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Abstract: Accurate target detection is the basis of normal driving for intelligent vehicles. However,
the sensors currently used for target detection have types of defects at the perception level, which
can be compensated by sensor fusion technology. In this paper, the application of sensor fusion
technology in intelligent vehicle target detection is studied with a millimeter-wave (MMW) radar
and a camera. The target level fusion hierarchy is adopted, and the fusion algorithm is divided into
two tracking processing modules and one fusion center module based on the distributed structure.
The measurement information output by two sensors enters the tracking processing module, and after
processing by a multi-target tracking algorithm, the local tracks are generated and transmitted to
the fusion center module. In the fusion center module, a two-level association structure is designed
based on regional collision association and weighted track association. The association between two
sensors’ local tracks is completed, and a non-reset federated filter is used to estimate the state of the
fusion tracks. The experimental results indicate that the proposed algorithm can complete a tracks
association between the MMW radar and camera, and the fusion track state estimation method has
an excellent performance.
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1. Introduction

Intelligent vehicles are conducive to reducing traffic accidents and easing traffic congestion, which
is an important direction of automobile technology development [1]. Accurate target detection is
an important condition for intelligent vehicles to drive normally in the increasingly complex road
environment. However, the current sensors used for target detection all have different degrees of
defects, such as a limited detection range and poor adaptability to climate and light, leading to incorrect
detection information and other problems. In general, a combination of multiple sensors can expand
the detection range and improve the detection reliability and robustness [2]. Therefore, sensor fusion
technology can be used to solve the problem of target detection.

Currently, the sensors commonly used for target detection on the market include lidar,
millimeter-wave (MMW) radar, camera, and ultrasonic radar [3]. Among them, MMW radar can
work in all weather, and the detection of distance and speed is relatively accurate. The camera has
a wide detection range and target type recognition ability [4]. In addition, the two sensors are cheap.
Therefore, the combination of an MMW radar and a camera has become a mainstream scheme for
intelligent vehicles.

According to the differences in the data processing methods, sensor fusion can be divided into
three levels, namely: data level, feature level, and target level [5]. Data level fusion gathers the original
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data of each sensor and integrates them on the level of original information to obtain environmental
perception results. Feature level fusion extracts the feature information from the original data output
by sensors and fusing the feature information. Target level fusion requires each sensor to calculate the
position, speed, and contour of the targets according to its own detection information, and to then
conduct fusion according to the target information. The data level and feature level generally occur
in the target detection stage, while the target level occurs in the target tracking stage. For the fusion
of an MMW radar and a camera, because of the large difference of sensor data and high required
communication capability, the fusion effect of the data level and feature level is not ideal. Therefore,
the target level is more suitable [6].

The key to target level fusion lies in data association and fusion track state estimation [7]. Scholars
have done some research on these issues. The authors of [8] used a fuzzy clustering method to associate
information from different sensors, and realized fusion estimation based on the parallel filtering method
of a centralized fusion structure. The authors of [9,10] developed the weighted track association
algorithm to complete the association of local tracks from different sensors, and the cross-covariance
fusion algorithm was used to obtain the state estimation of the fusion track. The authors of [11,12]
utilized the covariance intersection method to estimate the fusion track state. The authors of [13]
adopted the information of different sensors associated with the global nearest neighbor, and obtained
a virtual measurement based on the weighted fusion of measurement errors, and carried out the
filtering processing. The authors of [14] associated the local tracks of different sensors based on
Dempster–Shafer evidence theory, obtained virtual measurements based on maximum likelihood
estimation, and processed them with filtering. In the literature [15], a centralized extended Kalman
filter is adopted to solve the problem of multi-sensor fusion in single-target tracking. The authors
of [16] used the joint probabilistic data association algorithm to complete the association of different
sensor tracks and the state estimation of the fusion track. The authors of [17] proposed a new sensor
fusion method based on an information matrix, but it did not involve data association.

