Automatic Hierarchical Classification of Kelps Using Deep Residual Features
<p>Evolution of classification pipelines (the most recent at the bottom). Off-the-shelf deep residual features have the potential to replace the previous classification pipelines and improve performance for benthic marine image classification tasks. (SIFT: scale invariant feature transform, HOG: histograms of gradient, LBP: local binary patterns, CNN: convolutional neural networks, ResNet: residual networks).</p> "> Figure 2
<p>The block diagram of our proposed framework.</p> "> Figure 3
<p>ResNet-50 architecture [<a href="#B26-sensors-20-00447" class="html-bibr">26</a>] shown with the residual units, the size of the filters and the outputs of each convolutional layer. DRF extracted from the last convolutional layer of this network is also shown. <span class="html-italic">Key: The notation k × k, n in the convolutional layer block denotes a filter of size k and n channels. FC 1000 denotes the fully connected layer with 1000 neurons. The number on the top of the convolutional layer block represents the repetition of each unit. nClasses represents the number of output classes.</span></p> "> Figure 4
<p>Hierarchy tree for kelps in our benthic data. In each node, the first line shows the node number, 2nd line shows the name of the specie, and 3rd and 4th lines show the number of labels belonging to that particular species in Benthoz15 and Rottnest Island data respectively.</p> "> Figure 5
<p>Coverage estimation scatter plots for Rottnest Island Data for the DRF: Sibling Training experiment. Each dot indicates the estimated cover and the actual cover per image. The dashed green line represents the perfect estimation. The blue line on each plot is the linear regression model and the shaded area represent the 95% confidence intervals. The first plot is the aggregated plot of the remaining plots of the five sites included in the 2013 test data. <math display="inline"><semantics> <msup> <mi>R</mi> <mn>2</mn> </msup> </semantics></math> value for each sub-plot is shown in the respective title.</p> "> Figure 6
<p>Expert identified and estimated kelp coverage for all five sites of Rottnest Island data for the year 2013.</p> "> Figure 7
<p>Expert identified and estimated kelp coverage for the two southern sites of the Rottnest Island data. Left: Site 2, Right: Site 4.</p> "> Figure 8
<p>An example image from Rottnest Island Dataset with manual annotations showing similarity in appearance between <span class="html-italic">Scytothalia dorycarpa</span> (green) and the kelp <span class="html-italic">Ecklonia radiata</span> (blue).</p> ">
Abstract
:1. Introduction
- The first application of deep learning for automated kelp coverage analysis.
- A supervised kelp image classification method based on features extracted from deep residual networks, termed as Deep Residual Features (DRF).
- A comparison of the classification performance of the DRF with the widely used off-the-shelf CNN features for automatic annotation of kelps.
- Experiments demonstrating DRF’s superior classification accuracy compared to previous methods for kelp classification.
- We compare hierarchical image classification with multi-class image classification and report the accuracies and mean f1-scores for two large datasets.
- An application of our proposed method to automatically analyze kelp coverage across five regions of Rottnest Island in Western Australia.
- We demonstrate the performance of the proposed kelp coverage analysis technique using ground truth data provided by marine experts and show a high correlation with previously conducted manual surveys.
2. Related Work
2.1. Kelp Classification
2.2. Deep Learning for Benthic Marine Species Recognition
3. Methods and Results
3.1. Datasets
3.1.1. Benthoz15 Dataset
3.1.2. Rottnest Island Dataset
3.2. Classification Methods
- Flat Classification: This approach ignores the hierarchy and treats the problem as a parallel multi-class classification problem.
- Local Binary Classification: A binary classifier is trained for every node in the hierarchical tree of the given problem.
- Global Classification: A single classifier is trained for all classes and the hierarchical information is encoded in the data.
