Wearable Sensor-Based Gait Analysis for Age and Gender Estimation
<p>Setup of the sensor-based human gait data capturing system: (<b>a</b>) Waist-belt (uncovered) having three IMUZ sensors; (<b>b</b>) three axes of a typical IMUZ sensor; (<b>c</b>) Sensors’ attachment at left, right, and center-back position; and (<b>d</b>) Real data collection image, where a subject is wearing a belt, and flat ground, stairs and slope are highlighted in the environment. (This Figure was previously published in [<a href="#B17-sensors-20-02424" class="html-bibr">17</a>] as Figure 8. Hence, it is reprinted from [<a href="#B17-sensors-20-02424" class="html-bibr">17</a>], Copyright (2015), with permission from Elsevier).</p> "> Figure 2
<p>Distribution of subjects in training dataset—by age group and gender. The histogram demonstrates a non-uniform distribution of age groups though the distributions of both sexes are almost equally distributed.</p> "> Figure 3
<p>An example of sensor orientation inconsistency: within and among subjects.</p> "> Figure 4
<p>An example of three IMUZ sensors in the backpack for the test dataset. The sensors are attached to the top of the backpack.</p> "> Figure 5
<p>Distribution of subjects in test dataset—by age group and gender. The histogram demonstrates a much non-uniform distribution of age groups and gender than the training dataset.</p> "> Figure 6
<p>Examples of test signal sequences for gyroscope data, and accelerometer data.</p> "> Figure 7
<p>Examples of accelerometer data that appear only in testing.</p> "> Figure 8
<p>Gender prediction results for the 10 teams.</p> "> Figure 9
<p>Top 10 algorithms, irrespective of any team to predict errors for gender estimation. ‘T’ stands for ‘Team’ and ‘A’ stands for ‘Algorithm’.</p> "> Figure 10
<p>Comparison of different algorithms by teams in terms of the distribution of prediction error for gender estimation.</p> "> Figure 11
<p>Age prediction results by age groups for the 10 teams.</p> "> Figure 12
<p>Top 10 algorithms, irrespective of any team for age prediction results by age groups. ‘T’ stands for ‘Team’ and ‘A’ stands for ‘Algorithm’.</p> "> Figure 13
<p>Comparison of different algorithms by teams in terms of the distribution of prediction error for age estimation.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Description of the Dataset
3.1. Gait Capture System
3.1.1. Training Dataset
3.1.2. Test Dataset
4. Employed Algorithms
4.1. Explored Features and Approaches
4.2. Explored Classifiers
5. Results and Analysis
5.1. Prediction Errors of Gender Estimation
5.2. Prediction Errors of Age Estimation
5.3. Results Summarization
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ageing and Health. World Health Organization. Available online: www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 10 January 2020).
