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Abstract: For wireless communication networks, cognitive radio (CR) can be used to obtain the
available spectrum, and wideband compressed sensing plays a vital role in cognitive radio networks
(CRNs). Using compressed sensing (CS), sampling and compression of the spectrum signal can be
simultaneously achieved, and the original signal can be accurately recovered from the sampling
data under sub-Nyquist rate. Using a set of wideband random filters to measure the channel energy,
only the recovery of the channel energy is necessary, rather than that of all the original channel
signals. Based on the semi-tensor product, this paper proposes a new model to achieve the energy
compression and reconstruction of spectral signals, called semi-tensor product compressed spectrum
sensing (STP-CSS), which is a generalization of traditional spectrum sensing. The experimental results
show that STP-CSS can flexibly generate a low-dimensional sensing matrix for energy compression
and parallel reconstruction of the signal. Compared with the existing methods, STP-CSS is proved
to effectively reduce the calculation complexity of sensor nodes. Hence, the proposed model
markedly improves the spectrum sensing speed of network nodes and saves storage space and
energy consumption.

Keywords: compressed sensing; wideband spectrum sensing; sub-Nyquist sampling; cognitive
radio network

1. Introduction

The number of wireless users and the service quality requirements are increasing with the
rapid development of wireless communication technology. A large number of users are demanding
high-speed and high-bandwidth communication services, so the limited spectrum resource has become
unusually valuable. Almost all the governments now use the principle of static allocation to authorize
the fixed spectrum for different services users. However, the investigation report released by the
Federal Communications Commission (FCC) stated that the use rate of the licensed spectrum is low,
for the authorized users are idle on most occasions [1,2]. As a result, many spectrum holes exist in the
daily use of the spectrum [3], as shown in Figure 1, which shows the wideband spectrum occupancy in
real life scenarios. In this case, Mitola et al. proposed cognitive radio (CR), which became a suitable
solution to the low spectrum use and the lack of spectrum resources [4]. The technical idea of CR is
that a secondary user (SU) can dynamically look for opportunities to access the licensed spectrum
without interfering with the primary user (PU). Hence, the spectrum holes in real scenes can be fully
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used. Chiwewe et al. summarized the CR methods related to industrial applications [5], including CR
architecture, spectrum sensing, dynamic spectrum access (DSA), and interference management.

Figure 1. (a) Spectrum occupancy in a real scenario. (b) The grey areas indicate the occupied channels
and the white areas indicate the idle channels.

Recently, the cognitive radio network (CRN) has been widely used in various wireless
communication fields, such as ad-hoc networks, Internet of things (IoT) networks, and fifth generation
wireless systems (5G) [6–8]. The cognitive characteristics of a CRN are used to distinguish the state
of the network and make decisions and responses in daily life. The cognitive radio network has
recently drawn widespread attention as it can provide flexible wideband services and stable operation
in dynamic spectrum scenarios. The cognitive radio network can access the licensed spectrum of
wireless communication and detect the spectrum usage status of the primary user through spectrum
sensing [9–11]. For example, Figure 2 depicts a cognitive radio network structure in a wireless
communication environment. However, with the rapidly growing demand for large-scale sensor
deployments and mass data services, the lack of spectrum resources limits the development of the
IoT [12]. The main challenge of the cognitive radio network is to provide sufficient available wideband
spectrum resources for a great number of SU sensor nodes. Therefore, spectrum sensing and the
sharing of dynamic spectrum have become quite important.

Spectrum sensing is the most critical and basic process in cognitive networks. The main
purpose of spectrum sensing is to find idle spectrum through fast, efficient, and reliable methods,
which allows the CR to achieve dynamic spectrum access. Spectrum sensing is further divided
into narrowband spectrum sensing (NSS) and wideband spectrum sensing (WSS). The traditional
narrowband spectrum sensing algorithms include matched filtering, energy detection, and feature
extraction [13,14]. To simultaneously sense a plurality of channels, wideband spectrum sensing is
an effective solution in CR. The CR network should handle a wide range of broadband spectra,
i.e., from hundreds of MHZ to a few GHZ. One of traditional wideband spectrum sensing approaches
is to use an analog-to-digital converter (ADC) to sample a wideband signal at an Nyquist rate, but large
amounts of sampling are required. To reduce the amount of data perception and transmission in
cognitive wireless networks, Tian et al. applied compressed sensing technology [15,16] to broadband
spectrum sensing, called compressed spectrum sensing (CSS) [17]. CSS can reconstruct the spectral
edge information directly from the measurement by taking advantage of the sparseness of the
spectral signal and the detection technique of the wavelet-based edge. In addition, to achieve
anti-noise robustness, Tian et al. also studied the wideband spectrum compression sensing algorithm
based on cyclic feature detection [18]. Based on compressed sensing, Kirolos et al. created an
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analog-to-information converter (AIC) in which the analog signal can be directly sampled at a
sub-Nyquist rate by random demodulation [19]. Mishali et al. modified the AIC model and proposed
a modulation wideband converter (MWC) model for multiple sampling channels [20], and their model
was found to be highly robust in noisy environments.

