Measurement of Water Level in Urban Streams under Bad Weather Conditions
<p>Urban stream channel image of the experimental setup.</p> "> Figure 2
<p>Image taken by the camera with the used control points (lines and green rectangle) and the ROI (red rectangle).</p> "> Figure 3
<p>Reference system used to relate a point in the image plane to a point in the object plane.</p> "> Figure 4
<p>Template used in camera compensation.</p> "> Figure 5
<p>Flowchart for the camera movement compensation.</p> "> Figure 6
<p>Schematic of the image plane.</p> "> Figure 7
<p>Different conditions of the waterline detection: (<b>a</b>) taken during the day; (<b>b</b>) taken at night; (<b>c</b>) image with traces of rain; (<b>d</b>) water undulation; (<b>e</b>) debris in the water; (<b>f</b>) shaded zone on the ROI.</p> "> Figure 8
<p>Waterline detection for an image with debris in the water: (<b>a</b>) <span class="html-italic">S</span> = 1; (<b>b</b>) <span class="html-italic">S</span> = 10.</p> "> Figure 9
<p>Waterline detection image taken at night: (<b>a</b>) the waterline is visible; (<b>b</b>) the waterline is invisible.</p> "> Figure 10
<p>Flowchart for waterline detection.</p> "> Figure 11
<p>Water level estimation: (<b>a</b>) images taken during the day with <span class="html-italic">T</span> = 1; (<b>b</b>) image taken during the day with <span class="html-italic">T</span> = 5; (<b>c</b>) images taken at night.</p> "> Figure 12
<p>Water level estimation for images for different situations: (<b>a</b>) day with a change in the weather conditions; (<b>b</b>) day with heavy rain episodes; (<b>c</b>) shadow episode on the ROI.</p> "> Figure 13
<p>Water level estimation for a longer period of observation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement System
2.2. Camera Calibration
2.3. Camera Motion Compensation
2.4. Waterline Detection
2.5. Water Level Estimation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Chiu, C. An efficient method of discharge measurement in tidal streams. J. Hydrol. 2002, 265, 212–224. [Google Scholar] [CrossRef]
- Hapuarachchi, H.A.P.; Wang, Q.J.; Pagano, T.C. A review of advances in flash flood forecasting. Hydrol. Process. 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Chen, Y. Flood discharge measurement of a mountain river—Nanshih River in Taiwan. Hydrol. Earth Syst. Sci. 2013, 17, 1951–1962. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.; Wu, J.; Lin, F.; Hsu, C. Visual Sensing for Urban Flood Monitoring. Sensors 2015, 15, 20006–20029. [Google Scholar] [CrossRef] [Green Version]
- Fujita, I. Discharge Measurements of Snowmelt Flood by Space-Time Image Velocimetry during the Night Using Far-Infrared Camera. Water 2017, 9, 269. [Google Scholar] [CrossRef]
- Bradley, A.A.; Kruger, A.; Meselhe, E.A.; Muste, M.V.I. Flow measurement in streams using video imagery. Water Resour. Res. 2002, 38, 51. [Google Scholar] [CrossRef]
- Yorke, T.H.; Oberg, K.A. Measuring river velocity and discharge with acoustic Doppler profilers. Flow Meas. Instrum. 2002, 13, 191–195. [Google Scholar] [CrossRef]
- Yu, J.; Hahn, H. Remote Detection and Monitoring of a Water Level Using Narrow Band Channel. J. Inf. Sci. Eng. 2010, 26, 71–82. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Gleason, C.J.; Smith, L.C.; Finnegan, D.C.; LeWinter, A.L.; Pitcher, L.H.; Chu, V.W. Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river. Hydrol. Earth Syst. Sci. 2015, 19, 2963–2969. [Google Scholar] [CrossRef] [Green Version]
- Tsubaki, R.; Fujita, I.; Tsutsumi, S. Measurement of the flood discharge of a small-sized river using an existing digital video recording system. J. Hydro-Environ. Res. 2011, 5, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Wang, C.; Yang, J. Applying image recording and identification for measuring water stages to prevent flood hazards. Nat. Hazards 2014, 74, 737–754. [Google Scholar] [CrossRef]
- Zhen, Z.; Yang, Z.; Yuchou, L.; Youjie, Y.; Xurui, L. IP camera-based LSPIV system for on-line monitoring of river flow. In Proceedings of the 2017 IEEE 13th International Conference on Electronic Measurement & Instruments, Guangzhou, China, 20–22 October 2017; pp. 357–363. [Google Scholar] [CrossRef]
- Tauro, F.; Porfiri, M.; Grimaldi, S. Surface flow measurements from drones. J. Hydrol. 2016, 540, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Langhammer, J.; Bernsteinová, J.; Mirijovský, J. Building a High-Precision 2D Hydrodynamic Flood Model Using UAV Photogrammetry and Sensor Network Monitoring. Water 2017, 9, 861. [Google Scholar] [CrossRef]
