ﬂ SCNSors m\py

Article

UAV-YOLO: Small Object Detection on Unmanned
Aerial Vehicle Perspective

Mingjie Liu!, Xianhao Wang !, Anjian Zhou ?, Xiuyuan Fu 3, Yiwei Ma ! and Changhao Piao »*

1 Department of Automation, Chongqing University of Posts and Telecommunications,

No. 2 Chongwen Road, Chongging 40000, China; liumj@cqupt.edu.cn (M.L.);
wangxhcqupt@163.com (X.W.); mayw@cqupt.edu.cn (Y.M.)

Chongging Changan New Energy Science and Technology Co., Ltd., Chongqing 401120, China;
zhouanjian@changan.com.cn

3 Chonggqing SPIC ZINENG Technology Co., Ltd., Chongging 404100, China; fuxiuyuan@spic.com.cn
Correspondence: piaoch@cqupt.edu.cn

check for
Received: 17 January 2020; Accepted: 13 April 2020; Published: 16 April 2020 updates

Abstract: Object detection, as a fundamental task in computer vision, has been developed enormously,
but is still challenging work, especially for Unmanned Aerial Vehicle (UAV) perspective due to small
scale of the target. In this study, the authors develop a special detection method for small objects in
UAV perspective. Based on YOLOV3, the Resblock in darknet is first optimized by concatenating two
ResNet units that have the same width and height. Then, the entire darknet structure is improved
by increasing convolution operation at an early layer to enrich spatial information. Both these two
optimizations can enlarge the receptive filed. Furthermore, UAV-viewed dataset is collected to
UAV perspective or small object detection. An optimized training method is also proposed based
on collected UAV-viewed dataset. The experimental results on public dataset and our collected
UAV-viewed dataset show distinct performance improvement on small object detection with keeping
the same level performance on normal dataset, which means our proposed method adapts to different
kinds of conditions.

Keywords: unmanned aerial vehicle; object detection; convolutional neural network

1. Introduction

Object detection in Unmanned Aerial Vehicle (UAV), as a kind of burgeoning technique,
has numerous applications, such as aerial image analysis, intelligent surveillance, and routing
inspection [1-4]. Object detection has recently experienced a lot of progress. Especially with the
development of large-scale visual datasets and increased computation power, the deep neural network
(DNN)—particularly, the convolutional neural network (CNN) [5]—has demonstrated record breaking
performance in computer vision tasks including object detection [6-8]. However, it is still a challenging
work due to special perspective.

Object detection can be divided into traditional handcrafted feature-based object detection [9,10]
and deep-learning-based object detection [11,12]. It focuses on the target-feature extraction
method design for handcrafted feature-based object detection; however, it is still hard to satisfy
different conditions, which leads to most of these kinds of methods just being used for limited
environment [13-15].  On the other hand, with the development of computation hardware,
deep-learning-based methods can not only enhance the accuracy but also realize real-time detection.

Although deep-learning-based approaches have contributed to a great deal of progress in object
detection, the issues of miss-detection still occur in UAV. The causes of these issues can be mainly
attributed to the following: (i) the receptive field of network is not robust enough to small objects;
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(ii) the training dataset is limited to UAV perspective. In general, object feature representation and
corresponding training dataset are essential for improving the performance of object detection. Besides,
accuracy and processing time trade-off is also important to real-world applications.

Encouraged by these problems, we develop an object detection method based on You only look
once (YOLO) [16], which focus on small object detection, named as UAV-YOLO. To improve detected
performance on small objects, we collect the dataset based on UAV view and improve network of YOLO
to enlarge the receptive field. In particular, the contributions of our study are as follows: (i) create a
UAV perspective-based human detection dataset which can be used to improve the performance on
human detection; (ii) improve network structure of YOLO to enlarge the receptive field, further, to
enhance the performance on small human detection.

The remainder of this paper is organized as follows: Section 2 introduces related work and
Section 3 describes the proposed method in detail. Section 4 demonstrates the experimental result and
contains a discussion on specific comparison analysis. Section 5 provides concluding remarks.

