A Novel Underwater Location Beacon Signal Detection Method Based on Mixing and Normalizing Stochastic Resonance
<p>The variation of the received ULB signal <span class="html-italic">SNR</span> at different distances.</p> "> Figure 2
<p>The received signal at 2 km distance. (<b>a</b>) waveform of the received signal; (<b>b</b>) frequency spectrum of the received signal.</p> "> Figure 3
<p>The output SNR versus noise intensity <span class="html-italic">D</span>.</p> "> Figure 4
<p>A simulation of classical SR. The relative parameters corresponding to Equation (7) configured as: <span class="html-italic">A</span> = 0.1, <span class="html-italic">f</span> = 0.01, <span class="html-italic">a</span> = 1, <span class="html-italic">b</span> = 1, <span class="html-italic">D</span> = 0.31, <span class="html-italic">f<sub>s</sub></span> = 5. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the input; (<b>c</b>,<b>d</b>) are waveform and frequency spectrum of the SR output.</p> "> Figure 5
<p>The SR of high-frequency signal. The relative parameters: <span class="html-italic">A</span> = 0.1, <span class="html-italic">f</span> = 10, <span class="html-italic">a</span> = 1, <span class="html-italic">b</span> = 1, <span class="html-italic">D</span> = 0.31, <a href="#sensors-20-01292-f005" class="html-fig">Figure 5</a>. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the input; (<b>c</b>,<b>d</b>) are waveform and frequency spectrum of the SR output.</p> "> Figure 6
<p>The SR of signal with large noise. The relative parameters: <span class="html-italic">A</span> = 0.5, <span class="html-italic">f</span> = 0.01, <span class="html-italic">a</span> = 1, <span class="html-italic">b</span> = 1, <span class="html-italic">D</span> = 7.75, <span class="html-italic">f<sub>s</sub></span> = 5. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the input; (<b>c</b>,<b>d</b>) are waveform and frequency spectrum of the SR output.</p> "> Figure 7
<p>The frequency spectrum of the SR output when the ratio <span class="html-italic">k</span> is small. The relative parameters: <span class="html-italic">A</span> = 0.1, <span class="html-italic">f</span> = 0.2, <span class="html-italic">a</span> = 1, <span class="html-italic">b</span> = 1, <span class="html-italic">D</span> = 0.31, <span class="html-italic">f<sub>s</sub></span> = 5.</p> "> Figure 8
<p>The flow of MNSR.</p> "> Figure 9
<p>An example shown the effectivity of MNSR. The relative parameters: <span class="html-italic">A</span> = 0.5, <span class="html-italic">f</span> = 1000, <span class="html-italic">a</span> = 1000, <span class="html-italic">b</span> = 1.45 × 10<sup>8</sup>, <span class="html-italic">f<sub>c</sub></span> = 990 Hz, <span class="html-italic">D</span> = 7.75, <span class="html-italic">f<sub>s</sub></span> = 5000. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the input. (<b>c</b>,<b>d</b>) are the waveform and frequency spectrum of the low-pass filter output, <span class="html-italic">m</span>(<span class="html-italic">t</span>). (<b>e</b>,<b>f</b>) are the waveform and frequency spectrum of the MNSR output.</p> "> Figure 9 Cont.
