Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy
<p>Internet of everything, adapted from [<a href="#B16-sensors-21-00568" class="html-bibr">16</a>].</p> "> Figure 2
<p>IoE taxonomy.</p> "> Figure 3
<p>IoE Taxonomy: knowledge category with dimensions and characteristics.</p> "> Figure 4
<p>IoE Taxonomy: type category, its dimensions, and characteristics.</p> "> Figure 5
<p>IoE taxonomy: observation category, its dimensions, and characteristics.</p> "> Figure 6
<p>IoE Taxonomy: capability category, its dimensions, and characteristics.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Technology
2.2. Management and Security
2.3. Collaboration
2.4. Data Analysis
2.5. Interoperability
2.6. Challenges
3. Research Methodology
4. Proposed IoE Taxonomy
- Concise: has a limited number of dimensions and characteristics, restricted to what is relevant and understandable;
- Robust: contains suitable dimensions and characteristics to distinguish the objects of interest;
- Comprehensive: includes appropriate and enough dimensions to classify all known objects within the domain under regard;
- Extendable: allows for the insertion of additional dimensions and characteristics within a size to contemplate new incorporated objects;
- Explanatory: provides useful explanations and valuable descriptions of the nature of the objects under study.
- (a)
- Knowledge: regarding knowledge in action; that is, the artifact or information inside a context (what) with comprehension and meaning;
- (b)
- Type: typifies sensors and actuators—who they are, their physical characteristics, their usage, and their role in IoE context: sensors or actuators in cyber, physical, or cyber-physical presentation;
- (c)
- Observation: the physical context in time (when) and space (where); that is, the instant and location that the information content was sensed or perceived within ever-changing IoE contexts;
- (d)
- Capabilities: how the information is flowing, the infrastructure capabilities, and the resources required.
4.1. Knowledge
4.1.1. Explicitness
- Tacit: This knowledge is rooted in actions, experiences, and involvement in specific contexts. Tacit knowledge consists of people’s knowledge based on intuitive evaluations of sensory inputs and perceptions, which is sometimes hard to express (i.e., feelings, beliefs, insights, values, and ideals) [97]. The increase of human senses through sensor and data fusion and context awareness is the essence that supports smarter wearable devices for relating mutually with human cognitive memories [98].
- Explicit: This knowledge is codified and articulated knowledge (i.e., the form of knowledge that is easy to codify using formal language, procedures or principles) [97]. Explicit knowledge from hard sensing-based data acquisition results in discovering hidden patterns in the aggregated sensor data [42,66]. The explicitness denotes awareness of a fact or artifact, which means the application of knowledge [98] from efficient scheduling of the resources in IoE applications [82,99]. Sensors continuously generate enormous amounts of data, with the value created being conditioned to its analysis.
- Implicit: Knowledge is not explicitly represented in the knowledge base but is inferred from it by using several assumptions [100]. Thus, implicit knowledge may be implicit information intertwined in information systems and data sources [97]. Myriad data analytic algorithms can be executed to extract a higher level of information from sensed data [99]. The value created by implicit knowledge emerges from machine learning and AI technologies, mainly in machine intelligence services [101]. It consists of outputs to make predictions oriented toward decision support and automation in diverse IoE application scenarios [102].
4.1.2. Structure
- Structured: These data have an identified format and a relational structure, frequently accessed using a standard SQL-type language and stored in relational database management systems. Typical examples of structured data are string, numeral, and date. [105].
- Semi-structured: These data cannot be managed by conventional database management system techniques, but the interpretation and analysis of these data require comprehensive and intelligent rules. Typical examples of semi-structured data are extensible markup language (XML) and JavaScript object notation (JSON) data. [50,101,105].
- Unstructured: These data do not follow any specific format and are often represented in a rather complex structure that contains hidden relationships. Examples of unstructured data are videos, text, time information, and geographic location [40]. With the amount of data generated by sensors, devices constantly produce large volumes of structured, unstructured, and semi-structured data, which results in ”big data” [73,74].
4.1.3. Trust
- Trustful: Based on protecting both user and service provider privacy precedents [40]. Constituting meaningful identity, using trusted communication paths, and preserving contextual information is essential to guarantee the protection of users’ privacy in the IoE environment [115]. The work in [55] addressed the security of IoT objects and privacy issues by merging identification, authentication, and authorization into one argument: access control. The security dimension encompasses five concepts: access control, confidentiality, integrity, availability, and non-repudiation. Different studies have covered concerns such as anonymity, liability, and moral, ethical, legal, cultural, and regional parameters, among other things [39,45,47,116].
- Untrustful: False or misleading data culminates in wrong decisions and critical consequences and lead to uncertainty at all knowledge transformation levels. Incompleteness in data occurs at the lower layer of the sensor readings or raw data collected. Vagueness frequently appears at a higher level of contextual information [37,69]. Possible security risks associated with IoT data are the heterogeneity of the smart devices and the nature of sensed data or authentication among different trust domains [56], which further complicates access control decisions.
4.1.4. Outcome
- Complementing: Represents knowledge sharing between IoE sensors and actuators. Complementing outcomes occurs when humans utilize mobile devices like sensors to collect their observations and information about the environment and infrastructures [25,51,65] or when artificial intelligence complements human knowledge.
- Substituting: Provides insights and novel interpretation of reality to enhance the quality of life (livability), regarding knowledge acquisition as the “core element” and the realization of “intelligence” [77].
4.1.5. Action
- Automation: the aptitude to make cognitive decisions related to a given situation, which guarantees the right action is performed. The automation of tasks and dependency on machines may reduce human abilities [105]. When combined with AI and machine learning, new applications will benefit from automated decision-making [106], with efficient usage of network resources, minimization of operational costs, coordination of computational resources, and efficient and effective data management mechanisms [60] associated with the quality of experience [104,118].
- Transformation: an enormous number of raw observations (created by the machine and human sensors) can be transformed into higher-level abstractions [57] that are meaningful for human or automated decision-making processes [55]. When an IoE solution provides transformation, smart things act independently, with minimal or no human intervention [51]. With the support of wireless communications and AI, humans benefit from improvements in technological advancements [42,101] by collecting, modeling, and reasoning the context [36].
- Reactive: having the ability to promptly react to a changing environment;
- Adaptive: having the steadier ability to adapt their behavior to changes;
- Predictive: having the ability to use computation and analytics techniques to identify relevant patterns, in-depth knowledge of the environment, and the most appropriate solutions or possible evolutions to each IoE system situation.
4.2. Type
4.2.1. Presentation
- Physical: Physical entities are tangible devices that generate sensor data or perform actions changing the environment. The data retrieved from physical sensors represent a low-level context [36]. Examples of physical sensors are temperature sensors, pressure sensors, biosensors, light sensors [6], and human sensors [35]. Examples of the physical actuator are a door opener actuator invoked by an intelligent system and human actuators.
- Cyber or virtual: An abstract information entity that invokes sensor or actuator functions but does not directly interact with the physical world. Examples of cyber or virtual entities are computer programs and systems, communication processes, and monitoring activities with no physical body (e.g., sensing web service) [51,66,74]. Virtual entities use web services technology to send and receive data from many sources [36].
- Cyber-physical or logical: Represents the connection of the cyber and physical worlds as a combination of physical and virtual entities to generate meaningful information [25,83]. Similar to virtual entities, they commonly use web services technology to send and receive data and interact with the physical world [36]. They are autonomous objects augmented with sensing, actuating, processing, storing capabilities [45]. Examples of cyber-physical entities are web services dedicated to providing weather information resulted from physical sensors that sense weather information and virtual sensors that process historic weather data.
