The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups
<p>Power output and muscle oxygen saturation during workload-matched concentric and eccentric type of interval exercise. (<b>A</b>,<b>B</b>) Example of the power output being produced by one subject during one interval of concentric (<b>A</b>) and eccentric (<b>B</b>) interval exercise, respectively, before training. (<b>C</b>–<b>F</b>) Positive and negative work being performed by the left leg of one subject during all intervals of a session of concentric (<b>C</b>) and eccentric (<b>D</b>) interval exercise and the resulting effects on muscle oxygen saturation and hemoglobin concentration in m. vastus lateralis (<b>E</b>,<b>F</b>) for one leg before training.</p> "> Figure 2
<p>Temporal response of perceived exertion and heart rate during concentric and eccentric type of interval exercise. Line graph with whiskers indicating mean values ± SE for perceived exertion (<b>A</b>,<b>B</b>) and heart rate (<b>C</b>,<b>D</b>) as measured each 2 min during the interval-type pedaling exercise before and after the eight weeks of training of the two groups under the concentric (<b>A</b>,<b>C</b>) or eccentric (<b>B</b>,<b>D</b>) contraction protocol. The rest and pedaling phase of the respective concentric and eccentric interval exercise is exemplarily indicated in panels A and B. *, <span class="html-italic">p</span> < 0.05 vs. 0 min. ‡, <span class="html-italic">p</span> < 0.05 vs. concentric. Repeated-measures ANOVA with a post-hoc test of least significant difference.</p> "> Figure 3
<p>Temporal response of systolic and diastolic blood pressure during concentric and eccentric type of interval exercise. Line graph with whiskers indicating mean values ± SE for diastolic blood pressure (<b>A</b>,<b>B</b>) and systolic blood pressure (<b>C</b>,<b>D</b>) as measured each 2 min during the interval-type pedaling exercise before and after the eight weeks of training under the concentric (<b>A</b>,<b>C</b>) or eccentric (<b>B</b>,<b>D</b>) contraction group. *, <span class="html-italic">p</span> < 0.05 vs. 0 min. ‡, <span class="html-italic">p</span> < 0.05 vs. concentric. <span>$</span> <span class="html-italic">p</span> < 0.05 vs. pre. Repeated-measures ANOVA with a post-hoc test of least significant difference.</p> "> Figure 4
<p>Temporal response of blood glucose and lactate concentration during concentric and eccentric type of interval exercise. Line graph with whiskers indicating mean values ± SE for blood glucose concentration (<b>A</b>,<b>B</b>) and blood lactate concentration (<b>C</b>,<b>D</b>) as measured each 2 min in the two groups during the interval-type pedaling exercise before and after the eight weeks of training under the concentric (<b>A</b>,<b>C</b>) or eccentric (<b>B</b>,<b>D</b>) contraction protocol. *, <span class="html-italic">p</span> < 0.05 vs. 0 min. ‡, <span class="html-italic">p</span> < 0.05 vs. concentric. <span>$</span>, vs. pre. Repeated-measures ANOVA with post-hoc test of least significant difference.</p> "> Figure 5
