Skeleton Reconstruction Using Generative Adversarial Networks for Human Activity Recognition Under Occlusion
<p>A human body pose with the 20 and 25 skeletal joints that are extracted using the Microsoft Kinect v1 (<b>left</b>) and v2 (<b>right</b>) cameras. Joints have been divided into subsets, each corresponding to one of the five main body parts, i.e., torso (blue), left hand (green), right hand (red), left leg (orange), and right leg (magenta). For illustrative purposes and also to facilitate comparisons between the two different versions, body parts have been colored using the same colors. Numbering follows the Kinect SDK in both cases; therefore, there exist several differences between the two versions.</p> "> Figure 2
<p>Example skeleton sequences of the activities (<b>a</b>) <span class="html-italic">handshaking</span> and (<b>b</b>) <span class="html-italic">hugging other person</span> from the PKU-MMD dataset, captured by Microsoft Kinect v2. First row: original skeletons, including all 25 joints (i.e., without any occlusion); second row: joints corresponding to (<b>a</b>) left arm; (<b>b</b>) both arms (see <a href="#sensors-25-01567-f001" class="html-fig">Figure 1</a>) have been discarded (i.e., the skeleton is partially occluded); third row: skeletons have been reconstructed using the proposed deep regression approach. The example of (<b>a</b>) is successfully reconstructed and correctly classified, while the example of (<b>b</b>) is unsuccessfully reconstructed and incorrectly classified.</p> "> Figure 3
<p>The architecture of the generator of the proposed GAN.</p> "> Figure 4
<p>The architecture of the discriminator of the proposed GAN architecture.</p> "> Figure 5
<p>A visual overview of the proposed approach.</p> "> Figure 6
<p>The architecture of the classifier of the proposed approach for the three-camera case.</p> "> Figure 7
<p>The architecture of the classifier of the proposed approach for the one-camera case.</p> "> Figure 8
<p>Normalized confusion matrices for classification for all datasets, without removing any body part.</p> "> Figure 9
<p>Confidence intervals using the proposed approach on all datasets, compared with the best weighted accuracies reported in previous works. In case of the proposed approach, red dot denotes the upper bound of the confidence interval, i.e., the best weighted accuracy achieved.</p> "> Figure 10
<p>Normalized confusion matrices for classification for the NTU-RGB+D dataset. LA, RA, LL and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg, respectively.</p> "> Figure 11
<p>Normalized confusion matrices for classification for the PKU-MMD dataset. LA, RA, LL and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg, respectively.</p> "> Figure 12
<p>Normalized confusion matrices for classification for the SYSU-3D-HOI dataset. LA, RA, LL and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg, respectively.</p> "> Figure 13
<p>Normalized confusion matrices for classification for the UT-Kinect-Action-3D dataset. LA, RA, LL and RL correspond to cases of occluded Left Arm, Right Arm, Left Leg and Right Leg, respectively.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Skeletal Data and Occlusion
3.1.1. Occlusion of Skeletal Data
3.1.2. Datasets
- The PKU-MMD dataset [54] is a publicly available and open-source benchmark for 3D human motion-based activity recognition. From this dataset, we opted for 11 actions that are tightly related to activities of daily living (ADLs) [51,55], i.e., eating, falling, handshaking, hugging, making a phone call, playing with a phone or tablet, reading, sitting down, standing up, typing on a keyboard, and wearing a jacket, which correspond to 21,456 data samples.
- The NTU-RGB+D dataset [56] is also a large-scale benchmark for 3D human activity analysis. From this dataset, we opted for a subset consisting of medical conditions, which includes 12 classes and 11,400 samples, i.e., sneezing/coughing, staggering, falling, headache, chest pain, back pain, neck pain, nausea/vomiting, fanning oneself, yawning, stretching, and blowing one’s nose.
- SYSU 3D Human–Object Interaction (HOI) [57] is a dataset that focuses on 3D human motion-based interactions between people and objects. It contains 480 activity samples from 12 different activities, i.e., drinking, pouring, calling a phone, playing with a phone, wearing backpacks, packing backpacks, sitting on a chair, moving a chair, taking out a wallet, taking from a wallet, mopping, and sweeping. Within the aforementioned activities, 40 subjects and one of the following objects per case were involved: phone, chair, bag, wallet, mop, and besom. Each activity has 40 samples.
