Demosaicing of RGBW Color Filter Array Based on Rank Minimization with Colorization Constraint
<p>Effect of the rank minimization-based global interpolation, as described in (<a href="#FD7-sensors-20-04458" class="html-disp-formula">7</a>). Experimental results on a partially cropped photo image of the ISO 12233 Resolution Chart. (<b>a</b>) Original; (<b>b</b>) Reconstructed using residual interpolation [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>]; (<b>c</b>) Reconstructed by (<a href="#FD7-sensors-20-04458" class="html-disp-formula">7</a>); (<b>d</b>) Enlarged region of (<b>a</b>); (<b>e</b>) Enlarged region of (<b>b</b>); (<b>f</b>) Enlarged region of (<b>c</b>).</p> "> Figure 2
<p>Effect of the rank minimization-based global interpolation with a colorization constraint, as described in (<a href="#FD9-sensors-20-04458" class="html-disp-formula">9</a>). Experimental results on a photo image of a book. (<b>a</b>) Original; (<b>b</b>) Reconstructed using residual interpolation [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>]; (<b>c</b>) Reconstructed by (<a href="#FD7-sensors-20-04458" class="html-disp-formula">7</a>); (<b>d</b>) Reconstructed by (<a href="#FD9-sensors-20-04458" class="html-disp-formula">9</a>).</p> "> Figure 3
<p>Diagram of the proposed method.</p> "> Figure 4
<p>Demosaicing results of the Kodak No. 3 image under low-noise condition. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 5
<p>Showing the enlarged regions of <a href="#sensors-20-04458-f004" class="html-fig">Figure 4</a>. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 6
<p>Demosaicing results of the Kodak No. 19 image under low-noise condition. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 7
<p>Showing the enlarged regions of <a href="#sensors-20-04458-f006" class="html-fig">Figure 6</a>. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 8
<p>Demosaicing results of the Kodak No. 20 image under low-noise condition. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 9
<p>Showing the enlarged regions of <a href="#sensors-20-04458-f008" class="html-fig">Figure 8</a>. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 10
<p>Demosaicing results when one channel has low intensity values. The first and the second rows show the reconstructed color images, while the third and the fourth rows show the Blue channels. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed (<b>i</b>) Original (<b>j</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>] (<b>k</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>l</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>m</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>n</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>o</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>p</b>) Proposed.</p> "> Figure 11
<p>Demosaicing results when none of the channels has low intensity values. The first and the second rows show the reconstructed color images, while the third and the fourth rows show the Blue channels. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed (<b>i</b>) Original (<b>j</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>] (<b>k</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>l</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>m</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>n</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>o</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>p</b>) Proposed.</p> "> Figure 12
<p>Demosaicing results of the Kodak No. 3 image under high-noise condition. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 13
<p>Showing the enlarged regions of <a href="#sensors-20-04458-f012" class="html-fig">Figure 12</a>. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 14