4.2.2. Nature
- Electronic-based: Define physical IoT devices constituted of electronic or mechanical systems that sense or actuate physical phenomena.
- Software-based: Define virtual entities that process information from data sources or generate analytical results.
- Human-based: Refers to humans or virtual entities based on knowledge provided or expressed by human perception about any phenomena arising in their physical, virtual, or social environment.
- Non-human-based: Define biotic sensors/actuators or virtual entities based on knowledge data provided by biotic perception about any phenomena arising in their physical environment. In the constantly growing area of animal cognition, sensor networks monitor the health and well-being of animals in livestock herds and in animal surveillance applications [121].
4.2.3. Use
- Embeddable: Things that are in the user or under the user’s skin, that are non-autonomous, or embedded in carry-on devices [42]. The level of autonomy ranges from human-companion device tasks [65] to opportunistic devices, which decide and act independently [24,28]. For example, a mobile phone is a ubiquitous, convenient and user-friendly device and has many sensors embedded [48], which is why it has turned into a global mobile sensing device [67].
- Surroundable: Things that are autonomous, near or around the user, but which have no physical contact with the user. Recently, several non-contact techniques have been interpreted as highly valuable in dealing with highly infectious diseases such as COVID-19. In a pandemic scenario, non-contact sensing was able to detect information without direct contact with the patients and without devices physically touching the body [122].
4.2.4. Role
- Sensor: A device that observes and senses. Sensing is a read operation over a context entity. The data collected by a sensor is stored and processed intelligently to derive useful inferences and to support the decision-making process [46]. Sensors are monitor devices and physical entities, which provide the information required to immediately control actuators, whereas actuators act on the physical entity or control other things [28,35,114].
- Actuator: Affects a particular domain of the physical space or a combination of both. Actuation is a write operation over a context entity, in which the conceptual entity represents the domain of a sensor or an actuator [44]. Actuators perform the decided actions and effect a change in the environment [36,39,48].
- Sensor and actuator: This device is a hybrid of the two previous categories, and it can gather data and act within its environment.
4.2.5. Engagement
- Participatory: The IoE enabler (sensor node or actuator) is actively involved and actively reports observations [120]. It can provide information about the environment or surroundings, as well as any other sensory information that could be on social groups (social sensing) or with everyone (public sensing) or at the community level [37,67,106].
- Opportunistic: The IoE node has minimal or no involvement—it senses and monitors tasks running in the background. Embedding sensors trigger the data automatically (either periodically or based on events).
4.3. Observation
4.3.1. Location
4.3.2. Reach
4.3.3. Mobility
- Fixed/static/immobile: Objects that remain static to a specific location or cannot move. Their observations are restricted to a specific location, in a static or very constrained (in terms of mobility) environment that is not designed to move (relative to their point of installation) without being uninstalled.
- Mobile: The objects move [44], and their location may be calculated in absolute coordinates or relative to reference nodes in the network [81], requiring wireless communications to transmit data and allow configuration and control [113]. Their movement and mobility capability are controlled independently (or autonomously) or dependently through device users [43].
4.3.4. Time
- Pull method: The software component in the control of obtaining sensor data from sensors makes a requisition periodically (after specific intervals) or instantly obtains sensed data [107].
- Real time: refers to the immediate data processing to provide instant results for a time-sensitive application.
- Near real time: refers to situations when the delay time is still relevant for the application, but the computation process is not as immediate as real time.
- Batch-processing: refers to situations when data are first collected and processed at a predetermined interval or when a specified volume of data is available [37].
4.3.5. Mode
- Pooled interdependence: The lowest level of collaboration, in which each collaborator barely contributes to the collaboration environment and benefits from the contributions of others. The collaborators neither synchronize nor negotiate the nature of each other’s contributions.
- Sequential interdependence: The middle level, in which the contributions of one collaborator become the inputs to another collaborator contributions. In this case, there is a temporal ordering of the collaboration efforts.
- Reciprocal interdependence: The highest interdependence level, in which one collaborator’s contributions are the next collaborator’s inputs, and collaborators must also negotiate the nature of each other’s contributions to the collaboration environment.
- Sensed: Data gathered through sensors.
- Derived: Includes the sensed data stored in databases or the information generated by performing computational operations on sensor data. Data aggregation is the ground for the application’s workflow and unconditionally impacts the application’s quality. Distinct aggregations may have specific requirements to be supported by design [107].
- Manually provided: Human sensors provide the context information [36].
4.4. Capabilities
4.4.1. Communication
4.4.2. Processing
4.4.3. Storage
- Device-level: devices are participants in the storage and compute process;
- Network-level: the storage process uses remote connections to fog computing nodes;
- Cluster level: storage function is provided between a set of interconnected servers [114].
5. Discussion and Comparison with Previous Work
6. Results
6.1. Validation of Proposed IoE Taxonomy in Distinct Domains
6.2. Example of Classification of One Application with the Proposed Taxonomy
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evans, D. The Internet of Everything: How More Relevant and Valuable Connections Will Change the World. Available online: https://www.cisco.com/web/about/ac79/docs/innov/IoE.pdf.comiweb/aboutlac79/docs/innov/IoE.pdf (accessed on 8 September 2020).
- Charmonman, S.; Mongkhonvanit, P. Special Consideration for Big Data in IoE or Internet of Everything. In Proceedings of the 13th International Conference on ICT and Knowledge Engineering (ICT and Knowledge Engineering 2015), Bangkok, Thailand, 18–20 November 2015; pp. 147–150. [Google Scholar]