Through the analysis of the above works of literature, it is known that the current data association
methods mostly adopt a single rule. Based on the target information, a statistical value is obtained
according to the set rules, and a threshold value is set in advance. The statistical value is compared with
the threshold value, to determine whether there is an association. However, in the actual environment,
traffic targets are complex and changeable, so it is difficult to select an appropriate threshold to ensure
a good association effect. In addition, for the state estimation of the fusion track, there is a problem
with a large amount of the calculations. Therefore, based on the above studies, this paper further
explores the target level fusion technology of an MMW radar and a camera. This paper designs
a fusion algorithm framework based on a distributed structure, and divides the fusion algorithm into
two tracking processing modules and one fusion center module. Each tracking processing module is
divided into four parts, namely: pretreatment, data association, track management, and state estimation.
In the fusion center module, the temporal–spatial alignment is completed, and a two-level association
structure combining regional collision association and weighted track association is designed to
associate the local tracks that are output by two tracking processing modules. For the fusion tracks,
the state estimation is completed based on the non-reset federated filter. Finally, the global tracks’
information obtained by the sensor fusion is output.

The paper is structured as follows, we design the fusion algorithm framework and define different
modules in Section 2. Then, Section 3 designs the tracking processing module, and Section 4 designs the
fusion center module. Section 5 verifies the feasibility of the proposed algorithm through experiments.
Finally, the concluding remarks and future works are presented in Section 6.

2. Algorithm Framework

Common processing structures for target level fusion include centralized and distributed
structures [18]. The centralized structure has only one data processing module, which is also
the fusion center. The measurement information detected by each sensor is transmitted to the fusion
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center, which associates the fusion track, and the measurement also updates the fusion track state.
The distributed structure has multiple tracking processing modules and a fusion center module.
The measurement information of each sensor is transmitted to the corresponding tracking processing
module, and the tracking processing module outputs the local tracks of the sensor. The local tracks of
each sensor enter the fusion center, and the fusion center processes the local tracks and obtains the
global tracks, which are the final result of the fusion algorithm.

Compared with the centralized structure, the distributed structure has a good stability and
low requirements on the communication ability and computing speed of the system. Therefore,
the distributed structure is selected as the basic structure of the fusion algorithm in this paper,
and the designed fusion algorithm framework for an MMW radar and a camera is shown in Figure 1.
The framework divides the fusion algorithm into two tracking processing modules and one fusion
center module. The tracking processing module receives the sensor measurement information and
carries out multi-target tracking processing, which is divided into several parts, including pretreatment,
data association, track management, and state estimation. The fusion center module is mainly divided
into several parts, including temporal–spatial alignment, data association, fusion track state estimation,
and global track generation. When the system works, the MMW radar and camera separately output
measurement information through the CAN communication, and the measurement information enters
their respective tracking processing modules. The tracking processing module runs a multi-target
tracking algorithm and outputs local track information, including track state and state covariance,
which will enter the fusion center module. The fusion center module first registers the local tracks of
two sensors in time and space, and then makes the association between the local tracks. The local track
is divided into two parts through the track–track association algorithm. One part is the successfully
associated tracks, which is called the residual track, and its state information is the same as that of the
local track. The other part is the successfully associated tracks, which generate the fusion track, and then
estimate the state of the fusion track according to the corresponding local track. The fusion track and
residual track constitute the global track, which is the output information of the algorithm framework.
Sections 3 and 4 will design the tracking processing module and the fusion center module, respectively.
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3. Tracking Processing Module

Figure 2 shows the algorithm structure of the tracking processing module. After the measurement
information is entered into the tracking processing module, the measurement targets that influence
the running of the ego vehicle are firstly selected by combining with the status information of the ego
vehicle, and pretreatment is completed. Then, the measurement is associated with the current local
tracks. We assume that there is a local track, i, and the measurement prediction is zi(k|k− 1) at time,
k, defined here:

d2
i j(k) = [zi(k|k− 1) − z j(k)]

TS−1
i j [zi(k|k− 1) − z j(k)], (1)

where z j(k) is the value of measurement target j; Si j is the covariance matrix of innovation; and d2
i j is

the weighted norm of innovation vector, which can be understood as the statistical distance between
the measurement prediction information of the local track and the measurement target.
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The statistical distance is taken as the association reference, and the Kuhn–Munkres algorithm is
taken as the allocation reference, and the association between track and measurement is completed
according to the global nearest neighbor idea [19]. The relationship between the measurement and track
after the association is completed can be divided into three categories, namely: if the measurement
and track are successfully associated, the track is not associated with any measurement, and the
measurement is not associated with any track. These association results will be fed into the track
management section.