<p>Demosaicing results of the McMaster No. 16 image under high-noise condition. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 15
<p>Showing the enlarged regions of <a href="#sensors-20-04458-f014" class="html-fig">Figure 14</a>. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 16
<p>Demosaicing results of the Kodak No. 23 image under high-noise condition. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> "> Figure 17
<p>Showing the enlarged regions of <a href="#sensors-20-04458-f016" class="html-fig">Figure 16</a>. (<b>a</b>) Original (<b>b</b>) ICC [<a href="#B12-sensors-20-04458" class="html-bibr">12</a>], (<b>c</b>) DNet [<a href="#B13-sensors-20-04458" class="html-bibr">13</a>] (<b>d</b>) RI [<a href="#B14-sensors-20-04458" class="html-bibr">14</a>] (<b>e</b>) ARI [<a href="#B15-sensors-20-04458" class="html-bibr">15</a>] (<b>f</b>) Sony [<a href="#B27-sensors-20-04458" class="html-bibr">27</a>] (<b>g</b>) Paul’s [<a href="#B36-sensors-20-04458" class="html-bibr">36</a>] (<b>h</b>) Proposed.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Levin’s Colorization
2.2. Colorization Based Color Interpolation
3. Proposed Method
Algorithm 1. Algorithm of the proposed method. |
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bayer, B. Color Imaging Array. U.S. Patent 3,971,065, 20 July 1976. [Google Scholar]
- Kimmel, R. Demosaicing: Image reconstruction from color ccd samples. IEEE Trans. Image Process. 1999, 8, 1221–1228. [Google Scholar] [CrossRef] [Green Version]
- Gunturk, B.K.; Altunbasak, Y.; Mersereau, R.M. Color plane interpolation using alternating projections. IEEE Trans. Image Process. 2002, 11, 997–1013. [Google Scholar] [CrossRef]
- Pei, S.-C.; Tam, I.-K. Effective color interpolation in ccd color filter arrays using signal correlation. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 503–513. [Google Scholar]
- Alleysson, D.; Süsstrunk, S.; Hérault, J. Linear demosaicing inspired by the human visual system. IEEE Trans. Image Process. 2005, 14, 439–449. [Google Scholar]
- Zhang, L.; Wu, X. Color demosaicking via directional linear minimum mean square-error estimation. IEEE Trans. Image Process. 2005, 14, 2167–2178. [Google Scholar] [CrossRef]
- Gunturk, B.K.; Glotzbach, J.; Altunbasak, Y.; Schafer, R.W.; Mersereau, R.M. Demosaicking: Color filter array interpolation. IEEE Signal Process. Mag. 2005, 22, 44–54. [Google Scholar] [CrossRef]
- Dubois, E. Frequency-domain methods for demosaicking of bayer-sampled color images. IEEE Signal Process. Lett. 2005, 12, 847–850. [Google Scholar] [CrossRef]
- Menon, D.; Calvagno, G. Color image demosaicking: An overview. Signal Process-Image 2011, 26, 518–533. [Google Scholar] [CrossRef]
- Pekkucuksen, I.; Altunbasak, Y. Multiscale gradients-based color filter array interpolation. IEEE Trans. Image Process. 2013, 22, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Hounsou, N.; Sanda Mahama, A.T.; Gouton, P.; Thomas, J.B. Comparative Study of Biorthogonal Wavelets Accuracy in Demosaicing Algorithm Based on Wavelet Analysis of Luminance Component. Electron. Imaging 2018, 362-1–362-5. [Google Scholar] [CrossRef]
- Jaiswal, S.P.; Au, O.C.; Jakhetiya, V.; Yuan, Y.; Yang, H. Exploitation of inter-color correlation for color image demosaicking. In Proceedings of the 21st International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 1812–1816. [Google Scholar]
- Gharbi, M.; Chaurasia, G.; Paris, S.; Durand, F. Deep joint demosaicking and denoising. ACM Trans. Graph. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Kiku, D.; Monno, Y.; Tanaka, M.; Okutomi, M. Beyond color difference: Residual interpolation for color image demosaicking. IEEE Trans. Image Process. 2016, 25, 1288–1300. [Google Scholar] [CrossRef] [PubMed]