<p>Connectivity of correlations between stress during the stimulus of interval exercise and the adjustments with training. Network display of the 131 linear relationships between indices of metabolic and mechanical stress during interval exercise and training-induced adjustments (nodes) for Pearson correlations, which passed a threshold of |r| > 0.70 and <span class="html-italic">p</span> < 0.05. Straight red and stippled blue lines, respectively, indicate positive and negative correlations. The strength of the correlation is indicated by the thickness of the lines connecting two nodes. Red and orange colored nodes highlight stress during the first and last session of interval exercise, respectively. Green colored nodes emphasize training-induced fold changes. Note the high connectivity with parameters demonstrating an interaction effect of interval training × the contraction group with the reddish-indicated indices of stress during interval exercise that define (highlighted) entities. This comprises selective correlations of the green-highlighted fold changes in positive peak power and the corresponding rate of force development (black arrows), the fold changes for the AUC of the blood lactate concentration during the ramp test (red arrow) or during interval exercise (green arrow), with the AUC of the perceived exertion, heart rate, the systolic blood pressure, the hemoglobin accruing in m. gastrocnemius, and the oxygen deficit in m. vastus lateralis, and the average power during interval exercise. For the ramp exercise, only the AUCs over the same duration of exercise before training were considered. Abbreviation code: _A, AUC during exercise; BPdia, diastolic blood pressure; BPsys, systolic blood pressure; bm, body mass; DO2, oxygen deficit; DO2_ave, average oxygen deficit; fold, post vs. pre ratio; gas, m. gastrocnemius; glucose, blood glucose concentration; HR, heart rate; _I, during interval exercise; L, _S, number of intervals (sets); left leg; lactate, blood lactate concentration; nPP, negative peak power; nW, negative work; P_ave, average power; post, after training; PPO, peak power output during the ramp test; pPP, positive peak power; pre, prior to training; pW, positive work; rPP, reactive peak power; R, right leg; _R, during ramp test; pRFD, rate of force development during the development of positive peak power; RPE, rate of perceived exertion; sP, target power per PPO; _t, exercise duration; tHb, concentration of total hemoglobin; vas, m. vastus lateralis; tHb_ave, average concentration of total hemoglobin; VO2peak, peak oxygen uptake.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Soft Robotic Device
2.4. Training
2.5. Test Sessions
2.6. Measurement of Oxygen Saturation and Hemoglobin Concentration
2.7. Statistical Analysis
3. Results
3.1. Subjects
3.2. Characteristics of the Muscle Stimulus during Interval Exercise
3.3. Cardiovascular and Metabolic Reactions during Interval Exercise
3.4. Progression of the Imposed Exercise Stimulus with Interval Training
3.5. Training Modifies Metabolic and Cardiovascular Reactions during Interval Exercise
3.6. Training Modifies Metabolic and Cardiovascular Parameters before and after Interval Exercise
3.7. Effects of Training and Contraction Protocol in the Two Groups on Aerobic Capacity and Power
3.8. Training and Contraction Protocol Modify Cardiovascular Reactions during Cyclic Ramp Exercise
3.9. Relationships between the Muscle Stimulus and Adjustment of Cardiovascular/Metabolic Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fluck, M.; Hoppeler, H. Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev. Physiol. Biochem. Pharmacol. 2003, 146, 159–216. [Google Scholar] [PubMed]
- Joyner, M.J.; Casey, D.P. Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiol. Rev. 2015, 95, 549601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppeler, H.; Howald, H.; Conley, K.; Lindstedt, S.L.; Claassen, H.; Vock, P.; Weibel, E.R. Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. 1985, 59, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Frese, S.; Valdivieso, P.; Jaecker, V.; Harms, S.; Konou, T.; Tappe, K.; Schiffer, T.; Frese, L.; Bloch, W.; Flück, M. Expression of Metabolic and Myogenic Factors during two Competitive Seasons in Elite Junior Cyclists. Dtsch. Z. Sportmed. 2016, 67, 150–158. [Google Scholar] [CrossRef]
