Low-Temperature Properties of the Magnetic Sensor with Amorphous Wire
<p>Schematic block diagram of the circuit for measuring the magnetization characteristics of the FeCoSiB amorphous wire.</p> "> Figure 2
<p>Magnetic sensor with FeCoSiB amorphous wire. The sensing element was connected to the driving circuit by only one coaxial cable.</p> "> Figure 3
<p>Feedback schematic block diagram of the magnetic sensor.</p> "> Figure 4
<p>Linear response of the output signal to the applied magnetic field when the magnetic sensor had feedback.</p> "> Figure 5
<p>Cryostat and the sample holder for the low-temperature experiments.</p> "> Figure 6
<p>Magnetization characteristics of the FeCoSiB amorphous wire at liquid nitrogen temperature (77 K) and room temperature. The black line represents the result at 77 K, and the gray line represents the result at room temperature.</p> "> Figure 7
<p>Output signals when the feedback was OFF. The frequency of the applied magnetic field was 500 Hz with a peak-to-peak amplitude of 0.5 Gauss. (<b>a</b>). Signal at room temperature. (<b>b</b>). Signal at liquid nitrogen temperature.</p> "> Figure 8
<p>Output signal when the feedback was ON. The applied magnetic field was 500 Hz with an amplitude of 1 Gauss. (<b>a</b>). Signal at room temperature. (<b>b</b>). Signal at liquid nitrogen temperature.</p> "> Figure 9
<p>Magnetic field resolution of the magnetic sensor at room temperature (<b>solid line</b>) and 77 K (<b>dash line</b>).</p> "> Figure 10
<p>Sensor output vs. magnetic field at room temperature.</p> "> Figure 11
<p>Sensor output vs. magnetic field at liquid helium temperature (4.2 K).</p> "> Figure 12
<p>Sensor output vs. magnetic field at liquid nitrogen temperature (77 K).</p> "> Figure 13
<p>Outputs of the FeCoSiB magnetic sensor (<b>gray line</b>) and the fluxgate (<b>blue line</b>) for a rapid change in the magnetic field.</p> "> Figure 14
<p>Output offset of the FeCoSiB magnetic sensors changing with the temperature.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Measuring the Magnetic Hysteresis Loop (B–H Characteristics) of the FeCoSiB Amorphous Wire
2.2. Magnetic Sensor with FeCoSiB Amorphous Wire
2.3. Experiments at Liquid Helium Temperature
3. Results
3.1. Magnetiztion Characteristics of the FeCoSiB Amorphous Wire
3.2. Signal Amplitudes at Room Temperature and Liquid Nitrogen Temperature
3.3. Magnetic Response of the FeCoSiB Magnetic Sensor
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Posen, S.; Checchin, M.; Crawford, A.C.; Grassellino, A.; Martinello, M.; Melnychuk, O.S.; Romanenko, A.; Sergatskov, D.A.; Trenikhina, Y. Efficient expulsion of magnetic flux in superconducting radiofrequency cavities for high Q0 applications. J. Appl. Phys. 2016, 119, 213903. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, B.; Koeszegi, J.; Kugeler, O.; Knobloch, J. Magnetometric mapping of superconducting RF cavities. Rev. Sci. Instrum. 2019, 89, 054706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clem, T.R.; Froelich, M.C.; Overway, D.J.; Purpura, J.W.; Wiegert, R.F.; Koch, R.H.; Lathrop, D.K.; Rozen, J.; Eraker, J.H.; Schmidt, J.M. Advances in sensor development and demonstration of superconducting gradiometers for mobile operation. IEEE Trans. Appl. Supercond. 1997, 7, 3287–3293. [Google Scholar] [CrossRef]
- Radparvar, M. A wide dynamic range single-chip SQUID magnetometer. IEEE Trans. Appl. Supercond. 1994, 4, 87–91. [Google Scholar] [CrossRef]
- Jakub, J.; Semir, E.-A.; Maciej, O. Hall sensors for extreme temperatures. Sensors 2011, 11, 876–885. [Google Scholar]
- Ruslan, R.; Jens, H.; Christian, H. New type of fluxgate magnetometer for the heart’s magnetic elds detection. Curr. Direct. Biomed. Eng. 2015, 1, 22–25. [Google Scholar]
- Barbieri, F.; Trauchessec, V.; Caruso, L.; Trejo-Rosillo, J.; Telenczuk, B.; Paul, E.; Bal, T.; Destexhe, A.; Fermon, C.; Pannetier-Lecoeur, M.; et al. Local recording of biological magnetic fields using Giant Magneto Resistance-based micro-probes. Sci. Rep. 2016, 6, 39330. [Google Scholar] [CrossRef]
- Honkura, Y. The development of MI sensor and its applications to mobile phone. In Proceedings of the 2012 Advanced Electromagnetics Symposium (AES2012), Paris, France, 16 April 2012. [Google Scholar]
- Postolache, O.; Ramos, H.G.; Ribeiro, A. Lopes. GMR array uniform eddy current probe for defect detection in conductive specimens. Measurement 2013, 46, 4369–4378. [Google Scholar] [CrossRef]
- He, D.F.; Shiwa, M.; Jia, J.P.; Takatsubo, J.; Moriya, S. Multi-frequency ECT with AMR sensor. NDT E Int. 2011, 44, 438–441. [Google Scholar] [CrossRef]