The main function of track management is to manage the generation, maintenance,
and disappearance of the track. Track management can solve the problem of false measurement
and missing target detection [20]. The measurement target that is not associated with any track is
a generated temporary track. For the continuous multi-frame successfully associated temporary track,
what can be considered as a real and confirmed track is generated, which is also local track. For the
confirmed track, if there is no association measurement in continuous multiple frames, the track can be
considered dead and discarded [21]. After the rule judgment, it is necessary to update the status of
the confirmed track and temporary track to obtain the optimal state estimation. For the track that is
determined to be dead, it is deleted from the track list without any state update.
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State estimation is divided into state prediction, measurement prediction, and state update, which
is the same as the Kalman filter [22]. Assuming that the acceleration of the target is constant in a short
time, a motion model with constant acceleration can be established. The target state vector is

X = [x,
.
x,

..
x, y,

.
y,

..
y]T, (2)

where (x, y) is the position vector, (
.
x,

.
y) is the velocity vector, and (

..
x,

..
y) is the acceleration vector. Then,

the motion state model can be obtained

X(k + 1) = diag[FCA, FCA]X(k) + diag[[GCA, GCA]W(k), (3)

where FCA =


1 T T2

2
0 1 T
0 0 1

, GCA =


T2

4
T
2
1

. W =

[
wx

wy

]
is the white noise sequence in a discrete

model, and wx and wy correspond to the target’s noise “jerk” along the x- and y-axis, respectively.
The MMW radar can detect the target distance, azimuth, and relative velocity, and its measurement

vector be expressed as follows

Zr =
[

S θ v
]T

. (4)

The corresponding measurement model is as follows:

zr(k) = h(X(k)) + υr(k) =


√

x2 + y2

arctan y
x

x
.
x+y

.
y

√
x2+y2

+ υr(k), (5)

where υr =
[
υS υθ υv

]T
represents the measurement white noise sequence. Because of the

nonlinearity of the measurement model, an extended Kalman filter is used to estimate the track state of
the MMW radar.

A camera can detect the target distance, and its measurement vector can be expressed as follows

Zc =
[

x y
]T

. (6)

The corresponding measurement model is as follows:

zc(k) = HcX(k) + υc(k), (7)

where υc =
[
υx υy

]T
represents the measurement white noise sequence. Hc is the

measurement matrix

Hc =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
. (8)

Both the motion state model and the measurement model are linear, so the track state of the
camera is estimated through a linear Kalman filter.

4. Fusion Center Module

In the fusion center module, the camera detection cycle is taken as the fusion time node. In other
words, during the camera detection cycle, the fusion center module will start to run after the camera
tracking processing module is completed. First, the local track information of the two sensors is
transformed into the same coordinate system to ensure spatial registration. In this paper, the motion
coordinate system of the MMW radar is used as the fusion track coordinate system, so we only
need to convert the local track information of the camera, which only involves to the conversion of
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a two-dimensional cartesian coordinate system, which will not be described in detail here. Moreover,
every time the camera outputs a set of CAN messages, the track information obtained from the MMW
radar in the previous N-cycles is fitted with the quadratic curve according to the least square method.
Then, the fitted curve is extrapolated to the current time node of the camera in order to obtain the
estimated value of the MMW radar track information [23]. The temporal–spatial alignment is completed.
The following parts mainly design the track–track association and fusion track state estimation.

4.1. Track–Track Association

4.1.1. Association Algorithm Design

The measurement information of the two sensors is processed by their respective tracking
processing modules in order to obtain effective targets, namely a local track. Intuitively, if the effective
targets of the two sensors are close enough together, the two targets can be considered to be associated.
This is an association method based on the location threshold. Specific to the MMW radar and the
camera used in intelligent vehicles, in general, the longitudinal distance measurement of the MMW
radar is relatively accurate, the lateral distance measurement is relatively rough, while the camera
is just the opposite. This leads to a large deviation between the position of the MMW radar target
and the camera target, and the greater distance between the target and the ego vehicle, the greater
the deviation.

It is difficult to get good association results only depending on the position threshold, so the
motion state information of the target can be further considered. The tracking processing module
outputs the local track information, which can be used to compare the similarity of the motion
state between the different sensor targets. The track information is used to determine the degree of
association, and commonly-used methods include weighted track association [24], etc. However,
when the environment is complex and there are many targets, the correlation performance of the
weighted track association method will decrease, and there will be many errors and omissions in the
associated track.