- The UTKinect-Action3D dataset [58] includes 10 different activities that were performed by 10 different subjects, i.e., walking, sitting down, standing up, picking up, carrying, throwing, pushing, pulling, waving hands, and clapping hands. Each activity was performed twice by each subject, resulting in a total of 200 activity instances.
Name | Activities | Participants | Examples | Types of Activities |
---|---|---|---|---|
PKU-MMD [54] | 51 | 66 | ∼20,000 | Daily, sports, and health-related activities |
NTU RGB+D [56] | 60 | 40 | ∼56,000 | Daily, interactive, and health-related actions |
SYSU-3D-HOI [57] | 12 | 40 | 480 | Human–Object Interactions |
UTKinect-Action-3D [58] | 10 | 10 | 200 | Interactive and gesture-based actions |
3.2. Generative Adversarial Networks
3.2.1. Generator
3.2.2. Discriminator
3.3. Classification
3.4. The GAN Objective
3.5. Experiments
3.5.1. Experimental Setup and Network Training
3.5.2. Evaluation Protocol
- Removal of structured sets of skeletal joints, corresponding to body parts, to simulate occlusion (see Figure 1). Specifically, as already mentioned, cases of part removal include (a) left arm; (b) right arm; (c) both arms; (d) left leg; (e) right leg; (f) both legs; (g) left arm and left leg; (h) right arm and right leg. We used an LSTM network that had been trained using exclusively samples that were not affected by occlusion, and also the skeletons were reconstructed using a GAN;
- A “baseline” approach, where both training and evaluation of the LSTM took place using exclusively samples not affected by occlusion;
- A “reference” approach where training of the LSTM took place using exclusively samples not affected by occlusion, but was evaluated using occluded samples;
- An approach wherein samples affected by occlusion were included in the training process of the LSTM, while validation was performed exclusively using occluded samples. Here, a subset equal to of the non-occluded samples of the training set was selected. From these samples, all eight cases of occlusion have been generated, thus “augmenting” the initial training data by . Note that a single network was used for all eight cases of occlusion.
4. Results
- In the case of any occluded arm, class make a phone call/answer phone is often confused with playing with phone/tablet. In the case of the occluded right arm, class eat meal/snack is very often confused with reading. This happens less often in the case of the occluded left arm. Also, in a few cases, class handshaking is confused with hugging, and class reading with typing on a keyboard.
- In the case of any occluded leg, class make a phone call/answer phone is often confused with playing with phone/tablet. Also, in the case of occluded left leg, class reading is often confused with eat meal/snack, while in the case of occluded right leg, class eat meal/snack is very often confused with reading.
- In the case of occluded left arm and left leg, class make a phone call/answer phone in the majority of testing examples is confused with playing with phone/tablet and class hugging with playing with phone/tablet or handshaking.
- In the case of occluded right arm and right leg, class make a phone call/answer phone is often confused with playing with phone/tablet or handshaking, eat meal/snack is very often confused with reading, and class handshaking is often confused with make a phone call/answer phone.