2. Related Work

A deep-learning-based detector can be divided into two categories: two-stage and one-stage.
RCNN family (RCNN [17], Fast RCNN [18], and Faster RCNN [19]) is a two-stage algorithm that
outperforms numerous other detection algorithms in terms of accuracy. However, these kinds of
approaches need more computational cost which results in the consumption on processing time. From
the one-stage detector perspective, single-shot multibox detector (SSD) [20] and You only look once
(YOLO) are proposed by considering both accuracy and processing time. Especially YOLO can balance
the performance on accuracy and processing time well.

RCNN adopts a region-proposal-based strategy [21] in which each proposal is scale-normalized
before classifying with a ConvNet [22]. More accurate detectors such as Fast RCNN and Faster RCNN
advocate using features computed from a single scale, since it offers a good performance on balancing
accuracy and processing time. However, it still cannot satisfy requirement to embedded board on
processing time. In addition, due to large amount of memory taken up and the complexity of the
network, it is hard to be used on Rotorcraft UAV [23,24].

Considering the high-efficiency, one-stage object detection attracts more attention, Liu et al.
proposed the SSD method, which spreads out anchors of different scales to multilayers with ConvNet
and enforces each layer to predict object at a certain scale. Fu et al. [25] proposed a deconvolutional
single-shot detector (DSSD), which combines Residual-101 [26] with SSD and augments them with
deconvolution layers to introduce additional large-scale context for object detection, improving
accuracy. Li et al. [27] proposed a feature fusion single-shot multibox detector (FSSD) to enhance SSD
with a novel and lightweight feature fusion module. They concatenate features from multiple layers at
different scales, followed by downsampling blocks to generate new feature pyramids, which are fed to
multibox detectors to predict final detected results. YOLO uses a single feedforward convolutional
network to predict object categories and locations, which can arrive at 45 fps. Then, YOLOvV2 [28] is
proposed to improve YOLO in several aspects, such as using high-resolution layers, adding batch
normalization on each convolution layer, and employing convolution layers with anchor boxes to
predict bounding boxes instead of fully connected layers. With the development of basic network,
YOLOV3 [29]—whose accuracy for human detection can reach 76% on VOC dataset [30]—is proposed
by replacing backbone network with darknet-53 and employing multiscale features to detect the object.
However, it still cannot work well on UAV-viewed (small) object detection due to lack of corresponding
training data and limited receptive field.

On UAV-viewed object detection aspect, deep-learning-based methods have already been widely
applied. Ammour et al. [31] proposed a small-region-based detection method to detect vehicles.
They use a deep CNN system as a feature extract tool, combined with a linear support vector machine
(SVM) classifier to classify regions, which is obtained by segment input image into small homogeneous
regions—into “car” and “no-car” classes. Bazi et al. [32] introduced a novel convolutional support
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vector machine (CSVM) network for UAV-viewed detection. The network is based on several
alternating convolutional and reduction layers ended by a linear SVM classification layer. It relies
on a set of linear SVMs as filter banks for feature map generation. To find a suitable feature space to
solve the problem for small object detection in UAV view, Konoplich et al. [33] presented the adapted
hybrid neural network, in which the last layers are divided into several blocks of variable size so
that the network could extract features of different scales. Moreover, semantic segmentation based
on contour-aware [34] and adverse method [35] is a good choice for small-sample learning, which is
the key problem to UAV-viewed object detection. Jiang et al. [35] proposed a small-sample learning
method via adversary. They built two submodels simultaneously based on the attribute of semantic
classes for semantic segmentation discrimination. To precisely segment small objects, semantic classes
are adversely modeled through computing the weighted costs based on the structural relationships
between small samples and the others.

With the aim of developing a fast UAV perspective method for special uses of object detection, on
one hand, we create a UAV-viewed dataset used for network training and test. On the other hand, we
propose a UAV-viewed object detection method based on YOLOV3, called UAV-YOLO. To improve
the performance of YOLOV3 on small object detection, collected data is first separated into “normal”,
“far”, and “games” according to the distance and background in the environment. The model is
then trained by collected data with data augmentation. During training, k-means [36,37] is used to
cluster different numbers of anchor boxes to find the optimized number and size of them. Finally, the
model is retrained by far-category data. On the other hand, Darknet-53—which is used as backbone
network for YOLOv3—is also optimized to improve performance. We evaluate UAV-YOLO on both
our collected UAV-viewed test dataset and classical VOC/COCO dataset; on the premise of keeping
original YOLOv3 performance, our proposed UAV-YOLO can further enhance the performance on
small object detection. In addition, it needs to be mentioned that we mainly focus on human detection.