After comprehensive consideration, this paper designs a two-level association structure, as shown
in Figure 3. Firstly, the regional collision association algorithm is designed based on the idea of
a location threshold. Then, the unassociated local tracks are input into the weighted track association
part. Because one association has been passed, the number of targets that need to be associated is
decreased, the environmental complexity is reduced, and the weighted track association can play
a better role.

4.1.2. Regional Collision Association

The selection of the position threshold is related to the state uncertainty of the local track, which is
expressed by the state covariance in the state estimation process. In this paper, the rotation in the target
motion process is ignored, and the rectangular uncertain region is established with the current local
track position as the center, as shown in Figure 4. The length and width of the uncertain region are
related to the position standard deviation of the local track in the longitudinal and lateral directions,
respectively. For the local track, i, with state X and state covariance P, the length and width of the
uncertain region are, respectively, as follows

Length = 2KGL

√
P[0][0], (9)

Width = 2KGW

√
P[3][3], (10)

where KGL and KGW are the constants. Because there is a two-level association, the first-level association
can select a smaller threshold to ensure that the association is valid.
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Regional collision association means that if two local tracks belonging to different sensors intersect
with their uncertain regions, the association of two local tracks can be determined. The pseudocode to
execute the regional collision association is shown in Algorithm 1.

Algorithm 1 Regional Collision Association

1: if
∣∣∣Xi.x−X j.x

∣∣∣ > KGL·sqrt(Pi[0][0]) + KGL·sqrt
(
P j[0][0]

)
then

2: return false
3: else if

∣∣∣Xi.y−X j.y
∣∣∣ > KGW ·sqrt(Pi[3][3]) + KGW ·sqrt

(
P j[3][3]

)
then

4: return false
5: return true
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In order to quantify the degree of association between two local tracks, the concept of the Jaccard
coefficient is cited. The Jaccard coefficient refers to the ratio between the intersection and union of
the two sets. Here, the uncertain regional area of the local track is used to refer to the set, and the
expression can be obtained as follows

J =
|Sr ∩ Sc|

|Sr ∪ Sc|
=

|Sr ∩ Sc|

|Sr|+ |Sc| − |Sr ∩ Sc|
, (11)

where J is called the association similarity index, which represents the association degree of two local
tracks. Sr and Sc represent the uncertain region area of the local tracks of the MMW radar and camera,
respectively.

FusionLife is set up to indicate the stability of the fusion track. When the fusion track is initially
formed, the FusionLife value is 0. If the local tracks corresponding to the fusion track are all associated
in the subsequent continuous period, then the FusionLife value is accumulated. When FusionLife reaches
the set threshold of FusionLifeMax, it indicates that the fusion track is relatively stable. Then, in the
later fusion time node, the corresponding local tracks that do not need to participate in the association
algorithm can be directly used to update the state of the fusion track. If the FusionLife is less than
FusionLifeMax at a certain fusion time node, and the corresponding two local tracks are not associated,
the fusion track will die out.

For the fusion track obtained through regional collision association, the FusionLife value
accumulation mode is as follows

FusionLi f e = FusionLi f e + µarea•J, (12)

where µarea is a constant coefficient.

4.1.3. Weighted Track Association

It is assumed that for an MMW radar and a camera, there are local tracks, i and j, respectively.
Through previous tracking processing modules, the state estimation of two local tracks is X̂i(k|k) and
X̂ j(k|k), and their state covariance is Pi(k|k) and P j(k|k). The state estimation difference of two tracks is
expressed as follows:

∆X̂i j(k|k) = X̂i(k|k) − X̂ j(k|k), (13)

The null hypothesis and alternative hypothesis are established, and the track association problem
is transformed into a hypothesis testing problem.

H0: X̂i(k|k) and X̂ j(k|k) are the track state estimation of the same target, namely, track i and j
are associated;

H1: X̂i(k|k) and X̂ j(k|k) are not the track state estimation of the same target, namely track i and j
are not associated.