5. Discussion and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | 2-Dimensional |
3D | 3-Dimensional |
AR | Augmented Reality |
CRNN | Convolutional Recurrent Neural Network |
CsiGAN | Channel State Information Generative Adversarial Network |
ExGANs | Exemplar GANs |
FDA | Flow-based Dual Attention |
GAN | Generative Adversarial Network |
GPU | Graphics Processing Unit |
HOI | Human–Object Interaction |
HAR | Human Activity Recognition |
LSTM | Long Short-Term Memory |
MSE | Mean Squared Error |
RNN | Recurrent Neural Network |
WA | Weighted Accuracy |
Appendix A
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Metric | Bas. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. |
10 | Acc. | 0.90 | 0.86 | 0.84 | 0.43 | 0.11 | 0.50 | 0.45 | 0.36 | 0.03 | 0.64 | 0.58 | 0.64 | 0.00 | 0.93 | 0.79 | 0.71 | 0.92 | 0.79 | 0.79 | 0.50 | 0.66 | 0.93 | 0.87 | 0.71 | 0.74 | 0.93 | 0.68 | 0.79 | 0.21 | 0.64 | 0.66 | 0.71 | 0.24 |
F1 | 0.86 | 0.86 | 0.75 | 0.60 | 0.15 | 0.67 | 0.57 | 0.32 | 0.05 | 0.69 | 0.55 | 0.78 | 0.00 | 0.90 | 0.86 | 0.83 | 0.84 | 0.85 | 0.81 | 0.67 | 0.72 | 0.93 | 0.82 | 0.74 | 0.78 | 0.93 | 0.70 | 0.88 | 0.25 | 0.75 | 0.69 | 0.77 | 0.36 | |
11 | Acc. | 0.97 | 1.00 | 0.97 | 1.00 | 0.97 | 0.92 | 0.97 | 0.85 | 0.97 | 1.00 | 0.97 | 1.00 | 0.00 | 0.92 | 0.97 | 0.92 | 0.97 | 0.92 | 0.95 | 1.00 | 0.97 | 0.92 | 0.97 | 0.85 | 0.97 | 0.92 | 0.97 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 0.97 |
F1 | 0.99 | 1.00 | 0.99 | 0.96 | 0.90 | 0.96 | 0.97 | 0.88 | 0.99 | 1.00 | 0.95 | 1.00 | 0.00 | 0.96 | 0.91 | 0.92 | 0.99 | 0.96 | 0.97 | 1.00 | 0.99 | 0.96 | 0.99 | 0.88 | 0.99 | 0.96 | 0.97 | 0.96 | 0.70 | 1.00 | 0.99 | 1.00 | 0.92 | |
14 | Acc. | 1.00 | 1.00 | 0.88 | 1.00 | 1.00 | 1.00 | 1.00 | 0.29 | 1.00 | 0.57 | 1.00 | 1.00 | 0.81 | 1.00 | 1.00 | 1.00 | 0.94 | 1.00 | 1.00 | 0.86 | 1.00 | 1.00 | 1.00 | 0.57 | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 | 0.86 | 1.00 | 0.29 | 1.00 |
F1 | 1.00 | 0.78 | 0.93 | 0.58 | 0.97 | 0.78 | 1.00 | 0.27 | 1.00 | 0.73 | 0.97 | 0.67 | 0.90 | 0.93 | 0.97 | 0.64 | 0.94 | 1.00 | 1.00 | 0.71 | 0.91 | 1.00 | 1.00 | 0.62 | 0.91 | 0.78 | 1.00 | 0.78 | 0.91 | 0.80 | 0.97 | 0.33 | 0.86 | |
16 | Acc. | 0.88 | 0.86 | 0.94 | 0.14 | 0.88 | 1.00 | 0.94 | 0.14 | 0.88 | 0.57 | 0.88 | 0.43 | 0.69 | 1.00 | 1.00 | 0.29 | 0.88 | 1.00 | 1.00 | 0.57 | 0.88 | 1.00 | 0.94 | 0.57 | 0.88 | 0.57 | 0.94 | 0.57 | 0.81 | 1.00 | 1.00 | 0.43 | 0.88 |