3. Proposed Method

In our study, we collected a mass of UAV-viewed human dataset which will be introduced in
Section 4.1.

We improve YOLOV3 by two different aspects: model training and backbone structure optimizing.
YOLOV3 is first trained with data augmentation by the collected dataset that is divided into three
categories (normal, far, and games) considering background clutters and distance between target
and camera. K-means is conducted to optimize the number and size of anchor box during training.
The backbone network is optimized to satisfy small object detection whilst keeping the performance
unchanging on normal condition.

3.1. YOLOv3 Used for Human Detection on UAV Perspective

Given an image, it resizes to a fixed size (608 x 608) as an input to detector. Feature is extracted by
darknet (backbone network of YOLOvV3) whose final output is the 19 x 19 x 18 tensor of predictions.
Assume that input image is separated into 7 x 7 grids. If the center of the target falls into a tile, that
tile should be responsible for that detected target. Each tile predicts 2 bounding boxes and confidence
scores for those boxes. These confidence scores reflect how confident the detector is that that box
contains a target and also how accurate it thinks the box is that it predicts. Formally the confidence
is defined as Pr(object) - I OU;;’;;}’. If no target exists in that tile, the confidence score should be zero;
otherwise, it should equal the intersection over union (IOU) between predicted bounding box and
ground truth. Each bounding box contains 5 predictions: center of bounding box relative to the bounds
of the tile (x, y), the width and height related to the entire image (w, h), and confidence score. Finally,
confidence prediction represents the IOU between predicted box and any ground truth box. Each
tile also predicts C conditional class probabilities, Pr (C;|Object). These probabilities are conditioned
on the tile containing a target. At test time, we multiply the conditional class probabilities and the
individual box confidence predictions:
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Pr (Cy|target) - Pr(target) - IOULU! = Pr (C;) - IOUSAY, 1)

where C; is the i-th class the target belongs to. For evaluating the detector on our collected UAV dataset,
we use i = {1,2,3} since it has 3 labeled classes.

In YOLOVS3 training, cross entropy is introduced as loss function. The format of loss function is
as follows:

bj o "
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where lfbj denotes if the target appears in tile 7 and Z%bj denotes that the j — th bounding box predictor
in tile i is “responsible” for that prediction; Acoord, Anoopj are hyperparameters that separate the loss to
loss from bounding box coordinate predictions and that from confidence predictions for boxes that
do not contain targets; S is the number of grid that input images are divided into; B is the number of
bounding boxes predicted for each tile (it equals 2 in our study). Note that loss function just penalizes
classification error if target appears in that tile. It also penalizes bounding box coordinate error if that
predictor is “responsible” for ground truth.

3.2. UAV-YOLO: Optimized YOLOv3 for UAV-Viewed Human Detection

Considering that far distance between target and camera leads to small size of target in UAV
perspective scenario, we propose a special detector focusing on UAV perspective based on YOLOvV3,
named UAV-YOLO, which can enhance the performance on small object detection whilst keeping
performance unchanging on normal sized object. The UAV-YOLO structure is shown in Figure 1.

The reason causing small object miss-detection is limited receptive field. To reduce impact of this
problem, ResNet unit and backbone network in YOLO are improved. Similar with YOLO, UAV-YOLO
uses a single convolutional network which simultaneously predicts multiple bounding boxes and class
probabilities for those boxes. It also trains on full images and directly optimizes detection performance.
The structure of UAV-YOLO is shown in Figure 1a. Given an image which is resized to 608 x 608 x 3
as input to UAV-YOLO, features of input are extracted by the backbone network of UAV-YOLO.
To precisely detect different sizes of the targets, 3 different scales of boxes are predicted, which are
expressed as y1, y2, and y3 in Figure la. In our UAV-viewed dataset experiments, we predicted 3 boxes
at each scale, which means the tensor is N x N x [3(4 4+ 1+ 1)] for the 4 bounding box coordinates,
1 confidence score, and 1 class (human) predictions. Here, N is feature maps size of y1, y2, and y3;
which are 19, 38, and 76, respectively. From Figure 1a, we can see that y1 is obtained from the end of
backbone network which is connected with DBL and a convolutional layer. Here, DBL is combined
with a convolutional-layer batch normalization and activated by Leak ReLU, as shown in Figure 1d,
and convolutional layer is used to fix y1 size. y2 and y3 are taken from earlier layers of backbone
network and merged with our upsampled features using concatenation. It allows us to get more
meaningful semantic information from the upsampled feature map. Then, they are also processed by
DBL and a few more convolutional layers to predict a similar tensor, although now twice and three
times the size compared with y1, respectively.
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Figure 1. The structure of our proposed UAV-YOLO.