3.3. Training and Testing Protocols
3.4. Image Enhancement and Implementation Details
3.5. Experimental Settings and Evaluation Criteria
3.6. Classification Results
3.6.1. Benthoz15 Dataset
3.6.2. Rottnest Island Dataset
3.7. Kelp Coverage Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Label | Training Samples | Test Samples | CATAMI Class ID |
---|---|---|---|
1 | 1 | 0 | AUC |
2 | 0 | 1 | AUS |
3 | 2 | 0 | BMC |
4 | 483 | 294 | BRYH |
5 | 20 | 13 | BRYS |
6 | 20 | 0 | CB |
7 | 1 | 0 | CBBF |
8 | 2 | 0 | CBBH |
9 | 7 | 0 | CBOT |
10 | 0 | 3 | CNHYC |
11 | 3 | 0 | CNHYD |
12 | 7 | 1 | CSBL |
13 | 44 | 19 | CSBR |
14 | 1 | 1 | CSBRBL |
15 | 15 | 3 | CSCOLBL |
16 | 2 | 0 | CSCOR |
17 | 2 | 2 | CSCORBL |
18 | 7 | 3 | CSDBL |
19 | 265 | 38 | CSE |
20 | 24 | 1 | CSEBL |
21 | 887 | 355 | CSF |
22 | 46 | 2 | CSFBL |
23 | 7 | 3 | CSM |
24 | 50 | 8 | CSSO |
25 | 1 | 0 | CSSOBL |
26 | 0 | 2 | CSST |
27 | 1 | 0 | CSSUBL |
28 | 1 | 1 | CST |
29 | 1 | 0 | CSTBL |
30 | 10 | 7 | EF |
31 | 47 | 2 | ESC |
32 | 15 | 1 | ESS |
33 | 102 | 31 | FELR |
34 | 0 | 3 | MAAG |
35 | 2644 | 2561 | MAAR |
36 | 37 | 0 | MACAU |
37 | 66 | 113 | MAECB |
38 | 1 | 1 | MAECG |
39 | 112762 | 43014 | MAECK (Kelp) |
40 | 2419 | 1124 | MAECR |
41 | 1733 | 173 | MAEFB |
42 | 1 | 1 | MAEFG |
43 | 2839 | 586 | MAEFR |
44 | 6744 | 1300 | MAENB |
45 | 29948 | 11686 | MAENR |
46 | 1252 | 2073 | MAFR |
47 | 2 | 0 | MAGB |
48 | 9 | 0 | MAGG |
49 | 1 | 0 | MAGR |
50 | 4 | 0 | MALAB |
51 | 2 | 0 | MALAR |
52 | 285 | 87 | MALCB |
53 | 3 | 1 | MAPAD |
54 | 1177 | 2391 | MASAR |
55 | 52 | 6 | MASB |
56 | 16571 | 3366 | MASCY |
57 | 137 | 0 | MASR |
58 | 24637 | 4846 | MATM |
59 | 2 | 0 | RH |
60 | 1505 | 163 | SC |
61 | 14 | 13 | SCC |
62 | 2 | 0 | SEAGSAA |
63 | 18 | 3 | SEAGSAG |
64 | 0 | 3 | SEAGSPA |
65 | 1 | 3 | SEAGSPC |
66 | 2 | 0 | SEAGSPS |
67 | 1 | 0 | SEAGSZ |
68 | 106 | 15 | SHAD |
69 | 2013 | 1201 | SPC |
70 | 400 | 214 | SPCL |
71 | 110 | 125 | SPEB |
72 | 123 | 36 | SPEL |
73 | 289 | 347 | SPES |
74 | 69 | 0 | SPM |
75 | 23 | 6 | SUPBC |
76 | 164 | 4 | SUPBR |
77 | 9340 | 1893 | SUS |
78 | 68 | 1 | UNK |
References
- Doney, S.C.; Ruckelshaus, M.; Duffy, J.E.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N.; et al. Climate change impacts on marine ecosystems. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef] [Green Version]
- Moy, F.E.; Christie, H. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Mar. Biol. Res. 2012, 8, 309–321. [Google Scholar] [CrossRef]
- Fernández, C. The retreat of large brown seaweeds on the north coast of Spain: The case of Saccorhiza polyschides. Eur. J. Phycol. 2011, 46, 352–360. [Google Scholar] [CrossRef]
- Johnson, C.R.; Banks, S.C.; Barrett, N.S.; Cazassus, F.; Dunstan, P.K.; Edgar, G.J.; Frusher, S.D.; Gardner, C.; Haddon, M.; Helidoniotis, F.; et al. Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 2011, 400, 17–32. [Google Scholar] [CrossRef]