It is assumed that the state errors for the local tracks of the same target are statistically independent.
Under the H0 assumption, the state estimation differences covariance of track i and j can be expressed as

Ci j(k|k) = E[∆X̂i j(k|k)∆X̂T
ij(k|k)] = Pi(k|k) + P j(k|k). (14)

The statistical value of weighted track association is as follows

αi j(k) = ∆X̂T
ij(k|k)Ci j(k|k)∆X̂i j(k|k). (15)

Under the H0 assumption, the state estimation difference ∆X̂i j(k|k) obeys gaussian distribution,
and the statistical value αi j(k) obeys chi-square distribution. The chi-square distribution association
threshold γ is selected. When αi j(k) is less than γ, the hypothesis H0 is accepted, and tracks i and j are
considered to be associated. Otherwise, we accept the hypothesis that tracks i and j are unassociated.
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For the fusion track obtained through the weighted track association, the FusionLife value is
accumulated in the form of

FusionLi f e = FusionLi f e + ξWeight, (16)

where ξWeight is a constant. The associated quality is not evaluated here, so only a set constant ξWeight
is used as the added value of FusionLife.

4.2. Fusion Track State Estimation

A federated filter is applied to the distributed fusion structure [25], which can be used to build the
connection of the state estimation part between the tracking processing modules and the fusion center
module. A federated filter can be generally divided into four basic structures, namely: fusion-reset
mode, zero-reset mode, no-reset mode, and rescale mode. In the non-reset mode, there is no information
reset from the master filter to the sub-filters, so the sub-filters will not pollute each other. The non-reset
mode is fast in computation and strong in fault tolerance. This paper designs a fusion track state
estimation method based on the non-reset federated filter structure, as shown in Figure 5. The figure
only estimates the fusion state for a single target, where zr and zc are the radar measurement and
camera measurement associated with the target, respectively. X̂r, Pr and X̂c, Pc represent the state
estimation output of the two sub-filters, and X̂g, Pg represent state estimation output of the master
filter, which is also the state information of the fusion track. The extended Kalman filter corresponds to
the state estimation of the MMW radar track, and the Kalman filter corresponds to the state estimation
of the camera track. They have been designed in the tracking processing module.
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The workflow of the federated filter includes the initial information determination, information
allocation, time update, measurement update, and information fusion. Among them, the time update
and measurement update of the two sub-filters belong to the state estimation part of the tracking
processing modules, which will not be detailed here.

The target motion model adopted by the MMW radar and the camera is the same, and the target
state format output by the sub-filters is the same. Therefore, the output state estimation information
of the two sub-filters can be integrated into the master filter. At the initial time of fusion, the system
needs to determine the initial information.

The global estimation error covariance Pg
0 and system process noise Qg

0 at the initial moment can
be calculated from Equations (17) and (18).

Pg
0 =

[(
Pr

0

)−1
+

(
Pc

0

)−1
]−1

, (17)

Qg
0 =

[(
Qr

0

)−1
+

(
Qc

0

)−1
]−1

. (18)

For a non-reset federated filter, the information is allocated only at the initial time. The initial
information is generally distributed evenly. However, because of the different measurement accuracies
of the millimeter wave radar and camera, if the initial information is distributed equally, the global
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estimation accuracy will be reduced. Now, Λr and Λc are set to represent the sum of the state covariance
singular values of two sub-filters, respectively, and the singular values are used to calculate the two
information allocation coefficients.

β1
0 =

Λr

Λr + Λc
, (19)

β2
0 =

Λc

Λr + Λc
. (20)

β1
0 and β2

0 represent the initial information allocation coefficients of the millimeter wave radar and
camera local tracks, respectively. The coefficients are used to assign information about sub-filters and
to update their initial information 

Qi
0 = β−1

i Q0

Pi
0 = β−1

i Pg
0

X̂i
0 = X̂g

k

i = 1, 2 . (21)

where i = 1 represents the local track information of the millimeter wave radar, i = 2 represents
the local track information of the camera. In the information fusion part, the local state estimation
information obtained by two independent sub-filters is fused to obtain the global optimal estimation

Pg
k =

[(
Pr

k

)−1
+

(
Pc

k

)−1
]−1

, (22)

Xg
k = Pg

k

[(
Pr

k

)−1
X̂r

k +
(
Pc

k

)−1
X̂c

k

]
. (23)

5. Experimental Result

In this paper, the ego vehicle was equipped with a Delphi’s multimode electronically scanning
radar (ESR) and a camera with a Mobileye Q3 chip. The MMW radar was installed in the middle of the
front bumper of the ego vehicle, and the camera was installed in the windshield inside the longitudinal
symmetry plane of the ego vehicle on the side of the cab. The inertial navigation system was also
installed to detect the ego vehicle status. The sensor fusion experiment was carried out in an urban
road environment, including street, expressways, tunnels, etc., as shown in Figure 6. Several typical
working conditions were selected from the experimental data for the analysis.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 18 