- Mosa, A.; Yoo, I.; Sheets, L. A systematic review of healthcare applications for smartphones. BMC Med. Inf. Decis. Mak. 2012, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahad, M.A.R.; Antar, A.D.; Shahid, O. Vision-based Action Understanding for Assistive Healthcare: A Short Review. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 1–11. [Google Scholar]
- Islam, S.M.R.; Kwak, M.D.; Kabir, H.; Hossain, M.; Kwak, K.-S. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Elkholy, A.; Makihara, Y.; Gomaa, W.; Ahad, M.A.R.; Yagi, Y. Unsupervised GEI-Based Gait Disorders Detection From Different Views. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’19), Berlin, Germany, 23–27 July 2019. [Google Scholar]
- Aoki, K.; Ngo, T.T.; Mitsugami, I.; Okura, F.; Niwa, M.; Makihara, Y.; Yagi, Y.; Kazui, H. Early detection of lower MMSE scores in elderly based on dual-task gait. IEEE Access 2019, 7, 40085–40094. [Google Scholar] [CrossRef]
- An, B.W.; Shin, J.H.; Kim, S.-Y.; Kim, J.; Ji, S.; Park, J.; Lee, Y.; Jang, J.; Park, Y.-G.; Cho, E.; et al. Smart sensor systems for wearable electronic devices. Polymers 2017, 9, 303. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Davarci, E.; Soysal, B.; Erguler, I.; Aydin, S.O.; Dincer, O.; Anarim, E. Age group detection using smartphone motion sensors. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 2201–2205. [Google Scholar]
- Ahmed, M.; Antar, A.D.; Ahad, M.A.R. An Approach to Classify Human Activities in Real-time from Smartphone Sensor Data. In Proceedings of the International Conference on Activity and Behavior Computing (ABC), Spokane, WA, USA, 30 May–2 June 2019. [Google Scholar]
- Antar, A.D.; Ahmed, M.; Ishrak, M.S.; Ahad, M.A.R. A Comparative Approach to Classification of Locomotion and Transportation Modes Using Smartphone Sensor Data. In Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2018 International Symposium on Wearable Computers (UbiComp/ISWC), Singapore, 8–12 October 2018. [Google Scholar]
- Islam, Z.Z.; Tazwar, S.M.; Islam, M.Z.; Serikawa, S.; Ahad, M.A.R. Automatic Fall Detection System of Unsupervised Elderly People Using Smartphone. In Proceedings of the 5th IIAE International Conference on Intelligent Systems and Image Processing, Waikiki, HI, USA, 7–12 September 2017. [Google Scholar]
- Jarchi, D.; Pope, J.; Lee, T.K.M.; Tamjidi, L.; Mirzaei, A.; Sanei, S. A Review on Accelerometry Based Gait Analysis and Emerging Clinical Applications. IEEE Rev. Biomed. Eng. 2018, 11, 177–194. [Google Scholar] [CrossRef]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 255–2283. [Google Scholar] [CrossRef]
- Riaz, Q.; Vogele, A.; Kruger, B.; Weber, A. One small step for a man: Estimation of gender, age and height from recordings of one step by a single inertial sensor. Sensors 2015, 15, 31999–32019. [Google Scholar] [CrossRef]
- Ngo, T.T.; Ahad, M.A.R.; Antar, A.D.; Ahmed, M.; Muramatsu, D.; Makihara, Y.; Yagi, Y.; Inoue, S.; Hossain, T.; Hattori, Y. OU-ISIR Wearable Sensor-based Gait Challenge: Age and Gender. In Proceedings of the 12th IAPR International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019. [Google Scholar]
- Ngo, T.T.; Makihara, Y.; Nagahara, H.; Mukaigawa, Y.; Yagi, Y. Similar gait action recognition using an inertial sensor. Pattern Recognit. 2015, 48, 1289–1301. [Google Scholar] [CrossRef]