F1 | 0.93 | 0.86 | 0.91 | 0.25 | 0.90 | 0.93 | 0.94 | 0.25 | 0.93 | 0.67 | 0.90 | 0.50 | 0.76 | 0.93 | 0.97 | 0.44 | 0.93 | 0.93 | 0.97 | 0.73 | 0.90 | 0.93 | 0.97 | 0.67 | 0.90 | 0.67 | 0.97 | 0.62 | 0.79 | 0.93 | 1.00 | 0.50 | 0.85 | |
20 | Acc. | 0.82 | 0.00 | 0.18 | 0.91 | 0.03 | 0.64 | 0.61 | 0.73 | 0.39 | 0.00 | 0.00 | 0.73 | 0.00 | 0.73 | 0.85 | 1.00 | 0.79 | 0.82 | 0.82 | 0.73 | 0.88 | 0.73 | 0.79 | 0.55 | 0.88 | 0.09 | 0.30 | 0.91 | 0.00 | 0.55 | 0.39 | 0.64 | 0.97 |
F1 | 0.89 | 0.00 | 0.31 | 0.57 | 0.06 | 0.74 | 0.71 | 0.47 | 0.19 | 0.00 | 0.00 | 0.59 | 0.00 | 0.84 | 0.90 | 0.61 | 0.87 | 0.90 | 0.86 | 0.67 | 0.62 | 0.84 | 0.87 | 0.55 | 0.90 | 0.17 | 0.45 | 0.71 | 0.00 | 0.67 | 0.57 | 0.45 | 0.27 | |
23 | Acc. | 0.95 | 1.00 | 0.93 | 0.24 | 0.98 | 0.94 | 0.95 | 0.35 | 0.83 | 1.00 | 0.98 | 0.59 | 0.05 | 1.00 | 0.95 | 0.18 | 0.93 | 1.00 | 0.95 | 0.82 | 0.02 | 1.00 | 0.93 | 0.94 | 0.05 | 1.00 | 0.91 | 0.59 | 1.00 | 1.00 | 0.98 | 0.53 | 0.05 |
F1 | 0.90 | 0.81 | 0.74 | 0.38 | 0.70 | 0.91 | 0.83 | 0.44 | 0.40 | 0.67 | 0.56 | 0.69 | 0.05 | 0.92 | 0.92 | 0.30 | 0.93 | 0.94 | 0.91 | 0.85 | 0.05 | 0.92 | 0.91 | 0.84 | 0.09 | 0.79 | 0.75 | 0.71 | 0.62 | 0.92 | 0.80 | 0.56 | 0.07 | |
30 | Acc. | 0.84 | 0.80 | 0.60 | 0.86 | 0.70 | 0.93 | 0.87 | 0.21 | 0.24 | 0.60 | 0.16 | 0.93 | 0.00 | 0.87 | 0.97 | 0.86 | 0.76 | 0.87 | 0.87 | 0.93 | 0.89 | 0.87 | 0.89 | 0.79 | 0.84 | 0.87 | 0.81 | 0.93 | 0.30 | 0.87 | 0.76 | 0.86 | 0.70 |
F1 | 0.84 | 0.83 | 0.68 | 0.71 | 0.48 | 0.76 | 0.67 | 0.32 | 0.36 | 0.64 | 0.22 | 0.79 | 0.00 | 0.87 | 0.77 | 0.80 | 0.78 | 0.81 | 0.78 | 0.74 | 0.75 | 0.87 | 0.88 | 0.73 | 0.75 | 0.87 | 0.73 | 0.84 | 0.27 | 0.79 | 0.68 | 0.77 | 0.68 | |
33 | Acc. | 0.98 | 1.00 | 0.96 | 1.00 | 0.74 | 1.00 | 0.94 | 0.95 | 0.06 | 1.00 | 0.91 | 1.00 | 0.00 | 1.00 | 0.85 | 0.95 | 0.98 | 1.00 | 0.94 | 1.00 | 0.98 | 1.00 | 0.98 | 1.00 | 0.98 | 1.00 | 0.94 | 0.95 | 0.11 | 1.00 | 0.96 | 1.00 | 0.00 |
F1 | 0.98 | 0.97 | 0.96 | 1.00 | 0.84 | 0.97 | 0.96 | 0.92 | 0.11 | 0.97 | 0.94 | 1.00 | 0.00 | 0.97 | 0.91 | 0.95 | 0.98 | 0.97 | 0.95 | 1.00 | 0.98 | 0.97 | 0.98 | 0.97 | 0.98 | 0.95 | 0.96 | 0.97 | 0.20 | 0.97 | 0.97 | 1.00 | 0.00 | |
