FGFF Descriptor and Modified Hu Moment-Based Hand Gesture Recognition
<p>The flowchart of the hand segmentation and finger extraction.</p> "> Figure 2
<p>Different effects of the good and bad threshold values in segmentation: (<b>a</b>) gives the depth image while (<b>b</b>–<b>d</b>) show different segmentation results using different threshold values.</p> "> Figure 3
<p>The depth image (<b>left</b>) and extracted elements (<b>right</b>): palm center with a higher quality denoted by RED point versus central moment of the hand by BLACK cross where the red and blue circles, respectively, represent inscribed and averaging circles.</p> "> Figure 4
<p>The fingers and distribution of FF descriptor vs. frequencies.</p> "> Figure 5
<p>The predefined hand gestures for numbers from zero to nine.</p> "> Figure 6
<p>One group of depth images and segmented hand region: the depth images given in the first and third rows with corresponding hand in the second and fourth rows.</p> "> Figure 7
<p>The gestures with their scale and rotation transformations.</p> "> Figure 8
<p>Distributions of the Hu moments via different transformations, in which the elements of a1–a6 are computed by the Formula (9): (<b>a</b>,<b>b</b>) respectively present the values of Hu moments for gestures of Two and Four.</p> "> Figure 9
<p>Nine samples from three different types of gestures and extracted hand regions.</p> "> Figure 10
<p>Larger interdistances and smaller intradistances among hand gestures.</p> "> Figure 11
<p>Digital gesture recognition confusion matrix.</p> ">
Abstract
:1. Introduction
2. Hand Segmentation and Finger Extraction
2.1. Hand Region Segmentation
2.2. Extraction of Palm Region
Algorithm 1 Calculating the center and maximum radius of the palm region |
Input: Interior point set and contour point set Output: The radius and center of the palm center Begin Step1: Set and initially. Step2: For one point in , compute its distances from all the points in . Step3: Find the minimum distance value, update it as and the corresponding point as if it is larger than . Step4: Go to Step2 and repeat until all the points in are iterated. Step5: Finally, the and are obtained as the radius of the inscribed circle of the palm region and its center. End |
2.3. Fingertip Extraction
Algorithm 2 Extraction of fingertips and fingers |
Input: The palm center and contour point set Output: The and Begin Step1: Initialize the sets of , and Step2: Calculate the average distance from to all the points in ; Step3: Add those points to , if their distances from greater than or equal to ; Step4: For each of the elements in , compute its distance from . Then find the one corresponding to the largest distance and move it to both and , and move all the rest points that are connected with it in the to ; Step5: Go to Step4 and repeat until is empty; Step6: The fingertips and fingers are obtained in and . End |
3. FGFF Descriptor and Hu Moments
3.1. FGFF Descriptor
3.2. Modified Hu Moments
4. Weighted AdaBoost Classifier
4.1. The Finger-Earth Mover’s Distance
4.2. Support Vector Machine
4.3. Weighted AdaBoost Classifier (WAC)
5. Experiments and Analysis
5.1. Experimental Dataset
5.2. Hand Region Segmentation and Feature Extraction
5.3. Invariants of Modified Hu Moments
5.4. Discrimination of Confused Gestures
5.5. Gesture Recognition and Analysis
5.6. Comparison with Benchmark Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Assaleh, K.; Shanableh, T.; Hajjaj, H. Recognition of handwritten Arabic alphabet via hand motion tracking. J. Frankl. Inst. 2009, 346, 175–189. [Google Scholar] [CrossRef]
- Tubaiz, N.; Shanableh, T.; Assaleh, K. Glove-Based Continuous Arabic Sign Language Recognition in User-Dependent Mode. IEEE Trans. Hum.-Mach. 2015, 45, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Cornacchia, M.; Ozcan, K.; Zheng, Y.; Velipasalar, S. A Survey on Activity Detection and Classification using Wearable Sensors. IEEE Sens. J. 2016, 17, 386–403. [Google Scholar] [CrossRef]