<p>An example shown the effectivity of MNSR. The relative parameters: <span class="html-italic">A</span> = 0.5, <span class="html-italic">f</span> = 1000, <span class="html-italic">a</span> = 1000, <span class="html-italic">b</span> = 1.45 × 10<sup>8</sup>, <span class="html-italic">f<sub>c</sub></span> = 990 Hz, <span class="html-italic">D</span> = 7.75, <span class="html-italic">f<sub>s</sub></span> = 5000. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the input. (<b>c</b>,<b>d</b>) are the waveform and frequency spectrum of the low-pass filter output, <span class="html-italic">m</span>(<span class="html-italic">t</span>). (<b>e</b>,<b>f</b>) are the waveform and frequency spectrum of the MNSR output.</p> "> Figure 10
<p>The numerical simulation results of MNSR. The relative parameters: <span class="html-italic">A</span> = 0.15, <span class="html-italic">f</span> = 37.5 kHz, <span class="html-italic">a</span> = 3 × 10<sup>4</sup>, <span class="html-italic">b</span> = 4.65 × 10<sup>13</sup>, <span class="html-italic">f<sub>c</sub></span> = 37.8 kHz, <span class="html-italic">D</span> = 0.9, <span class="html-italic">f<sub>s</sub></span> = 150 kHz, <span class="html-italic">N</span> = 1500. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the input; (<b>c</b>,<b>d</b>) are waveform and frequency spectrum of the MNSR output.</p> "> Figure 11
<p>The result of RFSR applied to the ULB signal detection when the sampling frequency is <span class="html-italic">f<sub>s</sub></span> = 150 kHz, and the sampling data length is <span class="html-italic">N</span> = 1500. The re-scaling ratio of RFSR is <span class="html-italic">R</span> = 3.75 × 10<sup>6</sup>. In addition, the other relative parameters: <span class="html-italic">A</span> = 0.15, <span class="html-italic">f</span> = 37.5 kHz, <span class="html-italic">a</span> = 1, <span class="html-italic">b</span> = 0.344, <span class="html-italic">D</span> = 0.9. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the output.</p> "> Figure 12
<p>The result of RFSR applied to the ULB signal detection when the sampling frequency is <span class="html-italic">f<sub>s</sub></span> = 18.75 MHz. The sampling data length is still <span class="html-italic">N</span> = 1500 and the other parameters are the same as <a href="#sensors-20-01292-f011" class="html-fig">Figure 11</a>.</p> "> Figure 13
<p>The result of MSR applied to the ULB signal detection when the sampling frequency is <span class="html-italic">f<sub>s</sub></span> = 150 kHz, and the sampling data length is <span class="html-italic">N</span> = 1500. The carrier frequency is <span class="html-italic">f<sub>c</sub></span> = 37.50001 kHz. In addition, the other relative parameters: <span class="html-italic">A</span> = 0.15, <span class="html-italic">f</span> = 37.5 kHz, <span class="html-italic">a</span> = 1, <span class="html-italic">b</span> = 0.344, <span class="html-italic">D</span> = 0.9. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the output.</p> "> Figure 14
<p>The schematic diagram of experiment.</p> "> Figure 15
<p>The input and output of a tank experiment where MNSR used to detect the ULB signal. The relative parameters: <span class="html-italic">f</span> = 37.5 kHz, <span class="html-italic">a</span> = 3 × 10<sup>4</sup>, <span class="html-italic">b</span> = 1.9 × 10<sup>14</sup>, <span class="html-italic">f<sub>c</sub></span> = 37.8 kHz, <span class="html-italic">D</span> = 0.22, <span class="html-italic">f<sub>s</sub></span> = 150 kHz. (<b>a</b>,<b>b</b>) are the waveform and frequency spectrum of the input; (<b>c</b>,<b>d</b>) are waveform and frequency spectrum of the MNSR output.</p> ">
Abstract
:1. Introduction
2. Characteristics of the ULB Signal and Its Underwater Propagation
3. Classical SR
4. MNSR and Its Parameter Adjustment Method
4.1. Mixing and Normalizing Stochastic Ronance
4.2. The Parament Adjustment Method
4.3. An Example of MNSR
5. The Detection of the weak ULB Signal via MNSR
5.1. Numerical Simulation
5.2. Experiment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stone, L.D.; Keller, C.M.; Kratzke, T.M.; Strumpfer, J.P. Search analysis for the underwater wreckage of Air France Flight 447. In Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8. [Google Scholar]