 

2
0

c

r c

β Λ=
Λ + Λ

. (20)

1
0β  and 

2
0β  represent the initial information allocation coefficients of the millimeter wave radar and 

camera local tracks, respectively. The coefficients are used to assign information about sub-filters and 
to update their initial information 

1
0 0

1
0 0

0

1, 2
ˆ ˆ

i
i

i g
i

i g
k

Q Q
P P i

X X

β
β

−

−

 =


= =
 =

. (21)

where 1i =  represents the local track information of the millimeter wave radar, 2i =  represents 
the local track information of the camera. In the information fusion part, the local state estimation 
information obtained by two independent sub-filters is fused to obtain the global optimal estimation 

( ) ( )
11 1g r c

k k kP P P
−− − = +  

, (22)

( ) ( )1 1ˆ ˆg g r r c c
k k k k k kX P P X P X

− − = +  
. (23)

5. Experimental Result 

In this paper, the ego vehicle was equipped with a Delphi’s multimode electronically scanning 
radar (ESR) and a camera with a Mobileye Q3 chip. The MMW radar was installed in the middle of 
the front bumper of the ego vehicle, and the camera was installed in the windshield inside the 
longitudinal symmetry plane of the ego vehicle on the side of the cab. The inertial navigation system 
was also installed to detect the ego vehicle status. The sensor fusion experiment was carried out in 
an urban road environment, including street, expressways, tunnels, etc., as shown in Figure 6. Several 
typical working conditions were selected from the experimental data for the analysis. 

(a) (b) (c) 

Figure 6. Experimental environment: (a) street; (b) expressways; (c) tunnels. They, in turn, correspond 
to the following three sets of experimental data. 

5.1. Single Target Fusion 

In Figure 6a, there is only one vehicle target, which is detected by two sensors, and the fusion 
algorithm is run. Figure 7 shows the fusion experiment results. The whole experiment was divided 
into two sections, with a boundary of 28 s. The first section was gradually close to ego vehicle, while 
the second section was gradually away from ego vehicle, as the speed increased. During the whole 
experiment, the millimeter wave radar track was more stable in a longitudinal direction, and the 
camera track was more stable in a lateral direction, which is consistent with the characteristics of the 
two sensors. After the fusion algorithm, the state information of the fusion track was obtained. The 

Figure 6. Experimental environment: (a) street; (b) expressways; (c) tunnels. They, in turn, correspond
to the following three sets of experimental data.

5.1. Single Target Fusion

In Figure 6a, there is only one vehicle target, which is detected by two sensors, and the fusion
algorithm is run. Figure 7 shows the fusion experiment results. The whole experiment was divided
into two sections, with a boundary of 28 s. The first section was gradually close to ego vehicle, while
the second section was gradually away from ego vehicle, as the speed increased. During the whole
experiment, the millimeter wave radar track was more stable in a longitudinal direction, and the
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camera track was more stable in a lateral direction, which is consistent with the characteristics of
the two sensors. After the fusion algorithm, the state information of the fusion track was obtained.
The longitudinal information was more like the MMW radar, and the lateral information was more like
camera. The fusion track information was relatively stable and smooth, except for most of the spikes of
the sensor track. Within a period of 0~10 s, the two local tracks had a relatively large deviation in the
longitudinal distance, but from the perspective of all of the state components, their motion trend was
the same. According to the weighted track association, they can be associated with the same target.
After 10 s, the positions of the two local tracks are similar, and the association can be realized through
the regional collision correlation. With the passage of time, the fusion track becomes stable gradually,
and the corresponding local tracks can be fused directly, without any association.
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Figure 7. Experimental results of single target fusion: (a) longitudinal distance; (b) lateral distance;
(c) longitudinal relative velocity; (d) lateral relative velocity; (e) longitudinal relative acceleration;
(f) lateral relative acceleration. In the figure, MMW radar curve and camera curve refer to the state
estimation of local track, while sensor fusion curve refers to the state estimation of fusion track.
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5.2. Multi-Target Fusion