- Han, F.; Reily, B.; Hoff, W.; Zhang, H. Space-time representation of people based on 3D skeletal data: A review. Comput. Vis. Image Underst. 2017, 158, 85–105. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Huynh, D.Q.; Koniusz, P. A Comparative Review of Recent Kinect-based Action Recognition Algorithms. IEEE Trans. Image Process. 2020, 29, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Thanh, T.T.; Chen, F.; Kotani, K.; Le, B. Extraction of Discriminative Patterns from Skeleton Sequences for Accurate Action Recognition. Fundam. Inform. 2014, 130, 247–261. [Google Scholar] [CrossRef]
- Zhu, H.M.; Pun, C.M. Human action recognition with skeletal information from depth camera. In Proceedings of the IEEE International Conference on Information and Automation, Hailar, China, 28–30 July 2014; pp. 1082–1085. [Google Scholar]
- Ben, A.B.; Su, J.; Srivastava, A. Action Recognition Using Rate-Invariant Analysis, of Skeletal Shape Trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1–13. [Google Scholar]
- Liu, X.; Shi, H.; Hong, X.; Chen, H.; Tao, D.; Zhao, G. 3D Skeletal Gesture Recognition via Hidden States Exploration. IEEE Trans. Image Process. 2020, 29, 4583–4597. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yu, S.; Kim, D.; Toh, K.A.; Lee, S. An adaptive local binary pattern for 3D hand tracking. Pattern Recognit. 2017, 61, 139–152. [Google Scholar] [CrossRef]
- Tang, J.; Cheng, H.; Zhao, Y.; Guo, H. Structured Dynamic Time Warping for Continuous Hand Trajectory Gesture Recognition. Pattern Recognit. 2018, 80, 21–31. [Google Scholar] [CrossRef]
- Kviatkovsky, I.; Rivlin, E.; Shimshoni, I. Online action recognition using covariance of shape and motion. Comput. Vis. Image Underst. 2014, 129, 15–26. [Google Scholar] [CrossRef]
- Tang, C.; Li, W.; Wang, P.; Wang, L. Online human action recognition based on incremental learning of weighted covariance descriptors. Inf. Sci. 2018, 467, 219–237. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, Y.; Chen, C.; Yang, L.; Han, J.; Shao, L. Action Recognition Using 3D Histograms of Texture and A Multi-class Boosting Classifier. IEEE Trans. Image Process. 2017, 26, 4648–4659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, R.; Asadi-Aghbolaghi, M.; Kasaei, S.; Escalera, S. Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps. IEEE Trans. Circuits Syst. Video Technol. 2019, 26, 1729–1737. [Google Scholar] [CrossRef]
- Cardenas, E.E.; Chavez, G.C. Multimodal Hand Gesture Recognition Combining Temporal and Pose Information Based on CNN Descriptors and Histogram of Cumulative Magnitudes. J. Vis. Commun. Image Represent. 2020, 71, 102772. [Google Scholar] [CrossRef]
- Dong, J.; Xia, Z.; Yan, W.; Zhao, Q. Dynamic gesture recognition by directional pulse coupled neural networks for human-robot interaction in real time. J. Vis. Commun. Image Represent. 2019, 63, 102583. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Xiao, W.; Zhang, Z. Non-iterative and Fast Deep Learning: Multilayer Extreme Learning Machines. J. Frankl. Inst. 2020, 357, 8925–8955. [Google Scholar] [CrossRef]
- Santos CSamatelo, J.; Vassallo, R. Dynamic gesture recognition by using CNNs and starRGB: A temporal information condensation. Neurocomputing 2020, 400, 238–254. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, Z.; Chan, S.C. Superpixel-Based Hand Gesture Recognition with Kinect Depth Camera. IEEE Trans. Multimed. 2014, 17, 29–39. [Google Scholar] [CrossRef]
- He, Y.; Li, G.; Liao, Y.; Sun, Y.; Kong, J.; Jiang, G.; Jiang, D.; Xu, S.; Liu, H. Gesture recognition based on an improved local sparse representation classification algorithm. Clust. Comput. 2019, 22, 10935–10946. [Google Scholar] [CrossRef]
- Lee, D.L.; You, W.S. Recognition of complex static hand gestures by using the wristband-based contour features. IET Image Process. 2018, 12, 80–87. [Google Scholar] [CrossRef]