Compared with YOLOv3, we mainly optimize Res Unit to deep backbone network, which can
increase receptive field and provide further benefits for small object detection. Backbone network
of original YOLOvV3 shown in Figure le is mainly made up by Resn. Resn is the short name of
Resblock_body shown in Figure 1f which consists of zero padding, DBL, and Res Unit_1 (named as
RU_1 for convenience). n is repeat times of RU_1 in the block. RU_1, whose structure is shown in
Figure 1b, is the main component of YOLOV3. It is combined with two successive DBLs that use
alternate 3 x 3 and 1 x 1 convolutional layers and shortcut connection as well to enlarge the receptive
field. However, it can get more meaningful semantic information and prevent gradient diffusion by
merging more same size convolutional layers. Inspired by this, we design UAV-YOLO using Res
Unit_2 (named as RU_2 for convenience) shown in Figure 1c. It is realized by connecting two RU_1s
for which convolutional layers have the same output size. Concretely, RU_2 increases another shortcut
connection to concatenate two DBLs in different RU_1s. These two connected DBLs are both the first
one in those two RU_1s. The structure is shown clearly in Figure 1c, in which the red line with arrow
is the added shortcut connect between two RU_1s.

In summary, the main difference between YOLOv3 and UAV-YOLO is the structure of backbone
network. Due to our proposed RU_2, backbone network in UAV-YOLO is deeper. In addition, since
RU_2 increases extra shortcut connection to concatenate two DBLs in different RU_1s, the repeat of
Res Unit in YOLOV3 is also different to that of UAV-YOLO.

The backbone network structure comparison between YOLOv3 (Figure 2a) and UAV-YOLO
(Figure 2b) is shown in Figure 2. Black solid rectangle in both Figure 2a,b is RU_1, and blue one
in Figure 2b is RU_2. Besides RU_1, UAV-YOLO backbone network also consists of three RU_2
interspersed with RU_1, which is marked by black dotted rectangle in Figure 2b. This kind architecture
can enhance the network permutation complexity without extra processing time. In addition, in order
to further increase the receptive field of UAV-YOLO, we also change Resblock_body repeat times.

To sum up, UAV-YOLO is optimized based on YOLOV3 at two aspects: (i) shortcut connection is
conducted to design Res Unit_2, which is realized by concatenating two DBLs in different Resblocks
that have the same output size; (ii) repeat times of each Res Unit is changed to deepen the network
structure. It can not only increase receptive filed but also enhance semantic feature extraction ability of
the network by fusing these two optimizations.
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Figure 2. The backbone structure of YOLOv3 and UAV-YOLO. (a) Original YOLOV3 structure. (b) The
proposed UAV-YOLO structure.

3.3. Optimized UAV-YOLO Training for UAV-Viewed Human Detection

In our study, YOLOV3 is first trained by collected UAV-viewed dataset without classifying.
Then, we test the detector on test dataset, for which the mean average precision (mAP) is just 51.41%
and IOU accuracy is 66.1%. With the aim of enhancing the performance on UAV-viewed human
detection, we optimize the YOLO training method as shown in Figure 3.

dataset Optimizing the

classification number and size of
experimental anchor experimenta

Raw dataset

C e 4 4 b 4 o b 4 o o — — — -~

Figure 3. The proposed training method and steps to enhance YOLOV3 performance on UAV-viewed
human detection.