- Bandini, F.; Jakobsen, J.; Olesen, D.; Reyna-Gutierrez, J.A.; Bauer-Gottwein, P. Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles. J. Hydrol. 2017, 548, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Hies, T.; Babu, P.S.; Wang, Y.; Duester, R.; Eikaas, H.S.; Meng, T.K. Enhanced water-level detection by image processing. In Proceedings of the 10th International Conference on Hydroinformatics, Hamburg, Germany, 14–18 July 2012. [Google Scholar]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, Y.; Han, J. Automatic water-level detection using single-camera images with varied poses. Measurement 2018, 127, 167–174. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Liu, H.; Gao, H. In-situ water level measurement using NIR-imaging video camera. Flow Meas. Instrum. 2019, 67, 95–106. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Liu, H.; Zhang, L.; Wang, H. Visual Measurement of Water Level under Complex Illumination Conditions. Sensors 2019, 19, 4141. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Feng, J.; Zhang, Z.; Duan, C. Water Level Estimation Based on Image of Staff Gauge in Smart City. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovations, Guangzhou, China, 8–12 October 2018; pp. 1341–1345. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, Y.; Liu, Y. A Water-Level Measurement Method Using Sparse Representation. Autom. Control Comput. Sci. 2020, 54, 302–312. [Google Scholar] [CrossRef]
- Chen, G.; Bai, K.; Lin, Z.; Liao, X.; Liu, S.; Lin, Z.; Zhang, Q.; Jia, X. Method on water level ruler reading recognition based on image processing. Signal Image Video Process. 2021, 54, 33–41. [Google Scholar] [CrossRef]
- Udomsiri, S.; Iwahashi, M. Design of FIR Filter for Water Level Detection. World Acad. Sci. Eng. Technol. 2008, 24, 47–52. [Google Scholar] [CrossRef]
- Griesbaum, L.; Marx, S.; Höfle, B. Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images. Nat. Hazards Earth Syst. Sci. 2017, 17, 1191–1201. [Google Scholar] [CrossRef] [Green Version]
- Ridolfi, E.; Manciola, P. Water Level Measurements from Drones: A Pilot Case Study at a Dam Site. Water 2018, 10, 297. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 11, 184–203. [Google Scholar]
- Young, D.S.; Hart, J.K.; Martinez, K. Image analysis techniques to estimate river discharge using time-lapse cameras in remote locations. Comput. Geosci. 2015, 76, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Leduc, P.; Ashmore, P.; Sjogren, D. Technical note: Stage and water width measurement of a mountain stream using a simple time-lapse camera. Hydrol. Earth Syst. Sci. 2018, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Elias, M.; Sardemann, H.; Spieler, D. Automatic Image-Based Water Stage Measurement for Long-Term Observations in Ungauged Catchments. Water Resour. Res. 2018, 54, 10362–10371. [Google Scholar] [CrossRef]
- Quintal, R. Aluviões da Madeira—Séculos XIX e XX. Territorium 1999, 6, 6–28. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.P.; Almeida, A.B.; Sousa, J.; Pereira, M.J.; Portela, M.M.; Coutinho, M.A.; Ferreira, R.; Lopes, S. Avaliação do Risco de Aluviões na Ilha da Madeira. In Proceedings of the 10° Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (SILUSBA), Pernambuco, Brasil, 26–29 September 2011. [Google Scholar]
- Raspberry Pi. Available online: https://www.raspberrypi.org (accessed on 7 June 2021).
- Bradski, G. The OpenCV library. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 122–125. [Google Scholar]
- Pizer, M.S.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; Romeny, B.H.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Batra, B.; Singh, S.; Sharma, J.; Arora, S.M. Computational analysis of edge detection operators. Int. J. Appl. Res. 2016, 2, 257–262. [Google Scholar]
Situation | Accuracy (cm) | |
---|---|---|
Daytime | Water undulation of 1.8 cm and debris in the water | 0.8 |
Water undulation of 5.7 cm and debris in the water | 0.9 | |
Shallow water, sunny day | 1.6 | |
Rain | 1.3 | |
Heavy rain | 2.6 | |
Average for the observation period | 1.8 | |
Nighttime | Water undulation of 1.8 cm and debris in the water | 2.6 |
Rain | 2.7 | |
Heavy rain | 3.4 | |
Average for the observation period | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, J.A.; Brás, J.A. Measurement of Water Level in Urban Streams under Bad Weather Conditions. Sensors 2021, 21, 7157. https://doi.org/10.3390/s21217157
Azevedo JA, Brás JA. Measurement of Water Level in Urban Streams under Bad Weather Conditions. Sensors. 2021; 21(21):7157. https://doi.org/10.3390/s21217157
Chicago/Turabian StyleAzevedo, Joaquim Amândio, and João André Brás. 2021. "Measurement of Water Level in Urban Streams under Bad Weather Conditions" Sensors 21, no. 21: 7157. https://doi.org/10.3390/s21217157