Figure 6b shows the multi-target motion condition on the urban expressways. Figure 8 shows
the fusion experiment results under the multi-target condition. The ego vehicle was originally in
the middle lane, it changed to the right lane after around five seconds, and then kept driving along
the straight line. Each target track in the figure is represented by a curve of different colors and is
marked with a serial number for convenient analysis. After about 35 s, the radar detected six targets,
the camera detected seven targets, and the fusion algorithm confirmed the existence of eight targets.
Among them, targets numbered 1, 2, 3, 4, and 7 were detected by two sensors, and the No. 8 target was
detected only by the MMW radar, and the No. 5 target and No. 6 target were detected only by the
camera. For the No. 2 target, the camera tracking failed within 2 to 3 s, and the MMW radar tracking
failed within 4.5 to 5.7 s. Therefore, the local track information of the MMW radar and camera was
used in the early stage, and then it became the fusion track. For the No. 7 target, only the MMW radar
was tracking within 13.5~22 s, and the camera formed a confirmed track in 22 s, and the two were
associated into a fusion track. As the distance is relatively far and is affected by the light, the camera
had a large error in the longitudinal distance. At the initial stage of the fusion, the detection position of
the camera and MMW radar was still close, and they could be linked together through the regional
collision association. When there was a large error in camera detection, the corresponding two local
tracks could be directly used for fusion due to the setting of the fusion track stability. The No. 4 and
No. 5 targets appeared for a short time because of the occlusion between the targets.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 18 

 

5.2. Multi-Target Fusion 

Figure 6b shows the multi-target motion condition on the urban expressways. Figure 8 shows 
the fusion experiment results under the multi-target condition. The ego vehicle was originally in the 
middle lane, it changed to the right lane after around five seconds, and then kept driving along the 
straight line. Each target track in the figure is represented by a curve of different colors and is marked 
with a serial number for convenient analysis. After about 35 s, the radar detected six targets, the 
camera detected seven targets, and the fusion algorithm confirmed the existence of eight targets. 
Among them, targets numbered 1, 2, 3, 4, and 7 were detected by two sensors, and the No. 8 target 
was detected only by the MMW radar, and the No. 5 target and No. 6 target were detected only by 
the camera. For the No. 2 target, the camera tracking failed within 2 to 3 s, and the MMW radar 
tracking failed within 4.5 to 5.7 s. Therefore, the local track information of the MMW radar and 
camera was used in the early stage, and then it became the fusion track. For the No. 7 target, only the 
MMW radar was tracking within 13.5~22 s, and the camera formed a confirmed track in 22 s, and the 
two were associated into a fusion track. As the distance is relatively far and is affected by the light, 
the camera had a large error in the longitudinal distance. At the initial stage of the fusion, the 
detection position of the camera and MMW radar was still close, and they could be linked together 
through the regional collision association. When there was a large error in camera detection, the 
corresponding two local tracks could be directly used for fusion due to the setting of the fusion track 
stability. The No. 4 and No. 5 targets appeared for a short time because of the occlusion between the 
targets. 

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

8

7
65

4

3
2

x 
(m

)

time (sec)

1

 

0 5 10 15 20 25 30 35
-10

-8

-6

-4

-2

0

2

4

8

7

6

5

4

3

2

y 
(m

)

time (sec)

1

 
(a) (b) 

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

2
1

8

74

x 
(m

)

time (sec)

3

0 5 10 15 20 25 30 35
-10

-8

-6

-4

-2

0

2

4

8

1
7

2

4

3

y 
(m

)

time (sec)

(c) (d) 

Figure 8. Cont.



Sensors 2020, 20, 56 13 of 17Sensors 2019, 19, x FOR PEER REVIEW 14 of 18 

 

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

2

1

7
65

4

3

x 
(m

)

time (sec)
0 5 10 15 20 25 30 35

-8

-6

-4

-2

0

2

4

1
2

75

6
4

3y 
(m

)

time (sec)

(e) (f) 

Figure 8. Experimental results of the multi-target fusion: (a) longitudinal distance of global tracks; (b) 
lateral distance of global tracks; (c) longitudinal distance of MMW radar tracks; (d) lateral distance of 
MMW radar tracks; (e) longitudinal distance of camera tracks; (f) lateral distance of camera tracks. 

5.3. Application of Sensor Fusion 

We refer to the targets closest to the ego vehicle in each lane as the dangerous targets, which 
have a significant impact on the decisions of the intelligent vehicle control system. Adaptive cruise 
control and autonomous emergency braking subsystems need to know in a timely manner whether 
there are dangerous vehicles in front of the ego vehicle, including dangerous vehicle targets such as 
a vehicle in the main lane in which the ego vehicle is located, and a vehicle cut in from the side lane 
[26]. This paper presents an example of dangerous target selection in the presence of target cut in and 
cut out in the main lane, as shown in Figure 6c. The same method can also be used to screen the 
dangerous targets of side lanes. 