Sensor node

Figure 2. Communication architecture for a cognitive radio network.

Although the above methods can achieve sub-Nyquist sampling to detect the spectrum channel
occupancy state, the entire original signal spectrum or the whole power density spectrum must still be
reconstructed. Havary et al. used a small number of filters to obtain a linear measurement of spectrum
signal energy and directly reconstruct the signal energy [21]. In this way, the reconstruction of the
entire spectrum is unnecessary. Once the energy of each channel is reconstructed, the dimension of
the sparse energy vector is much lower than the spectral signal dimension. Due to the non-coherent
property of energy detection, the priori information of a signal does not need to be known. However,
these wideband compressed spectrum sensing algorithms still require a large number of wideband
filters for perceptual calculation and storage [22–24]. Both the configuration complexity and the delay
are high, which fail to meet the requirements of fast and accurate detection for wideband signals.

To solve these problems related to spectrum sensing, we propose a high-efficiency energy
reconstruction compressed spectrum sensing algorithm based on the semi-tensor product in a cognitive
radio network. In the proposed scheme, the wideband signal is sampled at a sub-Nyquist rate, and the
prior information of the spectral signal is unneeded. The size of the measurement matrix of the CR node is
much lower than that of the existing compressed spectrum sensing algorithms. The reconstruction process
can be performed in parallel to reduce the delay. The main contributions of this paper are summarized
as follows:

1. No relay on prior information. The prior information of the spectrum signal does not need to be
known in advance, and we only reconfigure the channel energy. Using the sparsity of the channel
energy, a wideband filter bank is used to obtain a linear measurement of the channel energy,
whose value is used to determine whether the channel is occupied. Compared with the previous
algorithms, the proposed algorithm focuses on the direct recovery of the spectrum channel energy
instead of the restoring of the entire spectrum signal. Hence, the data processing operation is
lower during the sensing process.

2. Low storage overhead and low sampling rate. Based on the compressed sensing theory,
our algorithm can compress high-dimensional signals using low-dimensional sensing matrices.
According to the characteristics of the semi-tensor product, fewer wideband filters for the
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proposed algorithm are required than traditional compressed spectrum sensing algorithms.
Hence, the storage overhead of the CR node will be greatly reduced and the sensing process is
more efficient.

3. Parallel reconstruction and less time required. The reconstruction method of semi-tensor
compressed spectrum sensing can be implemented in parallel. Based on the characteristics of the
semi-tensor product, the channel energy is simultaneously performed in multiple compressed
sensing (CS) decoders so that the total spectrum sensing time is markedly reduced, which provides
an important contribution to the immediacy of dynamic spectrum access.

2. Fundamental Knowledge

2.1. Cognitive Radio

The main idea of the cognitive radio (CR) system is to maximize the spectrum use by using idle
bands [25,26]. Usually, most of the channels in the spectrum are free and they can be used by the
second users (SUs). To find these spectrum holes without interfering with the primary user (PU),
the CR system should use spectrum sensing to perceive and detect the spectrum.

Spectral detection is the judgment of the existence of a signal on the detected spectrum wideband,
which is usually regarded as the following binary hypothesis problem:{

H0 : x(t) = n(t)
H1 : x(t) = h(t) ∗ s(t) + n(t)

(1)

where H1 and H0 indicate two states where the primary user exists or not, respectively, in the frequency
band; x(t) represents the signal sequences received by the second user; s(t) is the signal sequences
sent by the primary user, h(t) is the channel gain; and n(t) is Gaussian white noise, which satisfies
n(t) ∼ N(0, σ2). “∗” is a time domain convolution operation.