- Ojha, H.A.; Kern, R.W.; Lin, C.-H.J.; Winstein, C.J. Age Affects the Attentional Demands of Stair Ambulation: Evidence From a Dual-Task Approach. Phys. Ther. 2009, 89, 1080–1088. [Google Scholar] [CrossRef]
- Salva, A.; Bolibar, I.; Pera, G.; Arias, C. Incidence and consequences of falls among elderly people living in the community. Med. Clin. 2004, 122, 172–176. [Google Scholar] [CrossRef]
- Huijben, B.; van Schooten, K.S.; van Dieen, J.H.; Pijnappels, M. The effect of walking speed on quality of gait in older adults. Gait Posture 2018, 65, 112–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mun, K.-R.; Song, G.; Chun, S.; Kim, J. Gait Estimation from Anatomical Foot Parameters Measured by a Foot Feature Measurement System using a Deep Neural Network Model. Sci. Rep. 2018, 8, 9879. [Google Scholar] [CrossRef] [PubMed]
- Bolink, S.A.A.N.; Lenguerrand, E.; Brunton, L.R.; Wylde, V.; Gooberman-Hill, R.; Heyligers, I.C.; Blom, A.W.; Grimm, B. Assessment of physical function following total hip arthroplasty: Inertial sensor based gait analysis is supplementary to patient-reported outcome measures. Clin. Biomech. 2016, 32, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Swanson, C.W.; Haigh, Z.J.; Fling, B.W. Two-minute walk tests demonstrate similar age-related gait differences as a six-minute walk test. Gait Posture 2019, 69, 36–39. [Google Scholar] [CrossRef]
- Ahmed, U.; Ali, M.F.; Javed, K.; Babri, H.A. Predicting physiological developments from human gait using smartphone sensor data. arXiv 2017, arXiv:1712.07958v1. [Google Scholar]
- Gaßner, H.; Raccagni, C.; Eskofier, B.M.; Klucken, J.; Wenning, G.K. The Diagnostic Scope of Sensor-Based Gait Analysis in Atypical Parkinsonism: Further Observations. Front. Neurol. 2019, 10, 5. [Google Scholar] [CrossRef]
- Cao, C.; Schultz, A.B.; Ashton-Miller, J.A.; Alexander, N.B. Sudden turns and stops while walking: Kinematic sources of age and gender differences. Gait Posture 1998, 7, 45–52. [Google Scholar] [CrossRef]
- Himann, J.E.; Cunningham, D.A.; Rechnitzer, P.A.; Paterson, D.H. Age-related changes in speed of walking. Med. Sci. Sports Exerc. 1988, 20, 161–166. [Google Scholar] [CrossRef]
- Bohannon, R.W. Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Crosbie, J.; Vachalathiti, R.; Smith, R. Age, gender and speed effects on spinal kinematics during walking. Gait Posture 1997, 5, 13–20. [Google Scholar] [CrossRef]
- Nigg, B.M.; Fisher, V.; Ronsky, J.L. Gait characteristics as a function of age and gender. Gait Posture 1994, 2, 213–220. [Google Scholar] [CrossRef]
- Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: Reference data for normal subjects, 10–79 years of age. J. Rehab. Res. Dev. 1993, 30, 210. [Google Scholar]
- Van der Krogt, M.M.; Delp, S.L.; Schwartz, M.H. How robust is human gait to muscle weakness? Gait Posture 2012, 36, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Schwesig, R.; Leuchte, S.; Fischer, D.; Ullmann, R.; Kluttig, A. Inertial sensor based reference gait data for healthy subjects. Gait Posture 2011, 33, 673–678. [Google Scholar] [CrossRef]
- Steffen, T.; Hacker, T.A.; Mollinger, L. Age-and gender-related test performance in community-dwelling elderly people: Six-minute walk test, berg balance scale, timed up & go test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar]