- Monno, Y.; Kiku, D.; Tanaka, M.; Okutomi, M. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking. Sensors 2017, 17, 2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buades, A.; Duran, J. CFA Video denoising and demosaicking chain via spatio-temporal patch-based filtering. IEEE Trans. Circuits Syst. Video Technol. 2019. [Google Scholar] [CrossRef]
- Ehret, T.; Davy, A.; Arias, P.; Facciolo, G. Joint demosaicking and denoising by fine-tuning of bursts of raw images. In Proceedings of the 21th International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 8868–8877. [Google Scholar]
- Sugimura, D.; Mikami, T.; Yamashita, H.; Hamamoto, T. Enhancing color images of extremely low light scenes based on RGB/NIR images acquisition with different exposure times. IEEE Trans. Image Process. 2015, 24, 3586–3597. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Liang, R. RGB-NIR multispectral camera. Opt. Express 2014, 22, 4985–4994. [Google Scholar] [CrossRef]
- Martinello, M.; Wajs, A.; Quan, S.; Lee, H.; Lim, C.; Woo, T.; Lee, D. Dual aperture photography: Image and depth from a mobile camera. In Proceedings of the 11th IEEE International Conference on Computational Photography (ICCP), Houston, TX, USA, 24–26 April 2015; pp. 1–10. [Google Scholar]
- Tang, H.; Zhang, X.; Zhuo, S.; Chen, F.; Kutulakos, K.N.; Shen, L. High resolution photography with an RGB-infrared camera. In Proceedings of the 11th IEEE International Conference on Computational Photography (ICCP), Houston, TX, USA, 24–26 April 2015; pp. 1–10. [Google Scholar]
- Spooren, N.; Geelen, B.; Tack, K.; Lambrechts, A.; Jayapala, M.; Ginat, R.; Grauer, Y. RGB-NIR active gated imaging. In Electro-Optical and Infrared Systems: Technology and Applications XIII; International Society for Optics and Photonics: Edinburgh, UK, 2016; p. 9987. [Google Scholar]
- Geelen, B.; Spooren, N.; Tack, K.; Lambrechts, A.; Jayapala, M. System-level analysis and design for RGB-NIR CMOS camera. In Photonic Instrumentation Engineering IV; International Society for Optics and Photonics: San Francisco, CA, USA, 2017; p. 10110. [Google Scholar]
- Hu, X.; Heide, F.; Dai, Q.; Wetzstein, G. Convolutional sparse coding for RGB+NIR imaging. IEEE Trans. Image Process. 2018, 27, 1611–1625. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, M.G. Color interpolation algorithm for the Sony-RGBW color filter array. Electron. Imaging 2018, 13, 439-1–439-4. [Google Scholar] [CrossRef]
- Rafinazari, M.; Dubois, E. Demosaicking algorithm for the Kodak-RGBW color filter array. In Color Imaging XX: Displaying, Processing, Hardcopy, and Applications; International Society for Optics and Photonics: San Francisco, CA, USA, 2015; p. 9395. [Google Scholar]
- Tachi, M. Image Processing Device, Image Processing Method, and Program Pertaining to Image Correction. U.S. Patent 8,314,863, 20 November 2012. [Google Scholar]
- Yamagami, T.; Sasaki, T.; Suga, A. Image Signal Processing Apparatus Having a Color Filter with Offset Luminance Filter Elements. U.S. Patent 5,323,233, 21 June 1994. [Google Scholar]
- Gindele, E.; Gallagher, A. Sparsely Sampled Image Sensing Device with Color and Luminance Photosites. U.S. Patent 6,476,865, 5 November 2002. [Google Scholar]
- Compton, J.; Hamilton, J. Image Sensor with Improved Light Sensitivity. U.S. Patent 8,139,130, 20 March 2012. [Google Scholar]
- Condat, L. A generic variational approach for demosaicking from an arbitrary color filter array. In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–12 November 2009; pp. 1605–1608. [Google Scholar]
- Gu, J.; Wolfe, P.J.; Hirakawa, K. Filterbank-based universal demosaicking. In Proceedings of the 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, 26–29 September 2010; pp. 1981–1984. [Google Scholar]