- Yu, J.; Kwon, S.; Kang, H.; Kim, S.; Bae, J.; Pyo, C. A Framework on Semantic Thing Retrieval Method in IoT and IoE Environment. In Proceedings of the International Conference on Platform Technology and Service, Jeju, Korea, 29–31 January 2018; pp. 1–6. [Google Scholar]
- Auger, A.; Exposito, E.; Lochin, E. Towards the Internet of Everything: Deployment Scenarios for a QoO-Aware Integration Platform. In Proceedings of the IEEE 4th World Forum Internet Things, Singapore, 5–8 February 2018; pp. 499–504. [Google Scholar]
- Xu, G.; Shi, Y.; Sun, X.; Shen, W. Internet of Things in Marine Environment Monitoring: A Review. Sensors 2019, 19, 1711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivas, K.; Jabbar, M.A.; Neeraja, K.S. Sensors in IoE: A Review. Int. J. Eng. Technol. 2018, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, B.; Li, K.-C.; Yang, L.T.; Esposito, A. Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives; Springer: Singapore, 2018; ISBN 978-981-10-5860-8. [Google Scholar]
- Vaya, D.; Hadpawat, T. Internet of Everything (IoE): A New Era of IoT. In ICCCE 2019; Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; Volume 570, pp. 1–6. [Google Scholar]
- Bojanova, I.; Hurlburt, G.; Voas, J. Imagineering an Internet of Anything. Computer—IEEE Comput. Soc. 2014, 47, 72–77. [Google Scholar] [CrossRef]
- Fiaidhi, J.; Mohammed, S. Internet of Everything as a Platform for Extreme Automation. IT Prof. 2019, 21, 21–25. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. Internet of Nano-Things, Things and Everything: Future Growth Trends. Future Internet 2018, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, C.R.; Rajesh, B.; Saikalyan, P.; Premsagar, K.; Yadav, E.S. A Review on the Different Types of Internet of Things (IoT). J. Adv. Res. Dyn. Control Syst. 2019, 11, 6. [Google Scholar]
- Raj, A.; Prakash, S. Internet of Everything: A Survey Based on Architecture, Issues and Challenges. In Proceedings of the 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, Gorakhpur, India, 2–4 November 2018; pp. 1–6. [Google Scholar]
- Ghosh, A.; Chakraborty, D.; Law, A. Artificial Intelligence in Internet of Things. CAAI Trans. Intell. Technol. 2018, 3, 208–218. [Google Scholar] [CrossRef]
- Langley, D.J.; van Doorn, J.; Ng, I.C.L.; Stieglitz, S.; Lazovik, A.; Boonstra, A. The Internet of Everything: Smart Things and Their Impact on Business Models. J. Bus. Res. 2020, 122, 853–863. [Google Scholar] [CrossRef]
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A Review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Proceedings of the Internet Technologies and Applications, Wrexham, UK, 8–11 September 2015; pp. 219–224. [Google Scholar]
- Masoud, M.; Jaradat, Y.; Manasrah, A.; Jannoud, I. Sensors of Smart Devices in the Internet of Everything (IoE) Era: Big Opportunities and Massive Doubts. J. Sens. 2019, 2019, 1–26. [Google Scholar] [CrossRef]
- Vandebroek, S.V. 1, 2 Three Pillars Enabling the Internet of Everything: Smart Everyday Objects Information-Centric Networks, and Automated Real-Time Insights. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 31 January–4 February 2016; pp. 14–20. [Google Scholar]
- Majeed, A. Developing Countries and Internet-of-Everything (IoE). In Proceedings of the IEEE 7th Annual Computing and Communication Workshop and Conference, Las Vegas, NV, USA, 9–11 January 2017; pp. 1–4. [Google Scholar]
- Nonaka, I.; Toyama, R. The Knowledge-Creating Theory Revisited: Knowledge Creation as a Synthesizing Process. In The Essentials of Knowledge Management; Palgrave Macmillan: London, UK, 2015; pp. 95–110. [Google Scholar]
- Di Martino, B.; Li, K.-C.; Yang, L.T.; Esposito, A. Trends and Strategic Researches in Internet of Everything. In Internet of Everything; Internet of Things; Di Martino, B., Li, K.-C., Yang, L.T., Esposito, A., Eds.; Springer: Singapore, 2018; pp. 1–12. ISBN 978-981-10-5860-8. [Google Scholar]
- Roy, S.; Chowdhury, C. Integration of Internet of Everything (IoE) with Cloud. In Beyond the Internet of Things; Internet of Things; Batalla, J.M., Mastorakis, G., Mavromoustakis, C.X., Pallis, E., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 199–222. ISBN 978-3-319-50756-9. [Google Scholar]
- Jennex, M.E. Big Data, the Internet of Things, and the Revised Knowledge Pyramid. SIGMIS Database 2017, 48, 69–79. [Google Scholar] [CrossRef]
- Alkhabbas, F.; Spalazzese, R.; Davidsson, P. Characterizing Internet of Things Systems through Taxonomies: A Systematic Mapping Study. Internet Things 2019, 7, 100084. [Google Scholar] [CrossRef]
- Yaqoob, I.; Ahmed, E.; Hashem, I.A.T.; Ahmed, A.I.A.; Gani, A.; Imran, M.; Guizani, M. Internet of Things Architecture: Recent Advances, Taxonomy, Requirements, and Open Challenges. IEEE Wirel. Commun. 2017, 24, 10–16. [Google Scholar] [CrossRef]
- Mountrouidou, X.; Billings, B.; Mejia-Ricart, L. Not Just Another Internet of Things Taxonomy: A Method for Validation of Taxonomies. Internet Things 2019, 6, 100049. [Google Scholar] [CrossRef]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw. Appl. 2019, 24, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Eris, O.; Drury, J.; Ercolini, D. A Collaboration-Focused Taxonomy of the Internet of Things. In Proceedings of the IEEE 2nd World Forum on Internet of Things, Milan, Italy, 14–16 December 2015; pp. 29–34. [Google Scholar]
- Smutný, P. Different Perspectives on Classification of the Internet of Things. In Proceedings of the 17th International Carpathian Control Conference, Tatranska Lomnica, Slovakia, 29 May–1 June 2016; pp. 692–696. [Google Scholar]
- Sinche, S.; Raposo, D.; Armando, N.; Rodrigues, A.; Boavida, F.; Pereira, V.; Silva, J.S. A Survey of IoT Management Protocols and Frameworks. IEEE Commun. Surv. Tutor. 2019, 22, 1168–1190. [Google Scholar] [CrossRef]
- Younis, M. Internet of Everything and Everybody: Architecture and Service Virtualization. Comput. Commun. 2018, 131, 66–72. [Google Scholar] [CrossRef]
- Nezami, Z.; Zamanifar, K. Internet of Things/Internet of Everything: Structure and Ingredients. IEEE Potentials 2019, 38, 12–17. [Google Scholar] [CrossRef]
- Al-Emran, M.; Mezhuyev, V.; Kamaludin, A.; Shaalan, K. The Impact of Knowledge Management Processes on Information Systems: A Systematic Review. Int. J. Inf. Manag. 2018, 43, 173–187. [Google Scholar] [CrossRef]
- Philip, J. An Application of the Dynamic Knowledge Creation Model in Big Data. Technol. Soc. 2018, 54, 120–127. [Google Scholar] [CrossRef]
- Haller, S.; Serbanati, A.; Bauer, M.; Carrez, F. A Domain Model for the Internet of Things. In Proceedings of the IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 411–417. [Google Scholar]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 414–454. [Google Scholar] [CrossRef] [Green Version]
- Haron, N.; Jaafar, J.; Aziz, I.A.; Hassan, M.H.; Shapiai, M.I. Data Trustworthiness in Internet of Things: A Taxonomy and Future Directions. In Proceedings of the IEEE Conference on Big Data and Analytics, Kuching, Malaysia, 16–17 November 2017; pp. 25–30. [Google Scholar]