- Chung, M.; Wang, M.J. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait Posture 2010, 31, 131–135. [Google Scholar] [CrossRef]
- Scaglioni-Solano, P.; Aragon-Vargas, L.F. Gait characteristics and sensory abilities of older adults are modulated by gender. Gait Posture 2015, 42, 54–59. [Google Scholar] [CrossRef]
- Riaz, Q.; Hashmi, M.Z.U.H.; Hashmi, M.A.; Shahzad, M.; Errami, H.; Weber, A. Move your body: Age estimation based on chest movement during normal walk. IEEE Access 2019, 7, 28510–28524. [Google Scholar] [CrossRef]
- Van Hamme, T.; Garofalo, G.; Rua, E.A.; Preuveneers, D.; Joosen, W. A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces. Sensors 2019, 19, 2945. [Google Scholar] [CrossRef] [Green Version]
- Misu, S.; Asai, T.; Doi, T.; Sawa, R.; Ueda, Y.; Murata, S.; Saito, T.; Sugimoto, T.; Isa, T.; Tsuboi, Y.; et al. Development and validation of Comprehensive Gait Assessment using InerTial Sensor score (C-GAITS score) derived from acceleration and angular velocity data at heel and lower trunk among community-dwelling older adults. J. Neuroeng. Rehabil. 2019, 16, 62. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Duan, F.; Yang, Y.; Sun, Z. The Effect of Treadmill Walking on Gait and Upper Trunk through Linear and Nonlinear Analysis Methods. Sensors 2019, 19, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahamed, N.U.; Kobsar, D.; Benson, L.; Clermont, C.; Kohrs, R.; Osis, S.T.; Ferber, R. Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS ONE 2018, 13, e0203839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait Partitioning Methods: A Systematic Review. Sensors 2016, 16, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makihara, Y.; Okumura, M.; Iwama, H.; Yagi, Y. Gait-based Age Estimation using a Whole-generation Gait Database. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 1–13 October 2011; pp. 1–6. [Google Scholar]
- Sarkar, S.; Phillips, P.J.; Liu, Z.; Vega, I.R.; Grother, P.; Bowyer, K.W. The humanID gait challenge problem: Data sets performance and analysis. IEEE Trans. PAMI 2005, 27, 162–177. [Google Scholar] [CrossRef]
- Lu, J.; Tan, Y.P. Gait-based human age estimation. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, USA, 14–19 March 2010; Volume 5, pp. 761–770. [Google Scholar]
- Lu, J.; Wang, G.; Moulin, P. Human identity and gender recognition from gait sequences with arbitrary walking directions. IEEE Trans. Inf. Forensics Secur. 2014, 9, 51–61. [Google Scholar] [CrossRef]
- Li, X.; Makihara, Y.; Xu, C.; Yagi, Y.; Ren, M. Gait-based human age estimation using age group-dependent manifold learning and regression. Multimed. Tools Appl. 2018, 77, 28333–28354. [Google Scholar] [CrossRef] [Green Version]
- Sakata, A.; Takemura, N.; Yagi, Y. Gait-based age estimation using multi-stage convolutional neural network. IPSJ Trans. Comput. Vision Appl. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, C.; Guo, L.; Sun, M.; Yuan, X.; Han, T.X.; Zhao, Z.; Li, B. Age group and gender estimation in the wild with deep RoR architecture. IEEE Access 2017, 5, 22492–22503. [Google Scholar] [CrossRef]
- Sedaaghi, M.H. A Comparative Study of Gender and Age Classification in Speech Signals. Iran. J. Electr. Electron. Eng. 2009, 5, 1–12. [Google Scholar]