In the experiment results shown in Figure 9, the No. 1 target was driving in the main lane, and 
the No. 3 target was driving in the right lane. The No. 2 target was detected to be in the right lane at 
7.4 s, then it cut into the main lane, and cut back into the right lane after passing the No. 3 target. 
During the overtaking period, the No. 2 target obscured the No. 1 target, and the detection 
performance of the MMW radar was better than that of the camera. Therefore, the MMW radar tracks 
can be used to maintain the target information, which also shows an advantage of sensor fusion. 
When targets were detected by both sensors, fusion tracks showed a better comprehensive 
performance after the fusion algorithm. With the help of the lane information provided by the 
camera, we could accurately judge the cutting in and cutting out time of the No. 2 target and timely 
change the dangerous target of the main lane. 

  

Figure 8. Experimental results of the multi-target fusion: (a) longitudinal distance of global tracks;
(b) lateral distance of global tracks; (c) longitudinal distance of MMW radar tracks; (d) lateral distance
of MMW radar tracks; (e) longitudinal distance of camera tracks; (f) lateral distance of camera tracks.

5.3. Application of Sensor Fusion

We refer to the targets closest to the ego vehicle in each lane as the dangerous targets, which have
a significant impact on the decisions of the intelligent vehicle control system. Adaptive cruise control
and autonomous emergency braking subsystems need to know in a timely manner whether there are
dangerous vehicles in front of the ego vehicle, including dangerous vehicle targets such as a vehicle in
the main lane in which the ego vehicle is located, and a vehicle cut in from the side lane [26]. This paper
presents an example of dangerous target selection in the presence of target cut in and cut out in the
main lane, as shown in Figure 6c. The same method can also be used to screen the dangerous targets of
side lanes.

In the experiment results shown in Figure 9, the No. 1 target was driving in the main lane, and the
No. 3 target was driving in the right lane. The No. 2 target was detected to be in the right lane at 7.4 s,
then it cut into the main lane, and cut back into the right lane after passing the No. 3 target. During
the overtaking period, the No. 2 target obscured the No. 1 target, and the detection performance of
the MMW radar was better than that of the camera. Therefore, the MMW radar tracks can be used to
maintain the target information, which also shows an advantage of sensor fusion. When targets were
detected by both sensors, fusion tracks showed a better comprehensive performance after the fusion
algorithm. With the help of the lane information provided by the camera, we could accurately judge
the cutting in and cutting out time of the No. 2 target and timely change the dangerous target of the
main lane.

Figure 10 shows the dangerous target state obtained using an MMW radar, camera, and fusion
target, respectively. Compared with a single sensor, the fusion target provides more accurate state
information. By playing back the collected video, we can see that the switching time of the dangerous
target after fusion processing is more consistent with the actual situation. After the fusion algorithm,
the dangerous target state curve is more stable, which can provide more accurate target state information
for the control system.
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Figure 10 shows the dangerous target state obtained using an MMW radar, camera, and fusion 
target, respectively. Compared with a single sensor, the fusion target provides more accurate state 
information. By playing back the collected video, we can see that the switching time of the dangerous 
target after fusion processing is more consistent with the actual situation. After the fusion algorithm, 
the dangerous target state curve is more stable, which can provide more accurate target state 
information for the control system. 
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6. Conclusions

In this paper, an algorithm framework of target level fusion of an MMW radar and a camera is
designed. Combined with the regional collision association and weighted track association, a two-level
structure is proposed for local track association. Based on the non-reset federated filter, the state
estimation of the fusion track is completed. In this paper, the single-target fusion, multi-target fusion,
and the application of sensor fusion in dangerous target screening are selected. In all of the experiments,
the association for different local tracks of the same target is good, and the overall performance of
the fusion track state estimation is better than that of a single sensor. In the experiment of selecting
dangerous targets, the fusion algorithm can replace dangerous targets more accurately and timely.
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In the future, we can consider using more accurate sensors to detect target state information and take it
as the reference value of the truth value, so as to quantitatively analyze the accuracy of a fusion track.
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