Different detection methods can be used to construct the decision statistic V(x) by the obtained
signal x, and comparing V(x) with the threshold value λ:

V(x)
D1
>
<
D0

λ, or

{
V < λ, D0

V ≥ λ, D1
(2)

where D0 indicates the channel state is idle and D1 indicates the channel state is occupied.
The perceived results are evaluated by two performance indicators:
(i) Detection probability:

Pd = P(D1/H1) = P(Y ≥ λ|H1) (3)

(ii) False alarm probability:

Pf = P(D1/H0) = P(Y ≥ λ|H0) (4)

The detection probability represents the possibility that the detection result is D1 when the
spectrum is occupied by the primary user in reality. The false alarm probability indicates that when
the spectrum is not actually occupied by the primary user, the detection result is still D1. The higher
the detection probability, the lower the false alarm rate, and the more reliable the perception result.
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2.2. Compressed Sensing

Suppose that the signal x = [x1, x2, ..., xN ]
T with length N is compressible or K-sparse, and the

signal is observed after a dimensionality reduction through the measurement matrix. Then, the
available measurement vector y is given as follows:

y = Φx (5)

where Φ is the sensing matrix with size M× N(M ≤ N) and y is the linear projection of the signal
x. Since x is an N-dimensional signal and y is an M-dimensional signal, it is theoretically impossible
to solve x while M ≤ N. Candes et al. demonstrated that if the sensing matrix satisfies the restricted
isometry property (RIP), then the original signal can be reconstructed with high precision [27].

Candes et al. proved that as long as the measurement matrix Φ satisfies the RIP and M ≥
O(Klog2N), the signal x can be accurately recovered with a probability approaching 1, which is
marked as ‖s‖0 = K [16]. Currently, many famous matrices, like Gaussian random matrices and
Bernoulli matrices, can satisfy RIP conditions, which are commonly used in compressed sensing
applications [28,29].

For the purpose of recovering the original signal from the compressed sampling sequence, only
the transformation before the reverse solution is needed. The solution formula can be solved by locally
optimal greedy iterative algorithms, such as matching pursuit (MP) algorithm, orthogonal matching
pursuit (OMP) algorithm, and the regular orthogonal matching pursuit (ROMP) algorithm, etc. [30–32].

2.3. Compressed Spectrum Sensing

It is assumed that the W Hz spectrum is used by the primary and secondary users, or it is shared
by the nodes of an ad-hoc network, or the secondary network of the cognitive radio attempts to access
the licensed spectrum for the secondary communication. If the communication of each node in the
network requires B Hz, then N = W/B Hz is defined as the number of all channels, and fi is used
to indicate the center frequency of the ith channel. Each node receives the entire spectrum using a
wideband antenna, x(t), which is provided by each node is a broadband time domain signal.

Each node generates and stores a random matrix Φ with size K × N in advance, which is
determined by the channel occupancy sparsity. These matrices are much smaller than the total channel
number N. Each node uses this matrix to generate K wideband filters {Hk( fi)}K

k=1. The transformation
function of the kth filter is given as follows [17]:

Hk( fi) = [Φ]ki, k = 1, 2, . . . , K, i = 1, 2, . . . , N. (6)

It can be assumed that the input wideband signal x(t) of the node is transformed to obtain the time
series vector, then the node sends the wideband signal to the filter, and the output of the kth filter is:

zk = Conv(xt, hk) (7)

where conv(·,·) represents a convolution operation and hk is an impulse response sequence. A K ×
1-dimensional energy vector y can be obtained from Equation (7)

yk = zk
Hzk, k = 1, 2, . . . , K

y = [y1, y2, . . . , yk]
T (8)

where (·)T and (·)H represent the transpose transformation and the conjugate transpose transformation
of a matrix, respectively; Ei is used to represent the signal energy received by the ith channel.
Mathematically, we have:

Ei =
∫ fi+B/2

fi−B/2
Fx(t)d f (9)
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where F represents the continuous Fourier transform of a signal. Assume that the frequency response
of each filter is approximately constant, and the equation for the ith channel of the kth filter is
Hk( fi) = Φki. So, the energy of the output signal kth filter can be written as:

yk =
N

∑
i=1
|Hk( fi)| 2Ei, k = 1, 2, . . . , K. (10)

Equation (10) can be vectorized as:
y = Φ̄e (11)

where:

Φ̄ =


|H1( f1)|2 |H1( f2)|2 · · · |H1( fN)|2

|H2( f1)|2 |H2( f2)|2 · · · |H2( fN)|2
...

...
. . .

...
|HK( f1)|2 |HK( f2)|2 · · · |HK( fN)|2

 (12)

In this paper, Φ̄ is a matrix whose elements are the square of the absolute value of the elements
in the random matrix Φ, and e = [E1, E2, . . . , EN ]

T is the received energy vector of different channels.
Our goal is to recover the vector e with length N using the measurement vector y with length K.