- Gluhak, A.; Krco, S.; Nati, M.; Pfisterer, D.; Mitton, N.; Razafindralambo, T. A Survey on Facilities for Experimental Internet of Things Research. IEEE Commun. Mag. 2011, 49, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Bellavista, P.; Berrocal, J. A Survey on Fog Computing for the Internet of Things. Pervasive Mob. Comput. 2019, 52, 71–99. [Google Scholar] [CrossRef]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Shahid, N.; Aneja, S. Internet of Things: Vision, Application Areas and Research Challenges. In Proceedings of the International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), Palladam, India, 10–11 February 2017; pp. 583–587. [Google Scholar]
- Obinikpo, A.A.; Kantarci, B. Big Sensed Data Meets Deep Learning for Smarter Health Care in Smart Cities. J. Sens. Actuator Netw. 2017, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Patwa, F.; Sandhu, R. An Access Control Framework for Cloud-Enabled Wearable Internet of Things. In Proceedings of the IEEE 3rd International Conference on Collaboration and Internet Computing, San Jose, CA, USA, 15–17 October 2017; pp. 328–338. [Google Scholar]
- Dorsemaine, B.; Gaulier, J.; Wary, J.; Kheir, N.; Urien, P. Internet of Things: A Definition & Taxonomy. In Proceedings of the 9th International Conference on Next Generation Mobile Applications, Services and Technologies, Cambridge, UK, 9–11 September 2015; pp. 72–77. [Google Scholar]
- Fortino, G.; Rovella, A.; Russo, W.; Savaglio, C. On the Classification of Cyberphysical Smart Objects in the Internet of Things. In Proceedings of the International Workshop on Networks of Cooperating Objects for Smart Cities 2014 (UBICITEC 2014), Berlin, Germany, 14 April 2014; Volume 1156, pp. 86–94. [Google Scholar]
- Chen, C.; Helal, S. A Device-Centric Approach to a Safer Internet of Things. In Proceedings of the International Workshop on Networking and Object Memories for the Internet of Things, Beijing, China, 18 September 2011; pp. 1–6. [Google Scholar]
- Sholla, S.; Naaz, R.; Chishti, M.A. Ethics Aware Object Oriented Smart City Architecture. China Commun. 2017, 14, 160–173. [Google Scholar] [CrossRef]
- Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Service Composition Approaches in IoT: A Systematic Review. J. Netw. Comput. Appl. 2018, 120, 61–77. [Google Scholar] [CrossRef]
- Bugeja, J.; Davidsson, P.; Jacobsson, A. Functional Classification and Quantitative Analysis of Smart Connected Home Devices. In Proceedings of the Global Internet of Things Summit, Bilbao, Spain, 4–6 June 2018; pp. 1–6. [Google Scholar]
- Oberländer, A.M.; Röglinger, M.; Rosemann, M.; Kees, A. Conceptualizing Business-to-Thing Interactions—A Sociomaterial Perspective on the Internet of Things. Eur. J. Inf. Syst. 2018, 27, 486–502. [Google Scholar] [CrossRef]
- Bamgboye, O.; Liu, X.; Cruickshank, P. Towards Modelling and Reasoning About Uncertain Data of Sensor Measurements for Decision Support in Smart Spaces. In Proceedings of the IEEE 42nd Annual Computer Software and Applications Conference, Tokyo, Japan, 23–27 July 2018; pp. 744–749. [Google Scholar]
- Ashraf, Q.M.; Habaebi, M.H. Autonomic Schemes for Threat Mitigation in Internet of Things. J. Netw. Comput. Appl. 2015, 49, 112–127. [Google Scholar] [CrossRef]
- Kotis, K.; Athanasakis, I.; Vouros, G.A. Semantically Enabling IoT Trust to Ensure and Secure Deployment of IoT Entities. Int. J. Internet Things Cyber-Assur. 2018, 1, 3–21. [Google Scholar] [CrossRef]
- Alsamani, B.; Lahza, H. A Taxonomy of IoT: Security and Privacy Threats. In Proceedings of the International Conference on Information and Computer Technologies, DeKalb, IL, USA, 23–25 March 2018; pp. 72–77. [Google Scholar]
- Zhang, J.; Chen, B.; Zhao, Y.; Cheng, X.; Hu, F. Data Security and Privacy-Preserving in Edge Computing Paradigm: Survey and Open Issues. IEEE Access 2018, 6, 18209–18237. [Google Scholar] [CrossRef]
- Oteafy, S.M.A.; Hassanein, H.S. Leveraging Tactile Internet Cognizance and Operation via IoT and Edge Technologies. Proc. IEEE 2019, 107, 364–375. [Google Scholar] [CrossRef]
- Thota, C.; Mavromoustakis, C.X.; Mastorakis, G.; Batalla, J. Internet of Everything: A Survey on Technologies, Challenges, and Applications. In Cloud and Fog Computing in 5G Mobile Networks: Emerging Advances and Applications; The Institution of Engineering and Technology: Stevenage, UK, 2017; pp. 211–238. [Google Scholar] [CrossRef]
- Naha, R.K.; Garg, S.; Georgakopoulos, D.; Jayaraman, P.P.; Gao, L.; Xiang, Y.; Ranjan, R. Fog Computing: Survey of Trends, Architectures, Requirements, and Research Directions. IEEE Access 2018, 6, 47980–48009. [Google Scholar] [CrossRef]
- Hassan, N.; Gillani, S.; Ahmed, E.; Yaqoob, I.; Imran, M. The Role of Edge Computing in Internet of Things. IEEE Commun. Mag. 2018, 56, 110–115. [Google Scholar] [CrossRef]
- Ahad, A.; Tahir, M.; Yau, K.-L.A. 5G-Based Smart Healthcare Network: Architecture, Taxonomy, Challenges and Future Research Directions. IEEE Access 2019, 7, 100747–100762. [Google Scholar] [CrossRef]
- Armando, N.; Rodrigues, A.; Pereira, V.; Sá Silva, J.; Boavida, F. An Outlook on Physical and Virtual Sensors for a Socially Interactive Internet. Sensors 2018, 18, 2578. [Google Scholar] [CrossRef] [Green Version]
- Hui, T.K.L.; Sherratt, R.S. Towards Disappearing User Interfaces for Ubiquitous Computing: Human Enhancement from Sixth Sense to Super Senses. J. Ambient. Intell. Humaniz. Comput. 2017, 8, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Yebda, T.; Benois-Pineau, J.; Amieva, H.; Frolicher, B. Multi-Sensing of Fragile Persons for Risk Situation Detection: Devices, Methods, Challenges. In Proceedings of the International Conference on Content-Based Multimedia Indexing, Dublin, Ireland, 4–6 September 2019; pp. 1–6. [Google Scholar]
- Phuttharak, J.; Loke, S.W. A Review of Mobile Crowdsourcing Architectures and Challenges: Toward Crowd-Empowered Internet-of-Things. IEEE Access 2019, 7, 304–324. [Google Scholar] [CrossRef]
- Chaochaisit, W.; Bessho, M.; Koshizuka, N.; Sakamura, K. Human Localization Sensor Ontology: Enabling OWL 2 DL-Based Search for User’s Location-Aware Sensors in the IoT. In Proceedings of the IEEE Tenth International Conference on Semantic Computing, Laguna Hills, CA, USA, 4–6 February 2016; pp. 107–111. [Google Scholar]
- Salim, F.; Haque, U. Urban Computing in the Wild: A Survey on Large Scale Participation and Citizen Engagement with Ubiquitous Computing, Cyber Physical Systems, and Internet of Things. Int. J. Hum. Comput. Stud. 2015, 81, 31–48. [Google Scholar] [CrossRef]
- Bisdikian, C.; Kaplan, L.M.; Srivastava, M.B. On the Quality and Value of Information in Sensor Networks. ACM Trans. Sen. Netw. 2013, 9, 1–26. [Google Scholar] [CrossRef]
- Shah, S.A.; Seker, D.Z.; Hameed, S.; Draheim, D. The Rising Role of Big Data Analytics and IoT in Disaster Management: Recent Advances, Taxonomy and Prospects. IEEE Access 2019, 7, 54595–54614. [Google Scholar] [CrossRef]
- Ristoski, P.; Paulheim, H. Semantic Web in Data Mining and Knowledge Discovery: A Comprehensive Survey. J. Web Semant. 2016, 36, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Qanbari, S.; Behinaein, N.; Rahimzadeh, R.; Dustdar, S. Gatica: Linked Sensed Data Enrichment and Analytics Middleware for IoT Gateways. In Proceedings of the 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 38–43. [Google Scholar]