- Ridgway, K. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Bennett, S.; Wernberg, T.; Connell, S.D.; Hobday, A.J.; Johnson, C.R.; Poloczanska, E.S. The ‘Great Southern Reef’: Social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. 2016, 67, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.B.; Pizarro, O.R.; Jakuba, M.V.; Johnson, C.R.; Barrett, N.S.; Babcock, R.C.; Kendrick, G.A.; Steinberg, P.D.; Heyward, A.J.; Doherty, P.J.; et al. Monitoring of benthic reference sites: Using an autonomous underwater vehicle. IEEE Robot. Autom. Mag. 2012, 19, 73–84. [Google Scholar] [CrossRef]
- Smale, D.A.; Kendrick, G.A.; Harvey, E.S.; Langlois, T.J.; Hovey, R.K.; Van Niel, K.P.; Waddington, K.I.; Bellchambers, L.M.; Pember, M.B.; Babcock, R.C.; et al. Regional-scale benthic monitoring for ecosystem-based fisheries management (EBFM) using an autonomous underwater vehicle (AUV). ICES J. Mar. Sci. 2012, 69, 1108–1118. [Google Scholar] [CrossRef]
- Barrett, N.; Seiler, J.; Anderson, T.; Williams, S.; Nichol, S.; Hill, S.N. Autonomous Underwater Vehicle (AUV) for mapping marine biodiversity in coastal and shelf waters: Implications for marine management. In Proceedings of the OCEANS 2010 IEEE-Sydney, Sydney, Australia, 24–27 May 2010; pp. 1–6. [Google Scholar]
- Bridge, T.C.; Ferrari, R.; Bryson, M.; Hovey, R.; Figueira, W.F.; Williams, S.B.; Pizarro, O.; Harborne, A.R.; Byrne, M. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef. PLoS ONE 2014, 9, e113079. [Google Scholar] [CrossRef]
- Sherman, A.D.; Smith, K. Deep-sea benthic boundary layer communities and food supply: A long-term monitoring strategy. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1754–1762. [Google Scholar] [CrossRef]
- Camilli, R.; Reddy, C.M.; Yoerger, D.R.; Van Mooy, B.A.; Jakuba, M.V.; Kinsey, J.C.; McIntyre, C.P.; Sylva, S.P.; Maloney, J.V. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science 2010, 330, 201–204. [Google Scholar] [CrossRef]
- Marzinelli, E.M.; Williams, S.B.; Babcock, R.C.; Barrett, N.S.; Johnson, C.R.; Jordan, A.; Kendrick, G.A.; Pizarro, O.R.; Smale, D.A.; Steinberg, P.D. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 2015, 10, e0118390. [Google Scholar] [CrossRef]
- Marcos, M.S.A.; Soriano, M.; Saloma, C. Classification of coral reef images from underwater video using neural networks. Opt. Express 2005, 13, 8766–8771. [Google Scholar] [CrossRef]
- Denuelle, A.; Dunbabin, M. Kelp detection in highly dynamic environments using texture recognition. In Proceedings of the Australasian Conference on Robotics & Automation (ACRA), Brisbane, Australia, 1–3 December 2010. [Google Scholar]
- Bewley, M.; Douillard, B.; Nourani-Vatani, N.; Friedman, A.; Pizarro, O.; Williams, S. Automated species detection: An experimental approach to kelp detection from sea-floor AUV images. In Proceedings of the Australasian Conference on Robotics and Automation, Wellington, New Zealand, 3–5 December 2012. [Google Scholar]
- Beijbom, O.; Edmunds, P.J.; Kline, D.; Mitchell, B.G.; Kriegman, D. Automated annotation of coral reef survey images. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 1170–1177. [Google Scholar]
- Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R. Coral classification with hybrid feature representations. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 519–523. [Google Scholar]