- Terjung, R.L. Muscle Adaptations to Aerobic Training. Sports Sci. Exch. 1995, 8, 1–4. [Google Scholar]
- Hoppeler, H.; Baum, O.; Mueller, M.; Lurman, G. Molekulare Mechanismen der Anpassungsfähigkeit der Skelettmuskulatur. Schweiz. Z. Med. Traumatol. 2011, 59, 6–13. [Google Scholar]
- Zoll, J.; Steiner, R.; Meyer, K.; Vogt, M.; Hoppeler, H.; Fluck, M. Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur. J. Appl. Physiol. 2006, 96, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Hickson, R.C. Interference of strength development by simultaneously training for strength and endurance. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 45, 255–263. [Google Scholar] [CrossRef]
- Seiler, S.; Tønnessen, E. Intervals, Thresholds, and Long Slow Distance: The Role of Intensity and Duration in Endurance Training. Sportscience 2009, 13, 32–53. [Google Scholar]
- Abbott, B.C.; Bigland, B. The effects of force and speed changes on the rate of oxygen consumption during negative work. J. Physiol. 1953, 120, 319–325. [Google Scholar] [CrossRef] [Green Version]
- Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Elmer, S.J.; LaStayo, P.C. Revisiting the positive aspects of negative work. J. Exp. Biol. 2014, 217 Pt 14, 2434–2436. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, A.F.; Schroeder, E.T.; Zheng, L.; Jensky, N.E.; Sattler, F.R. Cardiopulmonary responses to eccentric and concentric resistance exercise in older adults. Age Ageing 2006, 35, 291–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaStayo, P.; Marcus, R.; Dibble, L.; Wong, B.; Pepper, G. Eccentric versus traditional resistance exercise for older adult fallers in the community: A randomized trial within a multi-component fall reduction program. BMC Geriatr. 2017, 17, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klarod, K.; Philippe, M.; Gatterer, H.; Burtscher, M. Different training responses to eccentric endurance exercise at low and moderate altitudes in pre-diabetic men: A pilot study. Sport Sci. Health 2017, 13, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Julian, V.; Thivel, D.; Costes, F.; Touron, J.; Boirie, Y.; Pereira, B.; Perrault, H.; Duclos, H.; Richard, R. Eccentric Training Improves Body Composition by Inducing Mechanical and Metabolic Adaptations: A Promising Approach for Overweight and Obese Individuals. Front. Physiol. 2018, 9, 1013. [Google Scholar] [CrossRef]
- Gotshall, R.W.; Gootman, J.; Byrnes, W.C.; Fleck, S.J.; Valovich, T.C. Noninvasive characterization of the blood pressure response to the double-leg press exercise. J. Exerc. Physiol. 1999, 2. Available online: https://www.asep.org/asep/asep/Gotshall.html (accessed on 5 May 2020).
- Thompson, P.D.; Franklin, B.A.; Balady, G.J.; Blair, S.N.; Corrado, D.; Estes, N.A.M.; Fulton, J.E.; Gordon, N.F.; Haskell, W.L.; Link, M.S.; et al. American Heart Association Council on Nutrition, Physical Activity, and Metabolism; American Heart Association Council on Clinical Cardiology; American College of Sports Medicine. Exercise and acute cardiovascular events placing the risks into perspective: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation 2007, 115, 2358–2368. [Google Scholar]