2.4. Semi-Tensor Product

Cheng et al. proposed the concept of the semi-tensor product (STP) of the matrix, is was a
generalization of the traditional matrix product [33]. The multiplication of two matrices can be
accomplished using STP when the two matrices do not satisfy the dimension matching condition of the
traditional matrix multiplication. STP can be used in many fields, such as image encryption, game theory,
and body-to-body networks [34,35]. Suppose X is a row vector with dimension np and Y is a column
vector with dimension p. Then, we split X into p equal-sized blocks X1, X2, · · · , Xp, and each of these
blocks has 1× n lines. The semi-tensor product is represented by n, and it is defined as:

X nY =
p
∑

i=1
Xiyi ∈ Rn,

YT n XT =
p
∑

i=1
yi(Xi)

T ∈ Rn.
(13)

For A ∈ Mm×n, B ∈ Mp×q, if n is a factor of p, there is nh = p, and it is recorded as A < hB.
Otherwise, if p is a factor of n, there is n = ph, and it is recorded as A > hB. The left semi-tensor
product of A and B is defined as C = A n B. C is composed of m× p blocks, and each block is:

Cij = Ai n Bj (14)

where Ai is the ith row of A, Bj is the jth column of B, i = 1, 2, . . .m, and j = 1, 2, . . . , q.
The multiplication of the semi-tensor product can also be defined by the Kronecker product.
The Kronecker product of two matrices A ∈ Mm×n, B ∈ Mp×q is defined as:

A⊗ B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq (15)

According to [23], the semi-tensor product of A ∈ Mm×n, B ∈ Mp×q is An B=(A⊗ It/n)n (B⊗ It/p),

where t is the least common multiple of n and p. There are (A⊗ It/n) ∈ Rmt/n×t and (B⊗ It/p) ∈ Rt×qt/p

so that A n B ∈ Rmt/n×qt/p. When p = n, there is A n B=(A⊗ I1)(B⊗ I1)=AB, and the semi-tensor
product degenerates into standard matrix multiplication.
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3. Improved Compressed Spectrum Sensing

In this paper, we consider the CR network scenario where many channels are free holes. To exploit
the holes and avoid any interference caused to PUs, the system has to sense the spectrum and detect it
before the transmission of SU signals. The algorithm structure of the proposed scheme is shown in Figure 3,
which consists of the STP-CSS encoder and decoder. We can calculate the channel energy from the received
spectrum signal and compress it in the encoder on sensors of SUs, and then reconstruct the channel energy
in the decoder terminal to determine the occupancy state of the spectrum channel after the transmission.

Figure 3. A scheme of semi-tensor product compressed spectrum sensing (STP-CSS). The channel
energy is calculated and compressed in the encoder and reconstructed in the decoder to determine the
occupancy of the spectrum channel.

Assume that in a wideband wireless network, the entire spectrum bandwidth to be perceived is
supposed to be W HZ, which is in the frequency range [ f0, fN ]. Then, it is divided into N channels
with bandwidth B = W/N Hz, and fi represents the center frequency of the ith channel. Each SU
monitors a time domain wideband signal x(t). An additive white Gaussian noise (AWGN) with mean
0 and variance σ2 is distributed to the signal.

Havary et al. proposed the compressed spectrum sensing algorithm [21]. In their algorithm,
each SU node should independently generate and store M wideband filters (M ≤ N) to perform the
compressed sensing on the received signal energy. In this case, we select a common factor P of M and
N, and each node only generates and stores an M/P× N/P-dimensional Gaussian random matrix
φ. The matrix φ with size M/P× N/P is convolved with a P-dimensional unit matrix, resulting in a
matrix A with dimension M× N. The wideband signal x(t) is then fed into the filter that is generated
by this matrix A via discrete Fourier transformation (DFT) for the parallel processing. The energy of
the ith channel is calculated according to the received signal x(t) by the following equation:

ei =
∫ fi+

B
2

fi− B
2

|Fx(t)|2d f , i = 1, 2, . . . , N. (16)

The channel energy vector is E ∈ RN .The conversion equation of the ith channel and the kth
filter is:

Ak,i = (ϕ M
P , N

P
⊗ Ip)

k,i
, k = 1, 2, . . . , M, i = 1, 2, . . . , N. (17)



Sensors 2020, 20, 1264 8 of 19

Then, we have:

A = Φ⊗ I =



a11 · · · 0 a12 · · · 0 · · · a1 N
P
· · · 0

...
. . .

...
...

. . .
... · · ·

...
. . .

...
0 · · · a11 0 · · · a12 · · · 0 · · · a1 N

P

a21 · · · 0 a22 · · · 0 · · · a2 N
P
· · · 0

...
. . .