- Razavian, A.S.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Columbus, OH, USA, 23–28 June 2014; pp. 512–519. [Google Scholar]
- Stokes, M.D.; Deane, G.B. Automated processing of coral reef benthic images. Limnol. Oceanogr. Methods 2009, 7, 157–168. [Google Scholar] [CrossRef]
- Pizarro, O.; Rigby, P.; Johnson-Roberson, M.; Williams, S.B.; Colquhoun, J. Towards image-based marine habitat classification. In Proceedings of the OCEANS 2008, Quebec, QC, Canada, 15–18 September 2008; pp. 1–7. [Google Scholar]
- Beijbom, O.; Treibitz, T.; Kline, D.I.; Eyal, G.; Khen, A.; Neal, B.; Loya, Y.; Mitchell, B.G.; Kriegman, D. Improving Automated Annotation of Benthic Survey Images Using Wide-band Fluorescence. Sci. Rep. 2016, 6, 23166. [Google Scholar] [CrossRef]
- Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Kendrick, G.; Fisher, R. Automatic annotation of coral reefs using deep learning. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–5. [Google Scholar]
- Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F.A.; Boussaid, F.; Hovey, R.; Kendrick, G.A.; Fisher, R.B. Deep image representations for coral image classification. IEEE J. Ocean. Eng. 2018, 44, 121–131. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Bewley, M.; Nourani-Vatani, N.; Rao, D.; Douillard, B.; Pizarro, O.; Williams, S.B. Hierarchical classification in AUV imagery. In Field and Service Robotics; Springer: New York, NY, USA, 2015; pp. 3–16. [Google Scholar]
- Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. 2012. Available online: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ (accessed on 12 January 2020).
- Khan, S.H.; Hayat, M.; Bennamoun, M.; Sohel, F.; Togneri, R. Cost Sensitive Learning of Deep Feature Representations from Imbalanced Data. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 3573–3587. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 630–645. [Google Scholar]
- Mahmood, A.; Bennamoun, M.; An, S.; Sohel, F. Resfeats: Residual network based features for image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1597–1601. [Google Scholar]
- Bewley, M.; Friedman, A.; Ferrari, R.; Hill, N.; Hovey, R.; Barrett, N.; Pizarro, O.; Figueira, W.; Meyer, L.; Babcock, R.; et al. Australian sea-floor survey data, with images and expert annotations. Sci. Data 2015, 2, 150057. [Google Scholar] [CrossRef]
- Kohler, K.E.; Gill, S.M. Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 2006, 32, 1259–1269. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Silla, C.N., Jr.; Freitas, A.A. A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov. 2011, 22, 31–72. [Google Scholar] [CrossRef]
- Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692. [Google Scholar]
- Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Azizpour, H.; Sharif Razavian, A.; Sullivan, J.; Maki, A.; Carlsson, S. From generic to specific deep representations for visual recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 36–45. [Google Scholar]
- Fraser, M.W.; Kendrick, G.A.; Statton, J.; Hovey, R.K.; Zavala-Perez, A.; Walker, D.I. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol. 2014, 102, 1528–1536. [Google Scholar] [CrossRef]