- Fluck, M.; Bosshard, R.; Lungarella, M. Cardiovascular and Muscular Consequences of Work Matched Interval-Type of Concentric and Eccentric Pedaling Exercise on a Soft Robot. Front. Physiol. 2017, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K. Eccentric contraction: Unraveling mechanisms of force enhancement and energy conservation. J. Exp. Biol. 2016, 219 Pt 2, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Philippe, M.; Krüsmann, P.J.; Mersa, L.; Eder, E.M.; Gatterer, H.; Melmer, A.; Ebenbichler, C.F.; Burtscher, M. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males. Biol. Sport 2016, 33, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, E.; Gill, G. Protein glycosylation in diabetes mellitus: Biochemical and clinical considerations. Pract. Diabetes Int. 2000, 17, 21–25. [Google Scholar] [CrossRef]
- Paschalis, V.; Nikolaidis, M.G.; Theodorou, A.A.; Panayiotou, G.; Fatouros, I.G.; Koutedakis, Y.; Jamurtas, A.Z. A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Med. Sci. Sports Exerc. 2011, 43, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.C.C.; Tseng, W.C.; Huang, G.L.; Chen, H.L.; Tseng, K.W.; Nosaka, K. Superior Effects of Eccentric to Concentric Knee Extensor Resistance Training on Physical Fitness, Insulin Sensitivity and Lipid Profiles of Elderly Men. Front. Physiol. 2017, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement executive summary. Diabetes Care 2010, 33, 2692–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amri, J.; Parastesh, M.; Sadegh, M.; Latifi, S.A.; Alaee, M. High-intensity interval training improved fasting blood glucose and lipid profiles in type 2 diabetic rats more than endurance training; possible involvement of irisin and betatrophin. Physiol. Int. 2019, 106, 213224. [Google Scholar] [CrossRef]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitze, D.P.; Franchi, M.; Popp, W.L.; Ruoss, S.; Catuogno, S.; Camenisch, K.; Lehmann, D.; Schmied, C.M.; Niederseer, D.; Frey, W.O.; et al. Concentric and Eccentric Pedaling-Type Interval Exercise on a Soft Robot for Stable Coronary Artery Disease Patients: Toward a Personalized Protocol. JMIR Res. Protoc. 2019, 8, e10970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayda, M.; Ribeiro, P.A.B.; Juneau, M.; Nigam, A. Review Comparison of Different Forms of Exercise Training in Patients with Cardiac Disease: Where Does High-Intensity Interval Training Fit? Can. J. Cardiol. 2016, 32, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Oosterhof, R.; Ith, M.; Trepp, R.; Christ, E.; Flück, M. Regulation of whole body energy homeostasis with growth hormone replacement therapy and endurance exercise. Physiol. Genom. 2011, 43, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Ryan, T.E.; Brophy, P.; Lin, C.T.; Hickner, R.C.; Neufer, P.D. Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: A comparison with in situ measurements. J. Physiol. 2014, 592, 3231–3241. [Google Scholar] [CrossRef]
- Schmutz, S.; Däpp, C.; Wittwer, M.; Durieux, A.-C.; Mueller, M.; Weinstein, F.; Vogt, M.; Hoppeler, H.; Flück, M. A hypoxia complement differentiates the muscle response to endurance exercise. Exp. Physiol. 2010, 95, 723–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogt, M.; Hoppeler, H.H. Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. 2014, 116, 1446–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.; Steiner, R.; Lastayo, P.; Lippuner, K.; Allemann, Y.; Eberli, F.; Schmid, J.; Saner, H.; Hoppeler, H. Eccentric Exercise in Coronary Patients: Central Hemodynamic and Metabolic Responses. Med. Sci. Sports Exerc. 2003, 35, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.N.; Trombold, J.R.; Dhindsa, M.; Lin, H.F.; Tanaka, H. Arterial stiffening following eccentric exercise-induced muscle damage. J. Appl. Physiol. 2010, 109, 1102–1108. [Google Scholar] [CrossRef] [Green Version]