- Park, S.W.; Kang, M.G. Generalized color interpolation scheme based on intermediate quincuncial pattern. J. Electron. Imaging 2014, 23, 030501. [Google Scholar] [CrossRef]
- Tian, Q.; Lansel, S.; Farrell, J.E.; Wandell, B.A. Automating the design of image processing pipelines for novel color filter arrays: Local, linear, learned (L3) method. In Digital Photography X; International Society for Optics and Photonics: San Francisco, CA, USA, 2014; Volume 9023. [Google Scholar]
- Jee, S.; Song, K.S.; Kang, M.G. Sensitivity and resolution improvement in RGBW color filter array sensor. Sensors 2018, 18, 1647. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Oh, P.; Kang, M.G. Colorization-based RGB-White color interpolation using color filter array with randomly sampled pattern. Sensors 2017, 17, 1523. [Google Scholar]
- Levin, A.; Lischinski, D.; Weiss, Y. Colorization using optimization. ACM Trans. Graph. 2004, 23, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Kwan, C.; Ayhan, B. A high performance missing pixel reconstruction algorithm for hyperspectral images. In Proceedings of the 2nd International Conference on Applied and Theoretical Information Systems (ATISR), Taipei, Taiwan, 27–29 December 2012; pp. 1–10. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Measure | Dataset | Methods | ||||||
---|---|---|---|---|---|---|---|---|
ICC [12] | DNet [13] | RI [14] | ARI [15] | Sony [27] | Paul’s [36] | Proposed | ||
CPSNR | Kodak | 28.77 | 28.79 | 28.69 | 29.00 | 29.17 | 30.72 | 30.98 |
McMaster | 28.83 | 28.88 | 28.59 | 28.99 | 28.80 | 27.79 | 29.66 | |
Kodak+McMaster | 28.80 | 28.83 | 28.64 | 28.99 | 29.01 | 29.47 | 30.41 | |
SSIM | Kodak | 0.8471 | 0.8487 | 0.8453 | 0.8543 | 0.8900 | 0.9235 | 0.9257 |
McMaster | 0.8840 | 0.8892 | 0.8803 | 0.8891 | 0.9091 | 0.9039 | 0.9176 | |
Kodak+McMaster | 0.8629 | 0.8661 | 0.8603 | 0.8692 | 0.8981 | 0.9151 | 0.9223 | |
FSIMc | Kodak | 0.9521 | 0.9540 | 0.9517 | 0.9552 | 0.9615 | 0.9794 | 0.9774 |
McMaster | 0.9571 | 0.9579 | 0.9563 | 0.9599 | 0.9641 | 0.9715 | 0.9705 | |
Kodak+McMaster | 0.9542 | 0.9557 | 0.9537 | 0.9572 | 0.9626 | 0.9760 | 0.9745 |
Measure | Dataset | Methods | ||||||
---|---|---|---|---|---|---|---|---|
ICC [12] | DNet [13] | RI [14] | ARI [15] | Sony [27] | Paul’s [36] | Proposed | ||
CPSNR | Kodak | 23.42 | 22.87 | 23.37 | 23.69 | 24.45 | 25.28 | 25.35 |
McMaster | 23.81 | 23.50 | 23.65 | 24.03 | 24.23 | 23.73 | 24.49 | |
Kodak+McMaster | 23.59 | 23.14 | 23.49 | 23.83 | 24.35 | 24.62 | 24.98 | |
SSIM | Kodak | 0.6543 | 0.6344 | 0.6522 | 0.6675 | 0.7103 | 0.7256 | 0.7282 |
McMaster | 0.7507 | 0.7477 | 0.7466 | 0.7602 | 0.7767 | 0.7574 | 0.7727 | |
Kodak+McMaster | 0.6956 | 0.6830 | 0.6926 | 0.7072 | 0.7387 | 0.7392 | 0.7473 | |
FSIMc | Kodak | 0.8699 | 0.8733 | 0.8696 | 0.8785 | 0.8845 | 0.9178 | 0.9147 |
McMaster | 0.8877 | 0.8896 | 0.8869 | 0.8950 | 0.8951 | 0.9180 | 0.9138 | |
Kodak+McMaster | 0.8775 | 0.8803 | 0.8770 | 0.8855 | 0.8890 | 0.9179 | 0.9143 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lee, S.; Kang, M.G. Demosaicing of RGBW Color Filter Array Based on Rank Minimization with Colorization Constraint. Sensors 2020, 20, 4458. https://doi.org/10.3390/s20164458
Kim H, Lee S, Kang MG. Demosaicing of RGBW Color Filter Array Based on Rank Minimization with Colorization Constraint. Sensors. 2020; 20(16):4458. https://doi.org/10.3390/s20164458
Chicago/Turabian StyleKim, Hansol, Sukho Lee, and Moon Gi Kang. 2020. "Demosaicing of RGBW Color Filter Array Based on Rank Minimization with Colorization Constraint" Sensors 20, no. 16: 4458. https://doi.org/10.3390/s20164458
APA StyleKim, H., Lee, S., & Kang, M. G. (2020). Demosaicing of RGBW Color Filter Array Based on Rank Minimization with Colorization Constraint. Sensors, 20(16), 4458. https://doi.org/10.3390/s20164458