b>) Pauli decomposition, (<b>b</b>) FDD-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) GD-Wishart, (<b>f</b>) proposed method, (<b>g</b>) ground truth, (<b>h</b>) ground truth legend.</p> "> Figure 6
<p>Results of Zone B. (<b>a</b>) Ground truth, (<b>b</b>) FDD-Wishart, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> </mrow> </semantics></math>-based, (<b>d</b>) FDD-H, (<b>e</b>) GD-Wishart, (<b>f</b>) proposed method, (<b>g</b>) ground truth legend.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Geodesic Distance and Scattering Similarity Measure
2.2. K-Wishart Classifier
2.3. Unsupervised Classification
- (1)
- Preprocessing. Filter the original PolSAR data to reduce speckle noise.
- (2)
- Scattering mechanism initialization. Use three elementary scatterers: trihedral, dihedral, and random volume scatterer. Calculate the geodesic distance (GD) of each pixel to the three typical scatterers using (4) and derive the scattering similarity measure using (5). According to the maximum similarity to a target, pixels are divided into three scattering categories: odd-scattering, even-scattering, and volume-scattering.
- (3)
- Calculate the shape parameter of per-pixel using (9).
- (4)
- Further segmentation. Select proper thresholds , for and divide each category in (2) into three. If , classify the corresponding pixels into the category with highly non-Gaussian distribution; if , classify the pixels into the category with non-Gaussian distribution; and if , classify the pixels into the category with Gaussian distribution. In this way, each scattering category is further divided into three sub-categories depending on the degree of conformity to Gaussian distribution.
- (5)
- Iteratively meliorate the results by applying a suitable classifier. Perform K-Wishart classifier or Wishart classifier selectively and iteratively to all pixels. Choose Wishart classifier when , and choose the K-Wishart classifier otherwise. Note that all pixels are not allowed to be reclassified to other scattering mechanisms during iteration.
- (6)
- Result output. Set the color table for each major category and corresponding sub-categories. Output the result in (5) according to color settings.
3. Results and Discussion
3.1. Experiment Results of Gaofen-3
3.2. Experiment Results of ESAR
3.3. Experiment Results of AIRSAR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kersten, P.; Lee, J.-S.; Ainsworth, T. Unsupervised classification of polarimetric synthetic aperture radar images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 2005, 43, 519–527. [Google Scholar] [CrossRef]
- Kong, J.A.; Swartz, A.A.; Yueh, H.A.; Novak, L.M.; Shin, R.T. Identification of terrain cover using the optimum polarimetric classifier. J. Electromagn. Waves Appl. 1988, 2, 171–194. [Google Scholar] [CrossRef]
- Gao, G. Statistical modeling of SAR images: A survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef] [PubMed]
- Doulgeris, A.P.; Anfinsen, S.N.; Eltoft, T. Classification with a non-gaussian model for PolSAR data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2999–3009. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y. Model-based six-component scattering matrix power decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5687–5704. [Google Scholar] [CrossRef]
- Lim, Y.X.; Burgin, M.S.; Van Zyl, J.J. An optimal nonnegative eigenvalue decomposition for the freeman and durden three-component scattering model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2167–2176. [Google Scholar] [CrossRef]
- Chen, S.-W.; Li, Y.-Z.; Wang, X.-S.; Xiao, S.-P.; Sato, M. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives. IEEE Signal. Process. Mag. 2014, 31, 79–89. [Google Scholar] [CrossRef]
- Lee, J.-S.; Grunes, M.; Ainsworth, T.; Du, L.-J.; Schuler, D.; Cloude, S. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258. [Google Scholar] [CrossRef]
- Ferro-Famil, L.; Pottier, E.; Lee, J.-S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2332–2342. [Google Scholar] [CrossRef]
- Lee, J.-S.; Grunes, M.; Pottier, E.; Ferro-Famil, L. Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722–731. [Google Scholar] [CrossRef]
- Ratha, D.; Bhattacharya, A.; Frery, A.C. Unsupervised classification of PolSAR data using a scattering similarity measure derived from a geodesic distance. IEEE Geosci. Remote Sens. Lett. 2017, 15, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Li-Wen, Z.; Xiao-Guang, Z.; Yong-Mei, J.; Gang-Yao, K. Iterative classification of polarimetric SAR image based on the freeman decomposition and scattering entropy. In Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 473–476. [Google Scholar]
- Wang, S.; Liu, K.; Pei, J.; Gong, M.; Liu, Y. Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio. IEEE Geosci. Remote Sens. Lett. 2012, 10, 622–626. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Hua, W.; Zhao, Y.; Liu, C. Unsupervised classification of PolSAR data based on a novel polarization feature. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4594–4597. [Google Scholar] [CrossRef]
- Singh, G.; Malik, R.; Mohanty, S.; Rathore, V.S.; Yamada, K.; Umemura, M.; Yamaguchi, Y. Seven-component scattering power decomposition of POLSAR coherency matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8371–8382. [Google Scholar] [CrossRef]
- Ratha, D.; De, S.; Celik, T.; Bhattacharya, A. change detection in polarimetric SAR images using a geodesic distance between scattering mechanisms. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1066–1070. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric SAR speckle statistics. In Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Landon, NY, USA, 2009; p. 108. [Google Scholar]
- Lee, J.; Schuler, D.; Lang, R.; Ranson, K. K-distribution for multi-look processed polarimetric SAR imagery. In Proceedings of the IGARSS ’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 2179–2181. [Google Scholar]
Method | FDD-Wishart | Rd-Based | FDD-H | GD-Wishart | Proposed | |
---|---|---|---|---|---|---|
Accuracy | ||||||
Peas | 88.17 | 0 | 0 | 83.60 | 84.36 | |
Wheat | 92.85 | 98.87 | 84.76 | 80.97 | 91.61 | |
Bare soil | 99.85 | 50.91 | 99.96 | 99.92 | 99.96 | |
Lucerne | 41.94 | 66.83 | 42.29 | 57.84 | 98.55 | |
Beet | 56.85 | 96.93 | 85.43 | 30.68 | 66.82 | |
Potatoes | 75.07 | 96.74 | 97.61 | 92.79 | 96.13 | |
Overall | 83.01 | 75.97 | 72.62 | 77.84 | 89.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.; Qiu, X.; Ding, C.; Lei, B. Unsupervised Classification of Polarimetric SAR Image Based on Geodesic Distance and Non-Gaussian Distribution Feature. Sensors 2021, 21, 1317. https://doi.org/10.3390/s21041317
Qu J, Qiu X, Ding C, Lei B. Unsupervised Classification of Polarimetric SAR Image Based on Geodesic Distance and Non-Gaussian Distribution Feature. Sensors. 2021; 21(4):1317. https://doi.org/10.3390/s21041317
Chicago/Turabian StyleQu, Junrong, Xiaolan Qiu, Chibiao Ding, and Bin Lei. 2021. "Unsupervised Classification of Polarimetric SAR Image Based on Geodesic Distance and Non-Gaussian Distribution Feature" Sensors 21, no. 4: 1317. https://doi.org/10.3390/s21041317
APA StyleQu, J., Qiu, X., Ding, C., & Lei, B. (2021). Unsupervised Classification of Polarimetric SAR Image Based on Geodesic Distance and Non-Gaussian Distribution Feature. Sensors, 21(4), 1317. https://doi.org/10.3390/s21041317