- Giraldo Ospina, A.; Kendrick, G.A.; Renae, H. Depth moderates loss of marine foundation species after and extreme marine heatwave: Will deep temperate reefs act as climate refugia? 2019; under review. [Google Scholar]
- Graham, M.H.; Kinlan, B.P.; Druehl, L.D.; Garske, L.E.; Banks, S. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc. Natl. Acad. Sci. USA 2007, 104, 16576–16580. [Google Scholar] [CrossRef] [Green Version]
- Lesser, M.P.; Slattery, M.; Leichter, J.J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 2009, 1, 1–8. [Google Scholar] [CrossRef]
- Kahng, S.; Garcia-Sais, J.; Spalding, H.; Brokovich, E.; Wagner, D.; Weil, E.; Hinderstein, L.; Toonen, R. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 2010, 29, 255–275. [Google Scholar] [CrossRef]
- Beijbom, O.; Edmunds, P.J.; Roelfsema, C.; Smith, J.; Kline, D.I.; Neal, B.P.; Dunlap, M.J.; Moriarty, V.; Fan, T.Y.; Tan, C.J.; et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 2015, 10, e0130312. [Google Scholar] [CrossRef]
- Chennu, A.; Färber, P.; De’ath, G.; de Beer, D.; Fabricius, K.E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 2017, 7, 7122. [Google Scholar] [CrossRef]
- Williams, K.; Lauffenburger, N.; Chuang, M.C.; Hwang, J.N.; Towler, R. Automated measurements of fish within a trawl using stereo images from a Camera-Trawl device (CamTrawl). Methods Oceanogr. 2016, 17, 138–152. [Google Scholar] [CrossRef]
- Shortis, M.R.; Ravanbakhsh, M.; Shafait, F.; Mian, A. Progress in the automated identification, measurement, and counting of fish in underwater image sequences. Mar. Technol. Soc. J. 2016, 50, 4–16. [Google Scholar] [CrossRef]
Authors | Methods | Classes | Main Species |
---|---|---|---|
Marcos et al. [15] | Color histograms, local binary pattern (LBP) and a 3-layer neural network | 3 | Corals |
Stokes and Deane [21] | Color histograms, discrete cosine transform and probability density-based classifier | 18 | Corals, Macroalgae |
Pizarro et al. [22] | Color histograms, Gabor filter response, scale-invariant feature transform (SIFT) and a voting-based classifier | 8 | Corals, Macroalgae |
Beijbom et al. [18] | Maximum response filter bank with SVM classifier | 9 | Corals, Macroalgae |
Denuelle and Dunbabin [16] * | Haralick texture features with Mahalanobis distance classifier | 2 | Kelp |
Bewley et al. [17] * | Principal Component Analysis (PCA) and LBP descriptors with SVM classifier | 19 | Corals, Algae and Kelp |
Bewley et al. [28] * | Hierarchical classification with PCA and LBP features | 19 | Corals, Algae and Kelp |
Beijbom et al. [23] | Deep neural network with reflectance and fluorescence images | 10 | Corals, Macrolagae |
Mahmood et al. [19] | Hybrid ( CNN + handcrafted) features with a multilayer perceptron (MLP) network | 9 | Corals, Macrolagae |
Mahmood et al. [24] | Off-the-shelf CNN features with SVM classifier | 2 | Corals, Macroalgae |
Site | Survey Year | # of Pixel Labels | # of Images |
---|---|---|---|
Abrolhos Islands | 2011, 2012, 2013 | 119,273 | 2377 |
Tasmania | 2008, 2009 | 88,900 | 1778 |
Rottnest Island | 2011 | 63,600 | 1272 |
Jurien Bay | 2011 | 55,050 | 1101 |
Solitary Islands | 2012 | 30,700 | 1228 |