- Ren, Z.; Yuan, J.; Meng, J. Robust Part-Based Hand Gesture Recognition Using Kinect Sensor. IEEE Trans. Multimed. 2013, 15, 1110–1120. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J. A multi-scale descriptor for real time RGB-D hand gesture recognition—ScienceDirect. Pattern Recognit. Lett. 2021, 144, 97–104. [Google Scholar] [CrossRef]
- Wang, Z.Z. Gesture recognition by model matching of slope difference distribution features. Measurement 2021, 181, 109590. [Google Scholar] [CrossRef]
- Miao, Y.; Li, J.; Liu, J.; Chen, J.; Sun, S. Gesture recognition based on joint rotation feature and fingertip distance feature. J. Comput. Sci. 2020, 43, 80–94. (In Chinese) [Google Scholar]
- Sun, Y.; Weng, Y.; Luo, B.; Li, G.; Tao, B.; Jiang, D.; Chen, D. Gesture Recognition Algorithm based on Multi-scale Feature Fusion in RGB-D Images. IET Image Process. 2020, 14, 3662–3668. [Google Scholar] [CrossRef]
- Pu, X.; Tao, W.; Yi, Z. Kinect gesture recognition algorithm based on improved Hu moment. Comput. Eng. 2016, 42, 165–172. (In Chinese) [Google Scholar]
- Dhiman, C.; Vishwakarma, D.K. A Robust Framework for Abnormal Human Action Recognition using R-Transform and Zernike Moments in Depth Videos. IEEE Sens. J. 2019, 19, 5195–5203. [Google Scholar] [CrossRef]
#1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 | #11 | #12 | #13 | #14 | #15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#2 | 0.025 | ||||||||||||||
#3 | 0.005 | 0.021 | |||||||||||||
#4 | 0.021 | 0.034 | 0.023 | ||||||||||||
#5 | 0.011 | 0.028 | 0.012 | 0.020 | |||||||||||
#6 | 0.007 | 0.023 | 0.008 | 0.019 | 0.016 | ||||||||||
#7 | 0.010 | 0.029 | 0.012 | 0.024 | 0.006 | 0.016 | |||||||||
#8 | 0.010 | 0.031 | 0.014 | 0.022 | 0.007 | 0.016 | 0.004 | ||||||||
#9 | 0.459 | 0.465 | 0.460 | 0.477 | 0.464 | 0.462 | 0.458 | 0.458 | |||||||
#10 | 0.460 | 0.465 | 0.460 | 0.479 | 0.463 | 0.464 | 0.457 | 0.458 | 0.110 | ||||||
#11 | 0.443 | 0.449 | 0.444 | 0.461 | 0.448 | 0.446 | 0.442 | 0.442 | 0.027 | 0.109 | |||||
#12 | 0.465 | 0.472 | 0.466 | 0.483 | 0.469 | 0.468 | 0.463 | 0.464 | 0.028 | 0.114 | 0.053 | ||||
#13 | 0.454 | 0.460 | 0.455 | 0.472 | 0.458 | 0.457 | 0.452 | 0.453 | 0.031 | 0.102 | 0.050 | 0.021 | |||
#14 | 0.458 | 0.464 | 0.459 | 0.476 | 0.463 | 0.461 | 0.457 | 0.457 | 0.019 | 0.108 | 0.041 | 0.017 | 0.014 | ||
#15 | 0.490 | 0.496 | 0.491 | 0.508 | 0.495 | 0.493 | 0.489 | 0.489 | 0.033 | 0.126 | 0.053 | 0.040 | 0.053 | 0.041 | |
#16 | 0.494 | 0.500 | 0.495 | 0.512 | 0.499 | 0.497 | 0.492 | 0.493 | 0.043 | 0.123 | 0.069 | 0.030 | 0.044 | 0.038 | 0.028 |
Volumes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | AVG acc. |
---|---|---|---|---|---|---|---|---|---|---|---|
25% | 100 | 89.3 | 91.3 | 92.6 | 92.0 | 94.0 | 90.0 | 94.0 | 91.3 | 90.6 | 92.5 |
40% | 100 | 93.3 | 94.1 | 95.8 | 96.7 | 96.7 | 94.1 | 96.7 | 95.8 | 93.3 | 95.6 |
50% | 100 | 96.7 | 96.0 | 97.0 | 98.0 | 98.0 | 97.3 | 96.0 | 96.0 | 97.0 | 97.2 |
75% | 100 | 96.7 | 97.3 | 98.6 | 98.0 | 98.0 | 97.3 | 96.7 | 97.0 | 98.0 | 97.7 |
Distances | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | AVG acc. |
---|---|---|---|---|---|---|---|---|---|---|---|
80 cm | 100 | 96.7 | 96.7 | 96.7 | 96.7 | 96.7 | 93.3 | 93.3 | 96.7 | 96.7 | 96.3 |
120 cm | 100 | 100 | 96.7 | 96.7 | 100 | 100 | 96.7 | 96.7 | 96.7 | 96.7 | 98.0 |
150 cm | 100 | 95 | 95 | 97.5 | 95 | 97.5 | 92.5 | 97.5 | 95 | 92.5 | 95.7 |
AVG.acc | 100 | 97 | 96 | 97 | 97 | 98 | 94 | 96 | 96 | 95 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Zhang, Y.; Liu, J.; Wang, B. FGFF Descriptor and Modified Hu Moment-Based Hand Gesture Recognition. Sensors 2021, 21, 6525. https://doi.org/10.3390/s21196525
Zhang B, Zhang Y, Liu J, Wang B. FGFF Descriptor and Modified Hu Moment-Based Hand Gesture Recognition. Sensors. 2021; 21(19):6525. https://doi.org/10.3390/s21196525
Chicago/Turabian StyleZhang, Beiwei, Yudong Zhang, Jinliang Liu, and Bin Wang. 2021. "FGFF Descriptor and Modified Hu Moment-Based Hand Gesture Recognition" Sensors 21, no. 19: 6525. https://doi.org/10.3390/s21196525