...
...

. . .
... · · ·

...
. . .

...
0 · · · a21 0 · · · a22 · · · 0 · · · a2 N

P
...

...
...

...
...

... . . .
...

...
...

a M
P 1 · · · 0 a M

P 2 · · · 0 · · · a M
P

N
P
· · · 0

...
. . .

...
...

. . .
... · · ·

...
. . .

...
0 · · · a M

P 1 0 · · · a M
P 2 · · · 0 · · · a M

P
N
P

· · ·



(18)

The size of the matrix A is M×N, the size of φ is M
P ×

N
P , and I is the unit matrix with dimension P.

The output of the filter is:
y = Φ n E = (Φ⊗ IP)E = AE. (19)

The signal energy generated from the kth filter is:

yk =
N

∑
i=1

Ak,iEi. (20)

(i) First we calculate the front P row element of Y, and we obtain:

y1 = a11e1 + a12eP+1 + ... + a1 N
P

e( N
P −1)P+1 =

N
P
∑

j=1
a1je(j−1)P+1

y2 = a11e2 + a12eP+2 + ... + a1 N
P

e( N
P −1)P+2 =

N
P
∑

j=1
a1je(j−1)P+2

...

yP = a11ei + a12e2P + ... + a1 N
P

eN =

N
P
∑

j=1
a1jejP

(21)

That is, for i = 1, 2, . . . , P, we have:

yi = a11ei + a12eP+i + ... + a1 N
P

e( N
P −1)P+i

=

N
P
∑

j=1
a1je(j−1)P+i

= (a11, a12, . . . , a1 N
P
) · (ei, eP+i, . . . e( N

P −1)P+i)
T

(22)
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(ii) Continue to calculate the elements from P + 1 to M lines of Y, then we get

yP+i = a21ei + a22eP+i + · · ·+ a2 N
P

e( N
P −1)P+i

=

N
P
∑

j=1
a2je(j−1)P+i

= (a21, a22, . . . , a2 N
P
) · (ei, eP+i, . . . , e( N

P −1)P+i)
T

...
y( M

P −1)P+i = a M
P 1ei + a M

P 2eP+i + · · ·+ a M
P

N
P

e( N
P −1)P+i

=

N
P
∑

j=1
a M

P je(j−1)P+i

= (a M
P 1, a M

P 2, . . . , a M
P

N
P
) · (ei, eP+i, . . . , e( N

P −1)P+i)
T

(23)

According to Equations (20)–(23), the process of the spectral channel energy passing through the
wideband filter, that is, the compressed sensing process, can be expressed as:


yi

yP+i
...

y( M
P −1)P+i

 =


a11 a12 · · · a1 N

P

a21 a22 · · · a2 N
P

...
...

. . .
...

a M
P 1 a M

P 2 · · · a M
P

N
P




ei
eP+i

...
e( N

P −1)P+i

 (24)

Thus, the final reconstructed channel energy can be defined as:

Ê = [e1, e2, . . . , eP]T (25)

where ei = (ei, eP+i, . . . , e( N
P −1)P+i)

T , yi = (yi, yP+i, . . . , y( M
P −1)P+i)

T .
We can use the traditional compressed sensing reconstruction algorithms in our model because

Φ n E = (Φ⊗ IP)E. According to the structure Φ⊗ IP, the instance reconstruction in the STP-CSS
model can be converted into P independent reconstruction processes, and then parallel reconstruction
processing uses the orthogonal matching pursuit algorithm in the software aspect. The spectrum
sensing reconstruction algorithm based on channel energy reconstruction is shown in Algorithm 1.
According to Equation (25), the decoder terminal should have p servers to meet the parallel
reconstruction requirement in terms of hardware aspect.

Algorithm 1 Parallel reconstruction algorithm of the proposed STP-CSS Model.

Input: The received signal y ∈ RN and measurement matrix A ∈ R
M
P ×

N
P

Output: The reconstructed channel energy e

for i = 1top do
yi = (yi, yP+i, ..., y( M

P −1)P+i)
T ∈ R

M
P

end for
for i = 1top do

ei → CS reconstruction algorithm → (yi, A)
end for
return e := vec(XT). vec(E) denotes the vectorization of E
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For purpose of determining whether each channel is occupied or idle, the energy detection result
obtained from Algorithm 1 is compared with the threshold λ:{

Ei < λ , H0

Ei > λ , H1
(26)