UAV-viewed dataset classification. UAV-viewed dataset includes samples that collect from top
view and flat view. In addition, there are also great differences in distance between target and camera.
Both these two factors may cause dataset imbalance, which will reflect the detection performance.
In our study, we separate collected UAV-viewed dataset into three categories (normal, far, and games)
considering distance and background clutters.

Optimizing the number and size of anchor box by k-means. K-means algorithm is to separate
all samples to k clusters, which are usually chosen to be far enough apart form each other spatially,
in Euclidean Distance, to produce effective data mining results. The distance calculation function is
as follows:

d(x,y) = V (x1 —y1)* + (2 —12)" + -+ (xu —yn), 3)
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where x, is normalized horizontal axis of bounding box center, y, is normalized vertical axis of
bounding box center.

To different dataset organization and detected objects, different anchor mechanisms may influence
detector performance a lot. In our study, different number and size of anchor boxes are obtained by
k-means. We set 3, 6, and 9 anchor boxes for each target, respectively. Then, k-means is applied to
obtain the size of anchor boxes which are imported to network. Based on the experiment, we can find
the best number and size of anchor box.

Model retaining by “far” samples. Hard sample retaining can effectively enhance the
performance of model. In our study, “far” samples are the hard sample due to small size. The network
is retained by “far” sample in 5000 iterations.

4. Experimental Results

This section shows experimental results of the proposed detection method. We first introduce
collected UAV-viewed dataset and implementation detail. Then, we show experimental result on
different training method optimization. Finally, experimental result on UAV-YOLO and comparison
with other detectors are introduced. We do comparison experiments using a single Nvidia GTX Titan
XP GPU with an i7-7820X 3.6 GHz CPU and 64 GB RAM.

4.1. UAV-Viewed Dataset and Implementation Detail

Due to the lack of UAV perspective dataset available on the internet, this study collects much
more images including UAV123 and shooting by ourselves. It totally includes 4406 images which are
separated to training data (3776 images) and test data (630 images) following a ratio of 6:1. They are
divided into training/test data following three rules: (1) images in the same video are collected in a
discrete way which means that we collect one image with a fixed interval (we collect 1 image in every
5 continuous images); (2) images that are from the same video should be either training data or test
data; (3) if there is more than one video from the same flight, they should be separated into training
data and test data randomly. The dataset is named as UAV-viewed and labeled by labellmg.

Since we focus on human detection, the UAV-YOLO is first trained by 74,910 human samples,
including 8102 samples selected from VOC and COCO. Then, transfer learning is applied based
on UAV-viewed dataset. The model is tested by 5000 samples selected from VOC/COCO and our
collected UAV-viewed test dataset.

4.2. Experimental Results of Optimized Training Method Using YOLOv3

Object detection performance is evaluated by mAP and overlap ratio between ground truth and
predicted bounding box (IOU). To speed up model convergence, weight training on ImageNet [38] is
used as weight initialization.

UAV-viewed dataset classification. Following the UAV-viewed data classification method
introduced in Section 3.3, YOLOV3 is trained as described in Section 4.1 and tested on UAV-viewed test
dataset. The results are shown in Table 1. It can be viewed that, compared with original UAV-viewed
dataset training, classified UAV-viewed dataset training can improve the performance considerably.
As shown in Table 1, mAP is increased from 51.41% to 90.88%.

Optimizing the number and size of anchor box by k-means. As mentioned before, we also
optimized the number and size of anchor box by k-means. The anchor box is clustered to 3, 6, and
9 with different size, respectively. This experiment is based on UAV-viewed dataset classification.
The results are also shown in Table 1. We find that setting 9 anchor boxes can get the best performance
which can reach 80.59% on IOU. In addition, it also works well on the “far” category in which mAP
can reach 60.67%. The clustering result on different numbers of anchor boxes is shown in Figure 4,
which are named as anchor3, anchor6, and anchor9. The reason that anchor9 works best is that it can
increase the receptive field and get more detailed information of the target.
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Figure 4. Clustering results on different number of anchor boxes.

Model retraining by “far” samples. The model is retrained by “far” samples, which can enhance
the performance on "far" condition with limited decreasing enhancement on “normal” and “games”
conditions. It can be viewed in Table 1 that mAP and IOU increase 1.05% and 4.41% for "far" samples;
however, mAP just decreases 0.01% and 0.43% for "normal" and "games" samples, respectively.