Batemans Bay | 2010, 2012 | 24,825 | 993 |
Port Stevens | 2010, 2012 | 15,600 | 624 |
South East Queensland | 2010 | 10,020 | 501 |
Total | - | 407,968 | 9874 |
Survey Year | # of Images | # of Pixel Labels | # of Classes |
---|---|---|---|
2010 | 1680 | 84,000 | 61 |
2011 | 1680 | 84,000 | 55 |
2012 | 1033 | 51,650 | 44 |
2013 | 1563 | 78,150 | 55 |
Total | 5956 | 297,800 | 78 |
Method | Accuracy (%) | Mean f1-score | Precision of Kelps (%) | Recall of Kelps (%) |
---|---|---|---|---|
MR: Flat | 51.6 ± 0.3 | 0.03 ± 0.00 | 64 ± 0.5 | 59 ± 0.5 |
MR: Inclusive | 82.8 ± 0.4 | 0.70 ± 0.03 | 43 ± 0.0 | 69 ± 0.0 |
MR: Sibling | 79.6 ± 0.3 | 0.72 ± 0.02 | 55 ± 0.0 | 73 ± 0.0 |
VGG: Flat | 54.4 ± 0.6 | 0.03 ± 0.01 | 67 ± 0.5 | 63 ± 0.5 |
VGG: Inclusive | 89.0 ± 0.5 | 0.75 ± 0.02 | 47 ± 0.0 | 73 ± 0.0 |
VGG: Sibling | 82.1 ± 0.4 | 0.76 ± 0.01 | 57 ± 0.0 | 75 ± 0.0 |
DRF: Flat | 57.6 ± 0.5 | 0.05 ± 0.02 | 71 ± 1.0 | 65 ± 1.0 |
DRF: Inclusive | 90.0 ± 0.07 | 0.79 ± 0.02 | 58 ± 0.0 | 73 ± 0.0 |
DRF: Sibling | 83.4 ± 0.2 | 0.80 ± 0.01 | 65 ± 0.0 | 78 ± 0.0 |
Method | Accuracy (%) | Mean f1-score | Precision of Kelps (%) | Recall of Kelps (%) |
---|---|---|---|---|
MR: Flat | 52.9 ± 0.4 | 0.02 ± 0.00 | 90 ± 2.0 | 62 ± 1.0 |
MR: Inclusive | 73.2 ± 0.6 | 0.70 ± 0.01 | 77 ± 0.0 | 74 ± 0.0 |
MR: Sibling | 71.7 ± 0.4 | 0.71 ± 0.01 | 80 ± 0.0 | 73 ± 0.0 |
VGG: Flat | 58.6 ± 0.6 | 0.02 ± 0.01 | 95 ± 1.5 | 65 ± 1.0 |
VGG: Inclusive | 74.7 ± 0.4 | 0.74 ± 0.02 | 81 ± 0.0 | 75 ± 0.0 |
VGG: Sibling | 74.5 ± 0.3 | 0.73 ± 0.02 | 84 ± 0.0 | 75 ± 0.0 |
DRF: Flat | 59.0 ± 0.7 | 0.03 ± 0.01 | 95 ± 1.0 | 66 ± 1.0 |
DRF: Inclusive | 75.0 ± 0.5 | 0.75 ± 0.01 | 82 ± 0.0 | 75 ± 0.0 |
DRF: Sibling | 77.2 ± 0.4 | 0.76 ± 0.02 | 86 ± 0.0 | 79 ± 0.0 |
Site | Depth and Location | Expert Identified (%) | Estimated (%) | |
---|---|---|---|---|
1 | 15 m North | 52.65 | 60.19 | 0.84 |
2 | 15 m South | 64.64 | 71.23 | 0.87 |
3 | 25 m North | 62.44 | 72.32 | 0.83 |
4 | 25 m South | 49.24 | 49.78 | 0.89 |
5 | 40 m North | 44.60 | 43.28 | 0.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, A.; Ospina, A.G.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F.; Hovey, R.; Fisher, R.B.; Kendrick, G.A. Automatic Hierarchical Classification of Kelps Using Deep Residual Features. Sensors 2020, 20, 447. https://doi.org/10.3390/s20020447
Mahmood A, Ospina AG, Bennamoun M, An S, Sohel F, Boussaid F, Hovey R, Fisher RB, Kendrick GA. Automatic Hierarchical Classification of Kelps Using Deep Residual Features. Sensors. 2020; 20(2):447. https://doi.org/10.3390/s20020447
Chicago/Turabian StyleMahmood, Ammar, Ana Giraldo Ospina, Mohammed Bennamoun, Senjian An, Ferdous Sohel, Farid Boussaid, Renae Hovey, Robert B. Fisher, and Gary A. Kendrick. 2020. "Automatic Hierarchical Classification of Kelps Using Deep Residual Features" Sensors 20, no. 2: 447. https://doi.org/10.3390/s20020447
APA StyleMahmood, A., Ospina, A. G., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Fisher, R. B., & Kendrick, G. A. (2020). Automatic Hierarchical Classification of Kelps Using Deep Residual Features. Sensors, 20(2), 447. https://doi.org/10.3390/s20020447