4. Experimental Results

In the experiment, we used the following broadband time domain signal model:

x(t) =
N

∑
i=1

√
PiBi cos(2π fi(t− α)) + n(t) (27)

where Pi and Bi represent the received power and the channel width, respectively; fi denotes the
center frequency of the ith channel at the SU; α is a random time offset, and n(t) ∼ N (0,σ2). In this
experiment, we perceived the spectrum frequency range from 100 to 200 MHz, so the total band width
W = 100 MHz, which was divided into N = 100 communication channels with the same band width
Bi = 1 MHz. Figure 4 depicts an example of the occupancy of channel energy at a communication
moment. In Figure 4, the signal channel had a signal of fi = (7, 12, 13, 14, 15, 37, 42, 48, 69, 88, 93) MHz.
Table 1 lists the values of the other parameters used in the proposed algorithm. We used MATLAB
software (MathWorks, USA) to simulate our algorithm.

Figure 4. An example of the distribution of the channel energy. The entire spectrum bandwidth to
be perceived was 100 HZ, which is in the frequency range of (0; 100) MHz. The whole spectrum was
divided into 100 channels.

Table 1. Values of the experimental parameters.

Notation Value Description

Pi 0.02 Received power
Bi 1 Channel width
α 0.1 Time offset
σ 1 Variance of noise
λ 118 Judgment threshold
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4.1. Detection Rates

We used a statistical simulation method to obtain the detection probability P corresponding to
the false positive probability. Figures 5 and 6 compare the reconstructed energies generated by the
proposed semi-tensor product compressed spectrum sensing algorithm (STP-CSS) and the traditional
compressed spectrum sensing algorithm (CSS) for channel energy recovery, where the numbers M of
the filters were set to 80 and 100, respectively. The energy recovery effect of STP-CSS was similar to
that of the CS algorithm. Figures 7 and 8 compare the results of the detection probability between the
proposed algorithm and the traditional compressed sensing algorithm for spectrum detection under
different signal-to-noise ratio (SNR) conditions. In Figure 7, the number of detecting channels was
set to be 100 and filters were set to be 80 and 72, respectively. In Figure 8, the number of detecting
channels was set to be 100 and filters were set to be 40 and 20, respectively. We changed the SNR
from −2 dB to 5 dB, and compared our algorithm with the traditional compressed sensing algorithm
using a random matrix such as Gaussian Bernoulli and tent chaotic matrix as the measurement matrix.
To be representative and authoritative, each experiment was conducted 100 times each under the
same conditions, and the average detection rate was regarded as the experimental result. For each
communication channel, the detection probability was calculated as follows:

Pdi = Pr ob{Ei > λ|H1} (28)

where H1 indicates that the real state of the channel is occupied. If the recovered channel energy Ei
was greater than the threshold λ and the true state of the channel was H1, the channel was successfully
detected. Figure 8 shows that the detection rates of the signal energy for the proposed method was
similar to that of the traditional compressed spectrum sensing method when the compression ratio was
low. As can be seen from Figure 7, the detection rates of the signal energy for the traditional compressed
spectrum sensing method were similar to that of the proposed method when the compression ratio
was high.

Figure 5. Comparison of the original signal and the STP-CSS reconstructed signal when M = 80.
(a) The original energy; (b) the reconstructed energy of the compressed spectrum sensing algorithm;
(c) the reconstructed energy of the semi-tensor compressed spectrum sensing algorithm.
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Figure 6. Comparison of the original signal and the STP-CSS reconstructed signal when M = 100:
(a) the original energy, (b) the reconstructed energy of the compressed spectrum sensing algorithm,
and (c) the reconstructed energy of the semi-tensor compressed spectrum sensing algorithm.
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Figure 7. Comparison of the reconstructed signal in compressed spectrum sensing (CSS) and STP-CSS,
where the numbers of the measurement matrix were set to 72 and 80.
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Figure 8. Comparison of the reconstructed signal in CSS and STP-CSS, where the numbers of the
measurement matrix were set to 20 and 40.

4.2. Energy Efficiency

The use of compressed sensing theory can reduce the amount of data transmitted, thereby
reducing the communication energy consumption of sensor nodes. The energy consumption in CR
networks is usually dominated by wireless communication. Thus, the energy model can be formulated
as follows [36]:

En = Ce ×M× b (29)

where Ce indicates the energy consumption of transmitting 1 bit of data. The average energy
consumption per bit in wireless communication is set to Ce = 3 nJ/bit. M is the amount of data
to be transmitted, which can be formulated as M = m + p [37]; b is the bit resolution, and we set
b = 16 to satisfy its requirement. Using the number of sensing channels of 100, 200, 300, 400, 1000,
2000, 3000, and 4000, we calculated the energy consumption with different compression ratios when
p = 2, and the calculation results are shown in Table 2, where the energy was measured in 103 nJ.
When the compression ratio was 1, the algorithm degenerated to the traditional spectrum sensing
without using compressed sensing. From Table 2, we find that a larger compression ratio led to
lower energy consumption for transmitting the same-sized channel energy. For example, in Table 2,
compared with the traditional spectrum sensing algorithm without CS theorem, the 0.4 compression
ratio could save 2880, 5760, 28,800, and 57,600 mJ of energy for channels numbers of 100, 200, 1000,
and 2000, respectively. In addition, the proposed algorithm only needed to transmit the channel energy
and did not need to transmit the channel signal, which could also considerably reduce transmission
and reconstruction energy consumption. Thus, the proposed model was energy-efficient, saving the
energy resources of sensor nodes in CR networks.

Table 2. Energy consumption (103 nJ) under different compression ratios.

Compression Ratio n = 100 n = 200 n = 1000 n = 2000

1 4.896 9.696 48.096 96.096
0.8 3.936 7.776 38.496 76.896
0.72 3.552 7.008 34.656 69.12
0.4 2.016 3.936 19.296 38.496
0.2 1056 2.016 9.696 19.296
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4.3. Computation Complexity

Due to the semi-tensor product theory used in the proposed compressed spectrum sensing
algorithm, the dimension of the measurement matrix A is m/p × n/p, instead of the dimension
of the measurement matrix in the traditional CS, which is m × n, thereby reducing hardware
overhead. Compared with m(n − 1) times float number addition operations and mn times float
number multiplication operations in traditional compressed spectrum sensing, the times float
number addition operations in the proposed algorithm are m(n/p− 1), and the times float number
multiplication operations are m(n/p + 1). The complexity of traditional spectrum compressed sensing
is O(n3), and the complexity of the proposed spectrum compressed sensing is O(n) [37]. In the
experiment, the channel energy vector was e ∈ R100×1. If n and p are set to 80 and 2, respectively,
then A⊗ I ∈ R80×100, saving 80× 50 float number addition operations and 80× 49 float number
multiplication operations. The results showed that a larger p could save more computing resources.
The experiments showed that our proposed algorithm could effectively reduce the computational
complexity of CR network sensing nodes.

4.4. Running Time

Since the reconstruction process of the semi-tensor product compressed spectrum sensing model
can be converted into p independent parallel reconstruction instances, considerable time is saved in
the spectrum sensing process. In Figure 9, when the number of the channels was in the range [100,400],
the proposed algorithm and the traditional compressed spectrum sensing algorithm, using a random
matrix such as Gaussian Bernoulli and tent chaotic matrix as the measurement matrix, were applied
for channel energy reconstruction. Figure 9a compares the time of the channel energy measurement
process. Since the sensing nodes of spectrum sensing required extremely high measurement time,
the proposed method provided a significant improvement. Figure 9b compares the time of the whole
spectrum sensing process. Our algorithm provided significant time reductions.

Figure 10 compares the results between the measurement time of the channel energy and the
time of the entire sensing process when the number of channels ranges from 1000 to 4000. In the
proposed algorithm, the measurement matrix is composed of a small matrix and a P-dimensional
unit matrix, so the sensing node and the data fusion center only should store the data of the original
measurement matrix, and the reconstruction can be performed in parallel in the sensing process.
Storage space and computing consumption can be reduced when the number of channels being
perceived is extremely large.
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Figure 9. The comparisons of time costs on the measurement process and the whole spectrum sensing
process. The numbers of the channels were set to 100, 200, 300, and 400: (a) The logarithm of the
measurement time. (b) The logarithm of the spectrum sensing time.
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Figure 10. The comparisons of time costs on the measurement process and the whole spectrum sensing
process. The numbers of the channels were set to 1000, 2000, 3000, and 4000. (a) The logarithm of
measuring time. (b) The logarithm of sensing time.

4.5. Storage Space

Gan et al. proposed a block-based signal compressed sensing model [38] called BCS, which efficiently
reduces the storage space of measurement matrices in compressed spectrum sensing. The main idea of the
block compressed spectrum sensing method is to first divide the spectrum signal into small blocks with
the same size and then compress each block using the compressed sensing method with the same sensing
matrix, and each block has the same size B× 1. According to the block-based compressed spectrum
sensing (BCSS) algorithm, the sensing matrix is a block diagonal matrix, which is given as follows:

ΦBCSS = IN ⊗ΦB =


ΦB 0 · · · 0
0 ΦB · · · 0
...