- Rozsa, V.; Denisczwicz, M.; Dutra, M.; Ghodous, P.; Silva, C.F.D.; Moayeri, N.; Biennier, F.; Figay, N. An Application Domain-Based Taxonomy for IoT Sensors. In Transdisciplinary Engineering: Crossing Boundaries, Proceedings of the 23rd ISPE International Conference on Transdisciplinary Engineering: Crossing Boundaries, Curitiba, Brazil, 3–7 October 2016; IOS Press BV: Amsterdam, The Netherlands, 2016; Volume 4, pp. 249–258. [Google Scholar]
- Yaqoob, I.; Hashem, I.A.T.; Gani, A.; Mokhtar, S.; Ahmed, E.; Anuar, N.B.; Vasilakos, A.V. Big Data: From Beginning to Future. Int. J. Inf. Manag. 2016, 36, 1231–1247. [Google Scholar] [CrossRef]
- Gao, J.; Lei, L.; Yu, S. Big Data Sensing and Service: A Tutorial. In Proceedings of the IEEE First International Conference on Big Data Computing Service and Applications, Redwood City, CA, USA, 30 March–2 April 2015; pp. 79–88. [Google Scholar]
- Subbu, K.P.; Vasilakos, A.V. Big Data for Context Aware Computing—Perspectives and Challenges. Big Data Res. 2017, 10, 33–43. [Google Scholar] [CrossRef]
- Ge, M.; Bangui, H.; Buhnova, B. Big Data for Internet of Things: A Survey. Future Gener. Comput. Syst. 2018, 87, 601–614. [Google Scholar] [CrossRef]
- Moustaka, V.; Vakali, A.; Anthopoulos, L.G. A Systematic Review for Smart City Data Analytics. ACM Comput. Surv. 2018, 51, 1–41. [Google Scholar] [CrossRef]
- Kotis, K.; Katasonov, A. Semantic Interoperability on the Internet of Things: The Semantic Smart Gateway Framework. Int. J. Distrib. Syst. Technol. 2013, 4, 47–69. [Google Scholar] [CrossRef]
- Agarwal, R.; Fernandez, D.G.; Elsaleh, T.; Gyrard, A.; Lanza, J.; Sanchez, L.; Georgantas, N.; Issarny, V. Unified IoT Ontology to Enable Interoperability and Federation of Testbeds. In Proceedings of the IEEE 3rd World Forum on Internet of Things, Reston, VA, USA, 12–14 December 2016; pp. 70–75. [Google Scholar]
- Shit, R.C.; Sharma, S.; Puthal, D.; Zomaya, A.Y. Location of Things (LoT): A Review and Taxonomy of Sensors Localization in IoT Infrastructure. IEEE Commun. Surv. Tutor. 2018, 20, 2028–2061. [Google Scholar] [CrossRef]
- Saad, E.; Elhosseini, M.; Haikal, A.Y. Recent Achievements in Sensor Localization Algorithms. Alex. Eng. J. 2018, 57, 4219–4228. [Google Scholar] [CrossRef]
- Pozza, R.; Nati, M.; Georgoulas, S.; Moessner, K.; Gluhak, A. Neighbor Discovery for Opportunistic Networking in Internet of Things Scenarios: A Survey. IEEE Access 2015, 3, 1101–1131. [Google Scholar] [CrossRef] [Green Version]
- Berger, S.; Denner, M.-S.; Röglinger, M. The Nature of Digital Technologies—Development of a Multi-Layer Taxonomy. In Proceedings of the Twenty-Sixth European Conference on Information Systems, Portsmouth, UK, 23–28 June 2018; pp. 1–19. [Google Scholar]
- Sahinel, D.; Akpolat, C.; Gorur, O.C.; Sivrikaya, F. Integration of Human Actors in IoT and CPS Landscape. In Proceedings of the IEEE 5th World Forum on Internet of Things, Limerick, Ireland, 15–18 April 2019; pp. 485–490. [Google Scholar]
- Gutwin, C.; Greenberg, S. The importance of awareness for team cognition in distributed collaboration. In Team Cognition: Understanding the Factors That Drive Process and Performance; Salas, E., Fiore, S.M., Eds.; American Psychological Association: Washington, DC, USA, 2004; pp. 177–201. ISBN 978-1-59147-103-5. [Google Scholar]
- Rho, S.; Chen, Y. Social Internet of Things: Applications, Architectures and Protocols. Future Gener. Comput. Syst. 2018, 82, 667–668. [Google Scholar] [CrossRef]
- Edwards, J.S. The Essentials of Knowledge Management; Palgrave Macmillan: London, UK, 2015; ISBN 978-1-349-57523-7. [Google Scholar]
- Nickerson, R.C.; Varshney, U.; Muntermann, J. A Method for Taxonomy Development and Its Application in Information Systems. Eur. J. Inf. Syst. 2013, 22, 336–359. [Google Scholar] [CrossRef]
- Kitchenham, B.; Pretorius, R.; Budgen, D.; Pearl Brereton, O.; Turner, M.; Niazi, M.; Linkman, S. Systematic Literature Reviews in Software Engineering—A Tertiary Study. Inf. Softw. Technol. 2010, 52, 792–805. [Google Scholar] [CrossRef]
- Kotis, K.I.; Vouros, G.A.; Spiliotopoulos, D. Ontology Engineering Methodologies for the Evolution of Living and Reused Ontologies: Status, Trends, Findings and Recommendations. Knowl. Eng. Rev. 2020, 35. [Google Scholar] [CrossRef]
- Bajaj, G.; Agarwal, R.; Singh, P.; Georgantas, N.; Issarny, V. 4W1H in IoT Semantics. IEEE Access 2018, 6, 65488–65506. [Google Scholar] [CrossRef]
- Bajaj, G.; Agarwal, R.; Singh, P.; Georgantas, N.; Issarny, V. A Study of Existing Ontologies in the IoT-Domain. arXiv 2017, arXiv:1707.00112, 1–24. [Google Scholar]
- De Matos, E.; Amaral, L.A.; Hessel, F. Context-Aware Systems: Technologies and Challenges in Internet of Everything Environments. In Beyond the Internet of Things; Internet of Things; Batalla, J.M., Mastorakis, G., Mavromoustakis, C.X., Pallis, E., Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 1–25. ISBN 978-3-319-50756-9. [Google Scholar]
- Ur Rehman, M.H.; Liew, C.S.; Wah, T.Y.; Khan, M.K. Towards Next-Generation Heterogeneous Mobile Data Stream Mining Applications: Opportunities, Challenges, and Future Research Directions. J. Netw. Comput. Appl. 2017, 79, 1–24. [Google Scholar] [CrossRef]
- Bonte, P.; Tommasini, R.; De Turck, F.; Ongenae, F.; Valle, E.D. C-Sprite: Efficient Hierarchical Reasoning for Rapid RDF Stream Processing. In Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems—DEBS ’19, Darmstadt, Germany, 24–28 June 2019; pp. 103–114. [Google Scholar]
- Prat, N. A Hierarchical Model for Knowledge Management. In Encyclopedia of Knowledge Management; IGI Global: Hershey, PA, USA, 2011; pp. 376–388. ISBN 978-1-59904-931-1. [Google Scholar]
- Ein-Dor, P. Taxonomies of Knowledge. In Encyclopedia of Knowledge Management, 2nd ed.; IGI Global: Hershey, PA, USA, 2011; pp. 1490–1499. [Google Scholar]
- Perera, C.; Vasilakos, A.V. A Knowledge-Based Resource Discovery for Internet of Things. Knowledge-Based Syst. 2016, 109, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Mahdavinejad, M.; Rezvan, M.; Barekatain, M. Machine Learning for Internet of Things Data Analysis: A Survey. Digit. Commun. Netw. 2018, 4, 161–175. [Google Scholar] [CrossRef]
- Grant, J.; Parisi, F. Logic and Knowledge Bases. In Encyclopedia of Knowledge Management, 2nd ed.; Schwartz, D., Ed.; IGI Global: Hershey, PA, USA, 2010; ISBN 978-1-59904-931-1. [Google Scholar]
- Höller, J.; Tsiatsis, V.; Mulligan, C. Toward a Machine Intelligence Layer for Diverse Industrial IoT Use Cases. IEEE Intell. Syst. 2017, 32, 64–71. [Google Scholar] [CrossRef]
- Ruta, M.; Scioscia, F.; Loseto, G.; Pinto, A.; Di Sciascio, E. Machine Learning in the Internet of Things: A Semantic-Enhanced Approach. Semant. Web 2018, 10, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Damiani, E. Toward Big Data Risk Analysis. In Proceedings of the IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October–1 November 2015; pp. 1905–1909. [Google Scholar]