- Ngo, T.T.; Makihara, Y.; Nagahara, H.; Mukaigawa, Y.; Yagi, Y. The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recognit. 2014, 47, 228–237. [Google Scholar] [CrossRef] [Green Version]
- ZMP Inc. IMUZ. Available online: www.zmp.co.jp/imu-z.html (accessed on 1 December 2019).
- Ngo, T.T.; Makihara, Y.; Nagahara, H.; Mukaigawa, Y.; Yagi, Y. Orientation-compensative signal registration for owner authentication using an accelerometer. IEICE Trans. Inf. Syst. 2014, 97, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Deng, Y. Sensor orientation invariant mobile gait biometrics. In Proceedings of the 2014 IEEE International Joint Conference on Biometrics (IJCB 2014), Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–8. [Google Scholar]
- Rua, E.A.; Maiorana, E.; Castro, J.L.A.; Campisi, P. Biometric template protection using universal background models: An application to online signature. IEEE Trans. Inf. Forensics Secur. 2012, 7, 269–282. [Google Scholar] [CrossRef]
- Kenny, P.; Boulianne, G.; Dumouchel, P. Eigenvoice modeling with sparse training data. IEEE Trans. Speech Audio Process. 2005, 13, 345–354. [Google Scholar] [CrossRef]
- Delgado-Escano, R.; Castro, F.M.; Cozar, J.R.; Marin-Jimenez, M.J.; Guil, N. An end-to-end multi-task and fusion CNN for inertial-based gait recognition. IEEE Access 2019, 7, 1897–1908. [Google Scholar] [CrossRef]
- Ordonez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhou, S. Wearable device-based gait recognition using angle embedded gait dynamic images and a convolutional neural network. Sensors 2017, 17, 478. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Lu, H.; Huang, J.; Saha, T.; Nachman, L. Unobtrusive gait verification for mobile phones. In Proceedings of the 2014 ACM International Symposium on Wearable Computers (ISWC), Seattle, WA, USA, 13–17 September 2014; pp. 91–98. [Google Scholar]
- Zhang, M.; Sawchuk, A.A. Motion primitive-based human activity recognition using a bag-of-features approach. In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, Miami, FL, USA, 28–30 January 2012; pp. 631–640. [Google Scholar]
- Jiang, S.; Wang, X.; Kyrarini, M.; Graser, A. A Robust Algorithm for Gait Cycle Segmentation. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September 2017; pp. 31–35. [Google Scholar]
- Khabir, K.M.; Siraj, M.S.; Ahmed, M.; Ahmed, M.U. Prediction of Gender and Age from Inertial Sensor-based Gait Dataset. In Proceedings of the 2019 Joint 8th International Conference on Informatics, Electronics and Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision and Pattern Recognition (IVPR), Washington, DC, USA, 30 May–2 June 2019; pp. 371–376. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Antipov, G.; Baccouche, M.; Berrani, S.-A.; Dugelay, J.-L. Apparent age estimation from face images combining general and children-specialized deep learning models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 96–104. [Google Scholar]
- Gao, B.-B.; Zhou, H.-Y.; Wu, J.; Geng, X. Age estimation using expectation of label distribution learning. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 712–718. [Google Scholar]
- Gao, B.-B.; Xing, C.; Xie, C.-W.; Wu, J.; Geng, X. Deep label distribution learning with label ambiguity. IEEE TIP 2017, 26, 2825–2838. [Google Scholar] [CrossRef] [Green Version]
- Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-weka 2.0: Automatic model selection and hyperparameter optimization in weka. J. Mach. Learn. Res. 2017, 18, 826–830. [Google Scholar]
Team No. | Team Name | Affiliation of the Team |
---|---|---|
T1 | Nii Lab! | University of Hyogo, Japan |
T2 | AnythingWouldDo | National University of Singapore, Singapore |
T3 | VIP-AC-UMA | University of Màlaga, Spain |
T4 | NBL | Norwegian University of Science and Technology, Norway |
T5 | Three Kingdom | So-net Media Networks Corp., |
University of Southampton, UK, | ||
Taiping Financial Technology Service Co., Ltd. | ||
T6 | Orange Labs | University of Technology of Troyes, France |
T7 | KU Leuven | imec-DistriNet and imec-COSIC, KU Leuven, Belgium |
T8 | USF-CSE-CVPR | University of South Florida, USA |
T9 | NCTU-YJ lab | National Chiao Tung University (NCTU), Taiwan |
T10 | Ekattor | University of Dhaka, Bangladesh |
T11 | NPS | Naval Postgraduate School, USA |
T12 | snakesoft | Shenzhen Institute of Advanced Technology, China |
T13 | SIATMIS | China |
T14 | Code Surfers | National University of Science and Technology, Pakistan |
T15 | JG-ait | University of Hildesheim, Germany |
T16 | Just Yellow | University of Hildesheim, Germany |
T17 | Unipi_GC | University of Pisa, Italy |
T18 | Anonymous | Norwegian University of Science and Technology, Norway |
Team No. | #Algorithms for GP | #Algorithms for AP |
---|---|---|
T1 | 1 | 1 |
T2 | 3 | 3 |
T3 | 4 | 7 |
T4 | 1 | 1 |
T5 | 4 | 4 |
T6 | 2 | 2 |
T7 | 7 | 7 |
T8 | 3 | 3 |
T9 | 4 | 4 |
T10 | 3 | 3 |
Total | 32 | 35 |
Orientation Management | Team No. |
---|---|
By the magnitude of raw accelerometer or gyroscope signals | T6 (for all algorithms) |
By using a pair of motion vectors for accelerometer, and | |
rotation angle around the 3D rotation axis for gyroscope [55] | T7 (for Alg. 2,4,5,6) |
By PCA-based rotation matrix | T8 (for all algorithms) |
By random rotations of inputs during training | T3 (for all algorithms) |
Preprocessing | Feature | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Team No. | Gender (G)/Age (Ag) | Windowing | Signal Normalization | Coordinate Transformation | Low-Variance Data Removal | PCA Matrix Calculation | Gyroscope Exclusion | Z-Score Standardization | HMM-UBM | Raw Data | Fourier Transform | Gait Cycle Calculation | Gait Dynamic Image (GDI) | Angle Embedded GDI | Statistical Features Extraction | Eigen Projection Matrix | Ensemble of Previous Methods |
T1 | G | 1 | |||||||||||||||
. | Ag | ||||||||||||||||
T2 | G | * | * | ||||||||||||||
. | Ag | * | * | ||||||||||||||
T3 | G | * | * | * | * | * | 4 | ||||||||||
. | Ag | * | * | * | * | * | 5–7 | ||||||||||
T4 | G | 1 | |||||||||||||||
. | Ag | 1 | |||||||||||||||
T5 | G | * | 2–4 | * | |||||||||||||
. | Ag | * | 2–4 | * | 3, 4 | ||||||||||||
T6 | G | * | * | * | |||||||||||||
. | Ag | * | * | * | |||||||||||||
T7 | G | 2–5 | 1 | 2 | 3 | 2 | 2 | 6 | 2 | 7 | |||||||
. | Ag | 2–5 | 1 | 2 | 3 | 2 | 2 | 6 | 2 | 7 | |||||||
T8 | G | * | * | * | |||||||||||||
. | Ag | * | * | * | |||||||||||||
T9 | G | 1, 3 | 3 | 2 | 3 | 1, 3 | |||||||||||
. | Ag | 1, 3 | 3 | 2 | 3 | 1, 3 | |||||||||||
T10 | G | * | * | ||||||||||||||
. | Ag | * | * |