- Pranjoto, H. Innovative Tester for Underwater Locator Beacon Used in Flight/Voyage Recorder (Black Box). In Proceedings of the Second International Conference on Electrical Systems, Technology and Information 2015 (ICESTI 2015), Singapore, 9–12 September 2016; pp. 299–307. [Google Scholar]
- Xiao, Y.; Tadokoro, Y. LMS-based notch filter for the estimation of sinusoidal signals in noise. Signal Process. 1995, 46, 223–231. [Google Scholar] [CrossRef]
- Amarnath, M.; Praveen Krishna, I.R. Local fault detection in helical gears via vibration and acoustic signals using EMD based statistical parameter analysis. Measurement 2014, 58, 154–164. [Google Scholar] [CrossRef]
- Ioana, C.; Quinquis, A. Transient signal detection using overcomplete wavelet transform and high-order statistics. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 6–10 April 2003. [Google Scholar]
- Benzi, R.; Sutera, A.; Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A Math. Gen. 1981, 14, L453–L457. [Google Scholar] [CrossRef]
- Collins, J.J.; Chow, C.C.; Imhoff, T.T. Aperiodic stochastic resonance in excitable systems. Phys. Rev. E 1995, 52, R3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesenfeld, K.; Moss, F. Stochastic resonance and the benefits of noise: From ice ages to crayfish and SQUIDs. Nature 1995, 373, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, M. Application of Stochastic Resonance in Directions of Arrival. In Proceedings of the 2010 2nd International Conference on Information Engineering and Computer Science, Wuhan, China, 25–26 December 2010; pp. 1–3. [Google Scholar]
- Fauve, S.; Heslot, F. Stochastic resonance in a bistable system. Phys. Lett. A 1983, 97, 5–7. [Google Scholar] [CrossRef]
- Leng, Y.G.; Wang, T.Y. Numerical research of twice sampling stochastic resonance for the detection of a weak signal submerged in a heavy Noise. Acta Phys. Sin. 2003, 52, 2432. [Google Scholar] [CrossRef]
- Lu, S.; He, Q.; Kong, F. Stochastic resonance with Woods–Saxon potential for rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 2014, 45, 488–503. [Google Scholar] [CrossRef]
- Leng, Y.G.; Leng, Y.S.; Wang, T.Y.; Guo, Y. Numerical analysis and engineering application of large parameter stochastic resonance. J. Sound Vib. 2006, 292, 788–801. [Google Scholar] [CrossRef]
- Yang, D.X.; Hu, Z.; Yang, Y.M. The analysis of stochastic resonance of periodic signal with large parameters. Acta Phys. Sin. 2012, 61, 80501. [Google Scholar] [CrossRef]
- Min, L.; Yong-Mei, H. Modulation and demodulation for detecting weak periodic signal of stochastic resonance. Acta Phys. Sin. 2006, 55, 3277. [Google Scholar] [CrossRef]
- Tan, J.; Chen, X.; Wang, J.; Chen, H.; Cao, H.; Zi, Y.; He, Z. Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis. Mech. Syst. Signal Process. 2009, 23, 811–822. [Google Scholar] [CrossRef]
- Liu, J.; Leng, Y.; Lai, Z.; Fan, S. Multi-Frequency Signal Detection Based on Frequency Exchange and Re-Scaling Stochastic Resonance and Its Application to Weak Fault Diagnosis. Sensors 2018, 18, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; Peninsula Publising: Los Atlos, CA, USA, 1983. [Google Scholar]
- Nicolis, C.; Nicolis, G. Stochastic aspects of climatic transitions–additive fluctuations. Tellus 1981, 33, 225–234. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.; Wiesenfeld, K. Theory of stochastic resonance. Phys. Rev. A 1989, 39, 4854–4869. [Google Scholar] [CrossRef] [PubMed]
- Dykman, M.; Luchinsky, D.; Mannella, R.; McClintock, P.V.; Stein, N.; Stocks, N. Stochastic resonance: Linear response and giant nonlinearity. J. Stat. Phys. 1993, 70, 463–478. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, G.; Wan, G.; Wang, J.; Wang, X. A Novel Underwater Location Beacon Signal Detection Method Based on Mixing and Normalizing Stochastic Resonance. Sensors 2020, 20, 1292. https://doi.org/10.3390/s20051292
Liang G, Wan G, Wang J, Wang X. A Novel Underwater Location Beacon Signal Detection Method Based on Mixing and Normalizing Stochastic Resonance. Sensors. 2020; 20(5):1292. https://doi.org/10.3390/s20051292
Chicago/Turabian StyleLiang, Guolong, Guangming Wan, Jinjin Wang, and Xue Wang. 2020. "A Novel Underwater Location Beacon Signal Detection Method Based on Mixing and Normalizing Stochastic Resonance" Sensors 20, no. 5: 1292. https://doi.org/10.3390/s20051292