- Pal, D.; Vanijja, V.; Varadarajan, V. Quality Provisioning in the Internet of Things Era: Current State and Future Directions. In Proceedings of the 10th International Conference on Advances in Information Technology, Bangkok, Thailand, 10–13 December 2018; pp. 1–7. [Google Scholar]
- Mohamed, A.; Najafabadi, M.K.; Wah, Y.B.; Zaman, E.A.K.; Maskat, R. The State of the Art and Taxonomy of Big Data Analytics: View from New Big Data Framework. Artif. Intell. Rev. 2019. [Google Scholar] [CrossRef]
- Atat, R.; Liu, L.; Wu, J.; Li, G.; Ye, C.; Yang, Y. Big Data Meet Cyber-Physical Systems: A Panoramic Survey. IEEE Access 2018, 6, 73603–73636. [Google Scholar] [CrossRef]
- Cai, S.; Gallina, B.; Nyström, D.; Seceleanu, C. Data Aggregation Processes: A Survey, a Taxonomy, and Design Guidelines. Computing 2018, 1–33. [Google Scholar] [CrossRef]
- Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: Perspectives and Challenges. Wirel. Netw. 2014, 20, 2481–2501. [Google Scholar] [CrossRef]
- Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Internet of Things Applications: A Systematic Review. Comput. Netw. 2019, 148, 241–261. [Google Scholar] [CrossRef]
- Barker, L.; White, M.; Patoli, Z.; Huggins, B.; Pascu, T.; Curran, M.; Beloff, N. Taxonomy for Internet of Things—Tools for Monitoring Personal Effects. In Proceedings of the 4th International Conference on Pervasive and Embedded Computing and Communication Systems, Lisbon, Portugal, 7–9 January 2014; Volume 1, pp. 67–71. [Google Scholar]
- Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud Computing and Internet of Things: A Survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [Google Scholar] [CrossRef]
- Neshenko, N.; Bou-Harb, E.; Crichigno, J.; Kaddoum, G.; Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Commun. Surv. Tutor. 2019, 21, 2702–2733. [Google Scholar] [CrossRef]
- Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The Industrial Internet of Things (IIoT): An Analysis Framework. Comput. Ind. 2018, 101, 1–12. [Google Scholar] [CrossRef]
- Siow, E.; Tiropanis, T.; Hall, W. Analytics for the Internet of Things: A Survey. ACM Comput. Surv. 2018, 51, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Chellappan, V.; Sivalingam, K.M. Security and privacy in the Internet of Things. In Internet of Things—Principles and Paradigms; Morgan Kaufmann: Burlington, MA, USA, 2016; pp. 183–200. ISBN 978-0-12-805395-9. [Google Scholar]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.J.; Norvig, P.; Davis, E. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall Series in Artificial Intelligence; Prentice Hall: Upper Saddle River, NJ, USA, 2016; ISBN 978-0-13-604259-4. [Google Scholar]
- Ahmed, E.; Yaqoob, I.; Gani, A.; Imran, M.; Guizani, M. Internet-of-Things-Based Smart Environments: State of the Art, Taxonomy, and Open Research Challenges. IEEE Wirel. Commun. 2016, 23, 10–16. [Google Scholar] [CrossRef]
- Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN Ontology of the W3C Semantic Sensor Network Incubator Group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- Montori, F.; Jayaraman, P.P.; Yavari, A.; Hassani, A.; Georgakopoulos, D. The Curse of Sensing: Survey of Techniques and Challenges to Cope with Sparse and Dense Data in Mobile Crowd Sensing for Internet of Things. Pervasive Mob. Comput. 2018, 49, 111–125. [Google Scholar] [CrossRef]
- Ravignani, A.; Olivera, V.; Gingras, B.; Hofer, R.; Hernández, C.; Sonnweber, R.-S.; Fitch, W. Primate Drum Kit: A System for Studying Acoustic Pattern Production by Non-Human Primates Using Acceleration and Strain Sensors. Sensors 2013, 13, 9790–9820. [Google Scholar] [CrossRef] [Green Version]
- Taylor, W.; Abbasi, Q.H.; Dashtipour, K.; Ansari, S.; Shah, S.A.; Khalid, A.; Imran, M.A. A Review of the State of the Art in Non-Contact Sensing for COVID-19. Sensors 2020, 20, 5665. [Google Scholar] [CrossRef]
- Oliveira, L.; Schneider, D.; De Souza, J.; Shen, W. Mobile Device Detection Through WiFi Probe Request Analysis. IEEE Access 2019, 7, 98579–98588. [Google Scholar] [CrossRef]
- Abdul-Ghani, H.A.; Konstantas, D.; Mahyoub, M. A Comprehensive IoT Attacks Survey Based on a Building-Blocked Reference Model. Int. J. Adv. Comput. Sci. Appl. 2018, 9. [Google Scholar] [CrossRef]
- Abbas, S.S.A.; Priya, K.L. Self Configurations, Optimization and Protection Scenarios with Wireless Sensor Networks in IIoT. In Proceedings of the International Conference on Communication and Signal Processing, Chennai, India, 4–6 April 2019; pp. 0679–0684. [Google Scholar]
- Nayyer, M.Z.; Raza, I.; Hussain, S.A. A Survey of Cloudlet-Based Mobile Augmentation Approaches for Resource Optimization. ACM Comput. Surv. (CSUR) 2019, 51, 107. [Google Scholar] [CrossRef]
- Mon, A.; Giorgio, H.R.D.; María, E.D.; Querel, M.; Figuerola, C. Evaluation of Technological Development for the Definition of Industries 4.0. In Proceedings of the Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación, Buenos Aires, Argentina, 28–30 November 2018; pp. 1–6. [Google Scholar]
- Pliatsios, A.; Goumopoulos, C.; Kotis, K. A Review on IoT Frameworks Supporting Multi-Level Interoperability—The Semantic Social Network of Things Framework. Int. J. Adv. Internet Technol. 2020, 13, 46–64. [Google Scholar]
- Mehmood, Y.; Ahmad, F.; Yaqoob, I.; Adnane, A.; Imran, M.; Guizani, S. Internet-of-Things-Based Smart Cities: Recent Advances and Challenges. IEEE Commun. Mag. 2017, 55, 16–24. [Google Scholar] [CrossRef]
- Fan, H.; Li, J.; Chen, N.; Hu, C. Capability Representation Model for Heterogeneous Remote Sensing Sensors: Case Study on Soil Moisture Monitoring. Environ. Model. Softw. 2015, 70, 65–79. [Google Scholar] [CrossRef]
- Mehmood, E.; Anees, T. Challenges and Solutions for Processing Real-Time Big Data Stream: A Systematic Literature Review. IEEE Access 2020, 8, 119123–119143. [Google Scholar] [CrossRef]
- Uschold, M.; Gruninger, M. Ontologies: Principles, Methods and Applications. Knowl. Eng. Rev. 1996, 11, 93–155. [Google Scholar] [CrossRef] [Green Version]
- Akoka, J.; Comyn-Wattiau, I.; Laoufi, N. Research on Big Data—A Systematic Mapping Study. Comput. Stand. Interfaces 2017, 54, 105–115. [Google Scholar] [CrossRef]
- Melo, G.; Oliveira, L.; Schneider, D.; de Souza, J. Towards an Observatory for Mobile Participatory Sensing Applications. In Proceedings of the IEEE 21st International Conference on Computer Supported Cooperative Work in Design, Wellington, New Zealand, 26–28 April 2017; pp. 305–312. [Google Scholar]
- Peng, S.-L.; Pal, S.; Huang, L. Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm; Intelligent Systems Reference Library; Springer International Publishing: Cham, Germany, 2020; Volume 174, ISBN 978-3-030-33595-3. [Google Scholar]
- Farias, V.; Oliveira, L.M.L.; Souza, J. Internet of Everything Taxonomy: Technical Report of IoE Applications. Federal University of Rio de Janeiro: Systems Engineering and Computer Science Program. Available online: https://www.cos.ufrj.br/index.php/pt-BR/publicacoes-pesquisa (accessed on 27 November 2020).