Table 1. Mean average precision (mAP) and intersection over union (IOU) performance on UAV-YOLO
using different optimized training methods.

UAV-Viewed Normal Games Far

Optimized Method mAP/% I0U/% mAP/% I0U/% mAP/% I0U/% mAP/% I0U/%

Original data 51.41 66.17 90.81 85.75 94.32 91.44 15.58 29.12
Classified data 90.88 78.20 90.83 80.40 90.76 7411 56.44 55.02
Anchor3 90.84 79.07 90.86 80.20 90.91 72.62 59.60 55.83
Anchor6 90.88 78.77 90.85 82.13 87.35 71.05 57.15 56.43
Anchor9 90.91 80.59 90.91 84.16 90.91 74.40 60.67 57.43
Mining 90.89 80.29 90.90 83.85 90.48 74.11 61.72 61.84

4.3. State-of-the-Art Comparison

After optimized training method confirmation, the proposed detector UAV-YOLO is trained and
evaluated. The experiment results are shown in Table 2. It can be viewed that the performance on “far”
samples is improved a lot whilst keeping the performance on other conditions almost unchanging.
Compared with other detectors including YOLOv3, SSD300, and SSD512, both mAP and IOU of
UAV-YOLO increase a lot, reaching 66.25% and 68.86%, respectively.

Table 2. mAP and IOU performance comparison on different detectors using our collected
UAV-viewed dataset.

UAV-Viewed Normal Games Far

Optimized Method mAP/% I0U/% mAP/% I0U/% mAP/% 10U/% mAP/% I0U/%

UAV-YOLO 90.86 80.42 90.90 84.11 90.62 76.54 64.42 68.02
YOLOv3 90.89 80.29 90.90 83.85 90.48 74.11 61.72 61.84
SSD300 89.87 72.34 90.68 76.45 89.19 68.21 56.01 52.98
SSD512 90.92 74.23 90.89 78.86 90.71 70.08 61.09 56.84

We also compare our method with other one-stage object detection method on our selected 5000
samples from VOC/COCO. The results are shown in Table 3. It can be seen that our method has better
performance and also well-balanced accuracy and processing time.
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Table 3. Comparison results with state-of-the-art one-stage detection method on selected human
samples from VOC/COCO.

Methods mAP/% I0U/% Time/fps

UAV-YOLO 72.54 70.05 20
YOLOv3 72.21 68.43 20
SSD300 62.94 60.72 23
SSD512 72.54 60.72 23

The purpose of introducing selected human samples form VOC/COCO is to enhance the
robustness and generalization of UAV-YOLO. Considering both Tables 2 and 3, it can be seen that
our proposed UAV-YOLO can perform well on both general human dataset and UAV-viewed dataset.
It even performs better on both of them compared with YOLOv3.

An illustration of detected results of original YOLOv3, optimized training method on YOLOV3,
and UAV-YOLO for some samples in UAV-viewed is shown in Figure 5. From vision perspective,
UAV-YOLO can tackle miss-detection and false detection well. It also can be seen that UAV-YOLO can
satisfy object scale variation.

Figure 5. Detected results of different methods on UAV-viewed dataset. (a) Detected results of
original YOLOV3; (b) detected results of YOLOv3 using optimized training method; (c) detected results
of UAV-YOLO.
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5. Conclusions

In this paper, we propose a UAV perspective object detection method based on YOLOv3.
We analyze and find the reason causing small object miss-detection and false detection is limited
receptive field. To reduce this condition, we first optimize Resblock in darknet by concatenating two
ResNet units who have the same width and height. Then, entire darknet structure is improved by
increasing convolution operation at early layer to enrich spatial information. It is worth mentioning
that both of them can enlarge the receptive field. Besides, we also collect UAV-viewed dataset which is
specially used for UAV perspective or small object detection. Based on UAV-viewed dataset, we also
develop an optimized training method including training data classification, anchor box confirmation
by k-means, and hard data retaining. Representative experimental results compared with other
methods demonstrate our method performs well overall in various kinds of challenges, especially in
small object detection.
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