...
. . .

...
0 · · · 0 ΦB

 (30)

where N is the number of the blocks in the signal. In the proposed STP-CSS model, for the same
spectrum signal, the perceptual matrix can be described as:

ΦSTP−CSS = Φ⊗ Ip/n =


ϕ11 Ip/n · · · ϕ1n Ip/n

...
. . .

...
ϕm1 Ip/n · · · ϕmn Ip/n

 (31)

where ϕij is the element in the ith row and jth column of matrix Φ. Equations (30) and (31) show that the
measurement matrix structures of BCSS and STP-CSS are similar. For the storage overhead, we compared
the number of entries in the measurement matrices among CSS, BCSS, and STP-CSS. We found a more
suitable method to minimize the storage space of the measurement matrix. We assume that X is a raw
spectral signal with dimension p× 1. The dimension of the measurement matrix in the conventional CSS is
m× p. In BCSS, the signal is divided into n blocks with the same size B× 1, and each block is compressed
by a measurement matrix with dimension bmB/pc B. According to Equation (31), the dimension of the
measurement matrix in STP-CSS is m · n/p× p · n/p, ie mn2/p, where n is the factor of p. Therefore,
the number of entries in the sensing matrix among CSS, BCSS, and STP-CSS are mp, bmB/pc B, and mn2/p,
respectively. Figures 11 and 12 show the effect of B and n on the number of various measurement matrices,
respectively. In Figure 11, we selected four different values of n in STP-CSS, i.e., n = 5, 10, 20, 50, satisfying
n being the factor of p. In Figure 12, B was selected as different values for BCSS, i.e., B = 20, 40, 60, 80.
From the simulation result, the perceived number of STP-CSS was smaller than that of the traditional CSS.
In practical applications, since B in BCSS should be much larger than the sparse degree, it will not affect the
recovery effect. Thus, B cannot be too small. Compared with BCSS, STP-CSS saved storage space when
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each block B was large enough. Overall, from the perspective of storage overhead, STP-CSS was more
competitive than CSS and provided advantages over BCSS.
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Figure 11. The comparison of storage performance in CSS, block-based compressed spectrum sensing
(BCSS), and STP-CSS. The blue, green, and red lines represent CSS, BCSS, and STP-CSS, respectively.
In the STP-CSS, the values of the columns n are set to 5, 10, 20, and 50.
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Figure 12. The comparison of storage performance in CSS, BCSS, and PTP-CSS. The blue, green,
and red lines represent CSS, BCSS, and PTP-CSS, respectively. In the BCSS, the sizes of each block B are
set to 20, 40, 60, and 80.

5. Conclusions

In this paper, we considered a realistic cognitive radio Internet of things (IoT) scenario where
each communication channel is in neither in the occupied or idle state. We proposed a semi-tensor
product compressed spectrum sensing method by using a set of wideband random filters. The basic
strategy involves simultaneous detection of primary users on a set of wideband sub-bands, rather than
only considering one single frequency band at a time. Obtaining channel energy measurements and
determining the distribution of idle channels, we did not reconstruct the original signal, which greatly
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reduces the amount of data needed to be calculated. The biggest difference of the proposed algorithm
from the existing algorithms is that semi-tensor product theory is implemented in the compressed
spectrum sensing, which exponentially reduces the data storage space required in the CRN sensor
node. The process of the perceptual reconstruction is performed in parallel, which improves the speed
of spectrum sensing. Our scheme is useful for real-life scenarios where the spectrum situation changes
dynamically. Simulation experiments showed that the detection rate of the compressed spectrum
sensing algorithm using a semi-tensor product is not lower than that of the traditional algorithm,
and the spectrum sensing time of the proposed scheme is significantly shorter.
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The following abbreviations are used in this manuscript:

CR Cognitive radio
CRN Cognitive radio network
CS Compressed sensing
STP-CSS Semi-tensor product compressed spectrum sensing
FCC Federal Communications Commission
SU Secondary user
PU Primary user
DSA Dynamic spectrum access
IoT Cognitive radio network
5G The fifth generation wireless systems
NSS Narrowband spectrum sensing
WSS Wideband spectrum sensing
ADC Analog-to-digital converter
CSS Compressed spectrum sensing
AIC Analog-to-information converter
MWC Modulation wideband converter
RIP Restricted isometry property
OMP orthogonal matching pursuit
MP Matching pursuit
ROMP regular orthogonal matching pursuit
STP Semi-tensor product
AWGN Additive white Gaussian noise
DFT Discrete Fourier transformation
BCS Block-based compressed sensing
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