- Ide, K.; Higaki, Y.; Nishizumi, M.; Kiyonaga, A.; Shindo, M.; Tanaka, H. Impaired non-insulin mediated glucose uptake after downhill running in rats. Life Sci. 1996, 59, 1601–1605. [Google Scholar] [CrossRef]
- Bansal, N. Prediabetes diagnosis and treatment: A review. World J. Diabetes 2015, 6, 296–303. [Google Scholar] [CrossRef]
- Andersen, O.E.; Nielsen, O.B.; Overgaard, K. Early effects of eccentric contractions on muscle glucose uptake. J. Appl. Physiol. 2019, 126, 376–385. [Google Scholar] [CrossRef]
- Di Stefano, J. Power analysis and sustainable forest management. Ecol. Manag. 2001, 154, 141–153. [Google Scholar] [CrossRef]
Training Phase | Contraction Group | Target Power/PPO (W/W) | p-Value (Group) | Intervals (Number) | Work/PPO (kJ/W) | p-Value (Group) |
---|---|---|---|---|---|---|
week one to two | concentric | 0.54 ± 0.06 | 0.025 | 10 | 0.33 ± 0.04 | |
eccentric | 0.71 ± 0.098 | 7 | 0.30 ± 0.04 | 0.509 | ||
week three to four | concentric | 0.60 ± 0.03 | 0.004 | 15 | 0.54 ± 0.03 | |
eccentric | 0.87 ± 0.043 | 11 | 0.57 ± 0.03 | 0.535 | ||
week five to six | concentric | 0.67 ± 0.03 | 0.002 | 15 | 0.60 ± 0.02 | |
eccentric | 0.95 ± 0.031 | 11 | 0.63 ± 0.02 | 0.580 | ||
week seven to eight | concentric | 0.73 ± 0.02 | 0.001 | 15 | 0.65 ± 0.02 | |
eccentric | 1.02 ± 0.027 | 11 | 0.68 ± 0.02 | 0.644 | ||
group: p | <0.001 | 0.581 | ||||
h2 | 0.558 | 0.010 | ||||
phase: p | 0.001 | <0.001 | ||||
h2 | 0.421 | 0.848 | ||||
phase × p | 0.639 | 0.755 | ||||
group:h2 | 0.052 | 0.037 |
Age | Gender | Height | Mass | PPP | NPP | PPO | pHR | pVO2 | |
---|---|---|---|---|---|---|---|---|---|
(years) | m/f | (cm) | (kg) | (Watt) | (Watt) | (Watt) | (bpm) | (mL O2 min−1 kg−1) | |
concentric: | 31.4 ± 4.5 | 2/4 | 171.2 ± 4.4 | 67.7 ± 5.1 | 850.8 ± 158.7 | 344.2 ± 75.3 | 277.6 ± 34.1 | 179.0 ± 4.1 | 49.2 ± 5.5 |
eccentric: | 43.6 ± 5.6 | 2/4 | 175.2 ± 3.6 | 67.2 ± 4.1 | 719.1 ± 177.4 | 429.9 ± 84.2 | 237.2 ± 34.1 | 172.2 ± 5.1 | 35.3 ± 6.2 |
p-value: | 0.121 | 0.497 | 0.857 | 0.597 | 0.472 | 0.426 | 0.359 | 0.140 |
Total Oxygen Deficit | Average Oxygen Deficit | Total Hemoglobin | Average Hemoglobin | ||||||
---|---|---|---|---|---|---|---|---|---|
(%SmO2 × s) | average (%SmO2) | total (g dL−1 × s) | average (g dL−1) | ||||||
before training | concentric | 39,282.8 ± 19,690.1 | 35.6 ± 16.5 | 14,260.7 ± 1544.1 | 13.1 ± 0.7 | ||||
eccentric | 32,555.4 ± 20,440.6 | 41.7 ± 26.2 | 10,243.7 ± 341.4 | 13.1 ± 0.4 | |||||
p-value (concentric vs. eccentric) | 0.489 | 0.575 | <0.001 | 0.815 | |||||
p-value (vs. before) | p-value (vs. before) | p-value (vs. before) | p-value (vs. before) | ||||||
after training | concentric | 71,152.2 ± 31,540.2 | <0.001 | 41.6 ± 18.5 | 0.256 | 20,004.0 ± 2771.1 | <0.001 | 11.7 ± 1.8 | 0.069 |
eccentric | 37,903.5 ± 25,932.6 | 0.517 | 30.1 ± 20.6 | 0.060 | 13,180.7 ± 3366 | 0.017 | 10.5 ± 2.7 | 0.004 | |
p-value (concentric vs. eccentric) | 0.029 | 0.259 | <0.001 | 0.286 | |||||
p-value (training) | 0.006 | 0.473 | <0.001 | 0.002 | |||||
p-value (training × group) | 0.037 | 0.036 | 0.092 | 0.236 | |||||
p-value (group) | 0.096 | 0.782 | <0.001 | 0.365 | |||||
p-value (muscle) | 0.640 | 0.643 | 0.821 | 0.880 |
RPE | Lactate | Glucose | Heart Rate | Diastolic Blood Pressure | Systolic Blood Pressure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(BORG) | (mM) | (mM) | (bpm) | (mmHg) | (mmHg) | |||||||