Team No. | Gender (G)/Age (Ag) | CNN | ConvLSTM | Bidirectional-LSTM | Conv. GRU DNN | ResNet-Based Net. | Temporal Conv. Network | Random Forest | K-Nearest Neighbor | Support Vector Machine | Support Vector Regressor | Random Subspace | XGboost Classifier | Support Vector Classifier | Sequential Minimal Optimization | KNN Regressor | Decision Tree Regressor | Ridge Regressor | Binary Age Tree | KStar | Ensemble Methods |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | G | 1 | |||||||||||||||||||
. | Ag | 1 | |||||||||||||||||||
T2 | G | 2 | * | * | * | * | |||||||||||||||
. | Ag | * | 2 | * | |||||||||||||||||
T3 | G | * | 4 | ||||||||||||||||||
. | Ag | * | 5–7 | ||||||||||||||||||
T4 | G | 1 | |||||||||||||||||||
. | Ag | 1 | 1 | ||||||||||||||||||
T5 | G | 1, 2 | 1, 2 | 4 | 3, 4 | 3, 4 | * | ||||||||||||||
. | Ag | 1, 2 | 4 | 3, 4 | 3, 4 | * | |||||||||||||||
T6 | G | * | |||||||||||||||||||
. | Ag | * | |||||||||||||||||||
T7 | G | 6 | 3–6 | 1 | 1 | 2 | 1 | 1 | 7 | ||||||||||||
. | Ag | 6 | 3–6 | 1 | 2 | 1 | 1 | 1 | 7 | ||||||||||||
T8 | G | * | |||||||||||||||||||
. | Ag | * | |||||||||||||||||||
T9 | G | 2 | 1,3 | 1 | |||||||||||||||||
. | Ag | 2 | 1,3 | 1 | 3 | 3 | 3 | ||||||||||||||
T10 | G | 3 | 1 | 2 | |||||||||||||||||
. | Ag | 2 | 1 | 3 |
Team | % of Mistake or Prediction Errors for Gender Estimation | |||||||
---|---|---|---|---|---|---|---|---|
Alg.1 | Alg.2 | Alg.3 | Alg.4 | Alg.5 | Alg.6 | Alg.7 | Best/Team | |
1 | 45.88 | 45.88 | ||||||
2 | 38.66 | 50.52 | 44.85 | 38.66 | ||||
3 | 35.05 | 31.96 | 31.44 | 33.51 | 31.44 | |||
4 | 47.94 | 47.94 | ||||||
5 | 30.41 | 30.41 | 35.05 | 36.08 | 30.41 | |||
6 | 30.93 | 31.96 | 30.93 | |||||
7 | 41.75 | 58.25 | 39.69 | 34.54 | 32.99 | 24.23 | 35.57 | 24.23 |
8 | 24.74 | 37.63 | 45.88 | 24.74 | ||||
9 | 30.93 | 40.72 | 42.27 | 36.08 | 30.93 | |||
10 | 51.03 | 59.28 | 50.00 | 50.00 |
Team | Prediction Errors for Age Estimation on Various Algorithms | |||||||
---|---|---|---|---|---|---|---|---|
Alg.1 | Alg.2 | Alg.3 | Alg.4 | Alg.5 | Alg.6 | Alg.7 | Best/Team | |
1 | 20.07 | 20.07 | ||||||
2 | 9.69 | 7.78 | 7.84 | 7.78 | ||||
3 | 7.37 | 7.11 | 6.93 | 7.09 | 7.04 | 7.04 | 7.07 | 6.93 |
4 | 12.13 | 12.13 | ||||||
5 | 6.44 | 6.65 | 7.54 | 7.65 | 6.44 | |||
6 | 9.21 | 9.33 | 9.21 | |||||
7 | 7.20 | 9.62 | 12.30 | 8.19 | 8.19 | 5.39 | 5.94 | 5.39 |
8 | 6.62 | 7.86 | 8.99 | 6.62 | ||||
9 | 9.29 | 15.98 | 7.05 | 9.74 | 7.05 | |||
10 | 18.14 | 13.62 | 13.78 | 13.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahad, M.A.R.; Ngo, T.T.; Antar, A.D.; Ahmed, M.; Hossain, T.; Muramatsu, D.; Makihara, Y.; Inoue, S.; Yagi, Y. Wearable Sensor-Based Gait Analysis for Age and Gender Estimation. Sensors 2020, 20, 2424. https://doi.org/10.3390/s20082424
Ahad MAR, Ngo TT, Antar AD, Ahmed M, Hossain T, Muramatsu D, Makihara Y, Inoue S, Yagi Y. Wearable Sensor-Based Gait Analysis for Age and Gender Estimation. Sensors. 2020; 20(8):2424. https://doi.org/10.3390/s20082424
Chicago/Turabian StyleAhad, Md Atiqur Rahman, Thanh Trung Ngo, Anindya Das Antar, Masud Ahmed, Tahera Hossain, Daigo Muramatsu, Yasushi Makihara, Sozo Inoue, and Yasushi Yagi. 2020. "Wearable Sensor-Based Gait Analysis for Age and Gender Estimation" Sensors 20, no. 8: 2424. https://doi.org/10.3390/s20082424
APA StyleAhad, M. A. R., Ngo, T. T., Antar, A. D., Ahmed, M., Hossain, T., Muramatsu, D., Makihara, Y., Inoue, S., & Yagi, Y. (2020). Wearable Sensor-Based Gait Analysis for Age and Gender Estimation. Sensors, 20(8), 2424. https://doi.org/10.3390/s20082424