- Maisonneuve, N.; Stevens, M.; Niessen, M.E.; Steels, L. NoiseTube: Measuring and Mapping Noise Pollution with Mobile Phones. In Proceedings of the Information Technologies in Environmental Engineering; Athanasiadis, I.N., Rizzoli, A.E., Mitkas, P.A., Gómez, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 215–228. [Google Scholar]
- Miluzzo, E.; Lane, N.D.; Fodor, K.; Peterson, R.; Lu, H.; Musolesi, M.; Eisenman, S.B.; Zheng, X.; Campbell, A.T. Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Application. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, Raleigh, NC, USA, 5–7 November 2008; pp. 337–350. [Google Scholar]
- Gaonkar, S.; Li, J.; Choudhury, R.R.; Cox, L.; Schmidt, A. Micro-Blog: Sharing and Querying Content Through Mobile Phones and Social Participation, Applications, and Services. In Proceedings of the 6th International Conference on Mobile Systems, Breckenridge, CO, USA, 17–20 June 2008; pp. 174–186. [Google Scholar]
- Consolvo, S.; McDonald, D.W.; Toscos, T.; Chen, M.Y.; Froehlich, J.; Harrison, B.; Klasnja, P.; LaMarca, A.; LeGrand, L.; Libby, R.; et al. Activity Sensing in the Wild: A Field Trial of Ubifit Garden. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 1797–1806. [Google Scholar]
- Estrin, D.; Chandy, K.M.; Young, R.M.; Smarr, L.; Odlyzko, A.; Clark, D.; Reding, V.; Ishida, T.; Sharma, S.; Cerf, V.G.; et al. Participatory Sensing: Applications and Architecture [Internet Predictions]. IEEE Internet Comput. 2010, 14, 12–42. [Google Scholar] [CrossRef]
- Masters, K.L.; Nichol, R.C.; Hoyle, B.; Lintott, C.; Bamford, S.; Edmondson, E.M.; Fortson, L.; Keel, W.C.; Schawinski, K.; Smith, A.; et al. Galaxy Zoo: Bars in Disk Galaxies. Mon. Not. R. Astron. Soc. 2011, 411, 2026–2034. [Google Scholar] [CrossRef] [Green Version]
- Wiggins, A. EBirding: Technology Adoption and the Transformation of Leisure into Science. In Proceedings of the iConference, Seattle, WA, USA, 8–11 February 2011; pp. 798–799. [Google Scholar]
- Siewiorek, D.; Smailagic, A.; Furukawa, J.; Krause, A.; Moraveji, N.; Reiger, K.; Shaffer, J.; Wong, F.L. SenSay: A Context-Aware Mobile Phone. In Proceedings of the Seventh IEEE International Symposium on Wearable Computers, White Plains, NY, USA, 21–23 October 2003; pp. 248–249. [Google Scholar]
- Nachman, L.; Baxi, A.; Bhattacharya, S.; Darera, V.; Deshpande, P.; Kodalapura, N.; Mageshkumar, V.; Rath, S.; Shahabdeen, J.; Acharya, R. Jog Falls: A Pervasive Healthcare Platform for Diabetes Management. In Proceedings of the Pervasive Computing; Floréen, P., Krüger, A., Spasojevic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 94–111. [Google Scholar]
- Kanjo, E.; Bacon, J.; Roberts, D.; Landshoff, P. MobSens: Making Smart Phones Smarter. IEEE Pervasive Comput. 2009, 8, 50–57. [Google Scholar] [CrossRef]
- Hamilton, M.; Salim, F.; Cheng, E.; Choy, S.L. Transafe. SIGCAS Comput. Soc 2011, 41, 32–37. [Google Scholar] [CrossRef]
- Chen, M.; Ma, Y.; Song, J.; Lai, C.-F.; Hu, B. Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring. Mob. Netw. Appl. 2016, 21, 825–845. [Google Scholar] [CrossRef]
- Liebig, T.; Piatkowski, N. Predictive Trip Planning—Smart Routing in Smart Cities. In Proceedings of the Workshop EDBT/ICDT 2014 Joint Conference, Athens, Greece, 28 March 2014; pp. 331–338. [Google Scholar]
- Chiang, L.; Lu, B.; Castillo, I. Big Data Analytics in Chemical Engineering. Annu. Rev. Chem. Biomol. Eng. 2017, 8, 63–85. [Google Scholar] [CrossRef] [PubMed]
- Kamilaris, A.; Gao, F.; Prenafeta-Boldu, F.X.; Ali, M.I. Agri-IoT: A Semantic Framework for Internet of Things-Enabled Smart Farming Applications. In Proceedings of the IEEE 3rd World Forum on Internet of Things, Reston, VA, USA, 12–14 December 2016; pp. 442–447. [Google Scholar]
- Vargheese, R.; Dahir, H. An IoT/IoE Enabled Architecture Framework for Precision on Shelf Availability: Enhancing Proactive Shopper Experience. In Proceedings of the 2014 IEEE International Conference on Big Data, Washington, DC, USA, 27–30 October 2014; pp. 21–26. [Google Scholar]
Literature Review Stage | Number of Papers |
---|---|
Search of ISI Web of Science | 235 |
Search of Scopus | 323 |
Search of IEEE | 118 |
Search of ACM Digital Library | 22 |
Science@Direct | 62 |
Total | 760 |
Duplicates | 366 |
Total after discarding duplicates | 394 |
Approval for analytical reading | 76 |
Rejected | 318 |
Category | Knowledge | Type | Observation | Capabilities | Score | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dimensions | Explicitness | Structure | Trust | Outcome | Action | Presentation | Nature | Use | Role | Engagement | Location | Reach | Mobility | Time | Mode | Communication | Processing | Storage | Total Acquired | |
Ref. | Year | |||||||||||||||||||
This study | 2020 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 100% |
[24] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 38.8% | |||||||||||
[26] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[27] | 2019 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[30] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[57] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[61] | 2019 | ✓ | ✓ | 11.1% | ||||||||||||||||
[39] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 50% | |||||||||
[64] | 2019 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[65] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 50% | |||||||||
[69] | 2019 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[84] | 2019 | ✓ | ✓ | 11.1% | ||||||||||||||||
[95] | 2019 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[105] | 2019 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[107] | 2019 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[109] | 2019 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[112] | 2019 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[126] | 2019 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[62] | 2018 | ✓ | ✓ | 11.1% | ||||||||||||||||
[37] | 2018 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[55] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[56] | 2018 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[59] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[60] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 50% | |||||||||
[49] | 2018 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[50] | 2018 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[51] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[76] | 2018 | ✓ | ✓ | 11.1% | ||||||||||||||||
[80] | 2018 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[81] | 2018 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[83] | 2018 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[99] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[102] | 2018 | ✓ | ✓ | 11.1% | ||||||||||||||||
[104] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 44.4% | ||||||||||
[106] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 55.5% | ||||||||
[113] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 72.2% | |||||
[114] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[116] | 2018 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[77] | 2018 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[120] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[124] | 2018 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[127] | 2018 | ✓ | ✓ | 11.1% | ||||||||||||||||
[25] | 2017 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[41] | 2017 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[42] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[43] | 2017 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[47] | 2017 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[63] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[48] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[40] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[75] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[79] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[94] | 2017 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 50% | |||||||||