p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | |
time | <0.001 | 0.812 | <0.001 | 0.496 | 0.950 | 0.060 | <0.001 | 0.808 | 0.987 | 0.044 | <0.001 | 0.438 |
training | 0.004 | 0.099 | 0.001 | 0.130 | 0.638 | 0.003 | 0.092 | 0.039 | 0.500 | 0.006 | 0.405 | 0.009 |
group | 0.004 | 0.102 | 0.001 | 0.141 | <0.001 | 0.162 | 0.009 | 0.091 | <0.001 | 0.215 | 0.012 | 0.077 |
time × training | 0.031 | 0.234 | 0.523 | 0.128 | 0.524 | 0.124 | 0.999 | 0.030 | 0.977 | 0.050 | 0.948 | 0.061 |
time × group | 0.710 | 0.073 | 0.694 | 0.078 | 0.996 | 0.020 | 0.242 | 0.143 | 0.995 | 0.021 | 1.000 | 0.003 |
training × group | 0.015 | 0.072 | 0.050 | 0.050 | 0.031 | 0.058 | 0.009 | 0.092 | 0.200 | 0.021 | 0.001 | 0.131 |
time × training × group | 0.393 | 0.108 | 0.811 | 0.064 | 0.972 | 0.033 | 0.796 | 0.070 | 0.966 | 0.035 | 0.799 | 0.063 |
pVO2 | PPO | PPP | pRFD | NPP | nRFD | |
---|---|---|---|---|---|---|
% Post vs. pre | (mL O2 min−1 kg−1) | (Watt) | (Watt) | (N s−1) | (Watt) | (N s−1) |
concentric: | −0.65 ± 1.81 | 4.90 ± 2.26 | 7.64 ± 3.80 | 3.98 ± 5.43 | 26.69 ± 17.62 | −3.90 ± 9.79 |
p-value: | 0.729 | 0.062 | 0.084 | 0.488 | 0.174 | 0.702 |
eccentric: | 2.07 ± 2.80 | 2.19 ± 2.65 | 27.80 ± 5.02 | 38.41 ± 8.13 | −40.73 ± 15.77 | −10.32 ± 11.21 |
p-value: | 0.488 | 0.431 | 0.001 | 0.002 | 0.036 | 0.388 |
p-values training | 0.888 | 0.083 | <0.001 | 0.004 | 0.022 | 0.373 |
group: | 0.149 | 0.333 | 0.829 | 0.691 | 0.591 | 0.692 |
training × group): | 0.353 | 0.499 | 0.043 | 0.029 | 0.391 | 0.687 |
RPE | Lactate | Glucose | Heart Rate | Systolic Blood Pressure | Diastolic Blood Pressure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(BORG) | (mM) | (mM) | (bpm) | (mmHg) | (mmHg) | |||||||
p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | p-Value | h2-Value | |
time | 0.002 | 0.194 | <0.001 | 0.804 | 0.019 | 0.118 | <0.001 | 0.932 | 0.221 | 0.034 | 0.005 | 0.166 |
training | 0.011 | 0.141 | 0.100 | 0.06 | 0.273 | 0.027 | 0.631 | 0.005 | 0.628 | 0.005 | 0.007 | 0.155 |
group | <0.001 | 0.889 | <0.001 | 0.25 | 0.572 | 0.116 | 0.045 | 0.088 | <0.001 | 0.713 | 0.854 | 0.069 |
time × training | 0.326 | 0.163 | 0.006 | 0.349 | 0.843 | 0.071 | 0.697 | 0.096 | 0.792 | 0.08 | 0.362 | 0.152 |
time × group | 0.765 | 0.072 | 0.032 | 0.26 | 0.943 | 0.037 | 0.347 | 0.136 | 0.992 | 0.017 | 0.481 | 0.113 |
training × group | 0.261 | 0.029 | <0.001 | 0.296 | 0.497 | 0.011 | 0.007 | 0.153 | 0.148 | 0.047 | 0.186 | 0.039 |
time × training × group | 0.993 | 0.017 | 0.067 | 0.227 | 0.981 | 0.024 | 0.544 | 0.103 | 0.739 | 0.074 | 0.295 | 0.147 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasser, B.; Fitze, D.; Franchi, M.; Frei, A.; Niederseer, D.; Schmied, C.M.; Catuogno, S.; Frey, W.; Flück, M. The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups. Sensors 2021, 21, 173. https://doi.org/10.3390/s21010173
Gasser B, Fitze D, Franchi M, Frei A, Niederseer D, Schmied CM, Catuogno S, Frey W, Flück M. The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups. Sensors. 2021; 21(1):173. https://doi.org/10.3390/s21010173
Chicago/Turabian StyleGasser, Benedikt, Daniel Fitze, Martino Franchi, Annika Frei, David Niederseer, Christian M. Schmied, Silvio Catuogno, Walter Frey, and Martin Flück. 2021. "The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups" Sensors 21, no. 1: 173. https://doi.org/10.3390/s21010173
APA StyleGasser, B., Fitze, D., Franchi, M., Frei, A., Niederseer, D., Schmied, C. M., Catuogno, S., Frey, W., & Flück, M. (2021). The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups. Sensors, 21(1), 173. https://doi.org/10.3390/s21010173