- Treutler, C.P.O. Magnetic sensors for automotive applications. Sens. Actuat. A Phys. 2001, 91, 2–6. [Google Scholar] [CrossRef]
- Ando, B.; Baglio, S.; Bulsara, A.R.; Trigona, C. Design and characterization of a microwire fluxgate magnetometer. Sens. Actuat. 2009, 151, 145–153. [Google Scholar] [CrossRef]
- Uchaikin, S.V. Fluxgate magnetometer for cryogenics. In 21st International Conference on Low Temperature Physics; Institute of Physics, Academy of Sciences of the Czech Republic: Prague, Czech Republic, 1996; pp. 2809–2810. [Google Scholar]
- Okada, T.; Kako, E.; Konomi, T.; Masuzawa, M.; Sakai, H.; Tsuchiya, K.; Ueki, R.; Umemori, K.; Tajima, T.; Poudel, A. Development of temperature and magnetic field mapping system for superconducting cavities at KEK. In Proceedings of the 19th International Conference on RF Superconductivity, Dresden, Germany, 30 June–5 July 2019; pp. 583–585. [Google Scholar]
- Martinet, G. Characterization of small AMR sensors in liquid helium to measure residual magnetic field on superconducting. In Proceedings of the 19th International Conference on RF Superconductivity, Dresden, Germany, 30 June–5 July 2019; pp. 576–579. [Google Scholar]
- Chen, J.; Li, J.; Li, Y.; Chen, Y.; Xu, L. Design and fabrication of a miniaturized GMI magnetic sensor based on amorphous wire by MEMS technology. Sensors 2018, 18, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohri, K.; Honkura, Y. Amorphous wire and CMOS IC based magneto-impedance sensors—Origin, topics, and future. Sens. Lett. 2007, 5, 267–270. [Google Scholar] [CrossRef]
- Uchiyama, T.; Hamada, N.; Cai, C. Highly sensitive CMOS magnetoimpedance sensor using miniature multi-core head based on amorphous wire. IEEE Trans. Magn. 2014, 50, 4005404. [Google Scholar] [CrossRef]
- Mohri, K.; Uchiyama, T.; Panina, L.V.; Yamamoto, M.; Bushida, K. Recent advances of amorphous wire CMOS IC magneto-impedance sensors: Innovative high-performance micromagnetic sensor chip. J. Sens. 2015, 2015, 718069. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Mitsuharu, S. A magnetic sensor with amorphous wire. Sensors 2014, 14, 10644–10649. [Google Scholar] [CrossRef]
- He, D. PT-level high-sensitivity magnetic sensor with amorphous wire. Sensors 2020, 20, 161. [Google Scholar] [CrossRef] [Green Version]
- He, D. A feedback method to improve the dynamic range and the linearity of magneto-impedance magnetic sensor. J. Sens. 2019, 19, 2413408. [Google Scholar]
- Robert, B.; Alfredo, J.; Giovanni, C.; Badini, A.; Manuel, V. A low-noise fundamental-mode orthogonal fluxgate magnetometer. IEEE Trans. Magn. 2014, 50, 6500103. [Google Scholar]
- Michal, J.; Mattia, B.; Michal, D.; Elda, S.; David, N.; Coenrad, F. 1-pT noise fluxgate magnetometer for geomagnetic measurements and unshielded magnetocardiography. IEEE Trans. Instrum. Meas. 2020, 69, 2552–2560. [Google Scholar]
- He, D.F.; Tachiki, M.; Itozaki, H. Highly sensitive anisotropic magnetoresistance magnetometer for Eddy current nondestructive evaluation. Rev. Sci. Instrum. 2009, 80, 036102. [Google Scholar] [CrossRef] [PubMed]
- Nathan, S.; Russek, A.; Stephen, E.; Pappas, D.P.; Mark, T. Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. J. Appl. Phys. 2005, 97, 10Q107. [Google Scholar]
- He, D.; Wang, Z.; Kusano, M.; Kishimoto, S.; Watanabe, M. Evaluation of 3D-Printed titanium alloy using eddy current testing with high-sensitivity magnetic sensor. NDT E Int. 2019, 102, 90–95. [Google Scholar] [CrossRef]
Fluxgate | AMR Sensor | NIMS Sensor | |
---|---|---|---|
Field resolution at 200 Hz | 0.6 pT/√Hz | 20 pT/√Hz | 6 pT/√Hz |
Field resolution at 2 Hz | 1 pT/√Hz | 200 pT/√Hz | 20 pT/√Hz |
Bandwidth | ~1 kHz | 1 MHz | 10 kHz |
Dimension | ϕ10 × 80 mm | 12 × 10 × 2.5 mm3 | ϕ2 × 5 mm |
Number of connection wire | 4 wires | 8 wires | 1 coaxial cable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; Umemori, K.; Ueki, R.; Dohmae, T.; Okada, T.; Tachiki, M.; Ooi, S.; Watanabe, M. Low-Temperature Properties of the Magnetic Sensor with Amorphous Wire. Sensors 2020, 20, 6986. https://doi.org/10.3390/s20236986
He D, Umemori K, Ueki R, Dohmae T, Okada T, Tachiki M, Ooi S, Watanabe M. Low-Temperature Properties of the Magnetic Sensor with Amorphous Wire. Sensors. 2020; 20(23):6986. https://doi.org/10.3390/s20236986
Chicago/Turabian StyleHe, Dongfeng, Kensei Umemori, Ryuichi Ueki, Takeshi Dohmae, Takafumi Okada, Minoru Tachiki, Shuuichi Ooi, and Makoto Watanabe. 2020. "Low-Temperature Properties of the Magnetic Sensor with Amorphous Wire" Sensors 20, no. 23: 6986. https://doi.org/10.3390/s20236986