[101] | 2017 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[133] | 2017 | ✓ | 5.5% | |||||||||||||||||
[29] | 2016 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[44] | 2016 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[66] | 2016 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[72] | 2016 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[73] | 2016 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[111] | 2016 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[115] | 2016 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[118] | 2016 | ✓ | ✓ | 11.1% | ||||||||||||||||
[28] | 2015 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 44.4% | ||||||||||
[53] | 2015 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[67] | 2015 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[71] | 2015 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[74] | 2015 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 38.8% | |||||||||||
[82] | 2015 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[45] | 2014 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[36] | 2014 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 55.5% | ||||||||
[108] | 2014 | ✓ | ✓ | 11.1% | ||||||||||||||||
[110] | 2014 | ✓ | ✓ | ✓ | ✓ | ✓ | 27.7% | |||||||||||||
[35] | 2013 | ✓ | ✓ | ✓ | 16.6% | |||||||||||||||
[68] | 2013 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33.3% | ||||||||||||
[46] | 2011 | ✓ | ✓ | ✓ | ✓ | 22.2% | ||||||||||||||
[38] | 2011 | ✓ | ✓ | ✓ | 16.6% |
Category/Dimension | Applications Classified According to IoE Proposed Taxonomy Characteristics: Cyber-Physical Systems (CPS) [136], Crowdsourcing Applications [137,138,139,140,141,142,143,144,145,146,147], Applications with Analytics: [148,149,150,151,152] | |
---|---|---|
Knowledge | Explicitness | Tacit [114,137,138,139,140,144,145,146,147,151,152] Explicit [136,138,139,140,142,143,144,146,147,150,151,152] Implicit [136,141,145,146,149,150,151,152] |
Structure | Structured [135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152] Semi-structured [135,146,147,152] Unstructured [135,145] | |
Trust | Trustful [135,148,149,150,151,152] Untrustful [137,138,139,140,141,142,143,144,145,147] | |
Outcome | Complements [135,137,138,139,140,141,142,143,144,145,146,147,148,149,150] Substitutes [135,151,152] | |
Action | Automation [135,137,150,151,152] Transformation [135,138,139,140,141,142,143,144,146,147,148,149] | |
Type | Presentation | Cyber [135] Physical [135,137,138,139,142,143,144,145,146,147,148,149,150,151,152] Cyber-physical [135,140,142,144,145,146,147,148,149,150,151,152] |
Nature | Electronic-based [135,137,148,149,150,151,152] Software-based [135,147,150] Human-based [135,137,138,139,140,141,142,143,144,145,146,147,151,152] | |
Use | Wearables [135,137,138,139,140,141,142,152] Surroundable [135,148,149,150,151] Embeddable [140,142,150] | |
Role | Sensor [137,138,139,140,141,142,143,144,145,146,147,149,152] Actuator [152] Sensor and actuator [135,148,150,151] | |
Engagement | Opportunistic [135,140,144,146,149,151] Participatory [141,142,143,145,147,148,150,152] | |
Observation | Location | Coarse-grained [137,138,139,141,142,143,144,147,148,149,150,151] Fine-grained [135,140,145,146,152] |
Reach | Full [137,138,139,141,142,143,144,145,147,148] Partial [135,140,146,150,151] | |
Mobility | Fixed [152] Mobile [137,138,139,140,141,142,143,144,145,146,147,148,149,150,151] | |
Time | Pull [140,145,147,148,149,150,152] Push [135,137,138,139,140,141,142,143,144,146,151,152] | |
Mode | Sense [135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152] Derive [135,140,145,146,149,151,152] Manually provided [142,143,148] | |
Capabilities | Communication | Semantic [135,137,138,139,140,141,142,143,144,145,146,147] Pragmatic [135,148,149,150,151] Conceptual [152] |
Processing | Cloud [135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152] Fog mobile edge: [139,140,144,145,147] | |
Storage | Device level [150] Network level [149,152] Cluster level [135,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152] |
Category/Dimension | Characteristics of an industry domain application (on-shelf availability application [152]) | |
---|---|---|
Knowledge | Explicitness | Tacit: shoppers’ experience, staff experience | Explicit: enterprise point of sale (POS) systems and inventory systems | Implicit: algorithm and models from learning systems |
Structure | Structured: enterprise data| Semi-structured: weather data, local events, and promotion details | Unstructured: real-time sensor data | |
Trust | Trustful: data from enterprise systems | Untrustful: real-time data from shoppers’ sensors | |
Outcome | Complements: Recommended action plans | Substitutes: predictive analytics to provide insights | |
Action | Automation: stock business processes | Transformation: insights into buyers’ behavior | |
Type | Presentation | Cyber: predictive analytics algorithm | Physical: cameras, shoppers, staff of the store, light, infra-red, and RFID sensors | Cyber-Physical: point of sale (POS) systems |
Nature | Electronic-based: video cameras, light, infra-red, and RFID sensors | Software-based: point of sale (POS) systems | Human-based: shoppers, the staff of the store | Non-human-based: shoppers’ pets | |
Use | Wearables: shoppers’ mobile devices | Surroundables: video cameras, infra-red sensors | Embeddable: light, RFID sensors | |
Role | Sensor: video cameras, light, infra-red, and RFID sensors, shoppers, the staff of the store | Actuator: staff of the store who restock products or actuators to rectify problems | sensor, and actuator: staff of the store who senses and executes recommended actions | |
Engagement | Opportunistic: shoppers | Participatory: shoppers/staff of the store | |
Observation | Location | Coarse-grained: supply chain context | Fine-grained: store environment |
Reach | Full: supply chain context Partial: physical store environment | |
Mobility | Fixed: inside the store supply chain context | Mobile: shoppers’ mobile devices | |
Time | Pull: meta-data produced and sent to the cloud | Push: forecast demands provided by systems | |
Mode | Sense: store sensor devices | Derive: information derived from sensors |Manually provided: data provides from shoppers’ demand | |
Capabilities | Communication | Conceptual communication: supports the execution of recommended actions and provides a novel shopping experience |
Processing | Cloud: metadata produced | Fog/Edge: Edge: video streams processed locally | Mobile cloud: mobile devices from shoppers | |
Storage | Device-level: processing video streams locally | Network level | Cluster level: metadata produced is sent to the cloud |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farias da Costa, V.C.; Oliveira, L.; de Souza, J. Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy. Sensors 2021, 21, 568. https://doi.org/10.3390/s21020568
Farias da Costa VC, Oliveira L, de Souza J. Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy. Sensors. 2021; 21(2):568. https://doi.org/10.3390/s21020568
Chicago/Turabian StyleFarias da Costa, Viviane Cunha, Luiz Oliveira, and Jano de Souza. 2021. "Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy" Sensors 21, no. 2: 568. https://doi.org/10.3390/s21020568
APA StyleFarias da Costa, V. C., Oliveira, L., & de Souza, J. (2021). Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy. Sensors, 21(2), 568. https://doi.org/10.3390/s21020568