34 | Acc. | 0.96 | 0.90 | 0.89 | 0.95 | 0.96 | 0.90 | 0.96 | 0.95 | 0.19 | 0.90 | 0.46 | 1.00 | 0.00 | 0.90 | 1.00 | 0.95 | 0.94 | 0.95 | 0.94 | 1.00 | 0.90 | 0.95 | 0.89 | 1.00 | 0.85 | 0.90 | 0.98 | 1.00 | 0.54 | 0.90 | 0.96 | 1.00 | 0.00 |
F1 | 0.96 | 0.94 | 0.91 | 0.97 | 0.96 | 0.94 | 0.94 | 0.97 | 0.32 | 0.94 | 0.89 | 1.00 | 0.00 | 0.94 | 0.93 | 0.97 | 0.95 | 0.97 | 0.94 | 1.00 | 0.93 | 0.97 | 0.92 | 1.00 | 0.91 | 0.94 | 0.96 | 1.00 | 0.70 | 0.94 | 0.95 | 1.00 | 0.00 | |
46 | Acc. | 0.87 | 1.00 | 0.84 | 1.00 | 0.89 | 1.00 | 0.87 | 1.00 | 0.49 | 1.00 | 0.84 | 1.00 | 0.65 | 1.00 | 0.87 | 1.00 | 0.84 | 1.00 | 0.87 | 1.00 | 0.87 | 1.00 | 0.87 | 1.00 | 0.87 | 1.00 | 0.84 | 1.00 | 0.87 | 1.00 | 0.87 | 1.00 | 0.65 |
F1 | 0.91 | 0.90 | 0.89 | 0.97 | 0.69 | 0.93 | 0.88 | 0.79 | 0.38 | 0.85 | 0.90 | 1.00 | 0.14 | 0.97 | 0.91 | 0.94 | 0.90 | 0.93 | 0.90 | 0.97 | 0.93 | 0.93 | 0.91 | 0.97 | 0.91 | 0.93 | 0.87 | 0.97 | 0.48 | 0.93 | 0.89 | 1.00 | 0.56 | |
48 | Acc. | 0.92 | 0.87 | 0.92 | 0.80 | 0.28 | 0.80 | 0.69 | 0.73 | 0.13 | 0.80 | 0.56 | 0.67 | 0.00 | 0.87 | 0.59 | 0.80 | 0.85 | 0.87 | 0.85 | 0.87 | 0.85 | 0.87 | 0.90 | 0.80 | 0.90 | 0.87 | 0.90 | 0.73 | 0.05 | 0.93 | 0.87 | 0.73 | 0.13 |
F1 | 0.88 | 0.93 | 0.78 | 0.89 | 0.43 | 0.89 | 0.76 | 0.76 | 0.22 | 0.89 | 0.58 | 0.80 | 0.00 | 0.93 | 0.74 | 0.86 | 0.87 | 0.93 | 0.87 | 0.93 | 0.72 | 0.93 | 0.80 | 0.89 | 0.74 | 0.93 | 0.86 | 0.85 | 0.10 | 0.97 | 0.88 | 0.85 | 0.23 | |
all | WA | 0.92 | 0.86 | 0.82 | 0.78 | 0.68 | 0.87 | 0.84 | 0.65 | 0.40 | 0.78 | 0.70 | 0.83 | 0.21 | 0.93 | 0.89 | 0.80 | 0.90 | 0.93 | 0.90 | 0.87 | 0.80 | 0.93 | 0.91 | 0.84 | 0.80 | 0.86 | 0.84 | 0.87 | 0.48 | 0.89 | 0.86 | 0.80 | 0.41 |
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Metric | Bas. | Gans | Reg. | Occ. | Ref. | Gans | Reg. | Occ. | Ref. | Gans | Reg. | Occ. | Ref. | Gans | Reg. | Occ. | Ref. | Gans | Reg. | Occ. | Ref. | Gans | Reg. | Occ. | Ref. | Gans | Reg. | Occ. | Ref. | Gans | Reg. | Occ. | Ref. |
41 | Acc. | 0.89 | 0.74 | 0.70 | 0.87 | 0.73 | 0.32 | 0.51 | 0.74 | 0.14 | 0.16 | 0.57 | 0.84 | 0.11 | 0.74 | 0.73 | 0.84 | 0.24 | 0.87 | 0.65 | 0.81 | 0.62 | 0.90 | 0.87 | 0.74 | 0.24 | 0.77 | 0.70 | 0.84 | 0.16 | 0.16 | 0.73 | 0.71 | 0.11 |
F1 | 0.82 | 0.55 | 0.66 | 0.73 | 0.74 | 0.31 | 0.54 | 0.65 | 0.19 | 0.17 | 0.58 | 0.79 | 0.11 | 0.72 | 0.70 | 0.71 | 0.35 | 0.86 | 0.66 | 0.74 | 0.59 | 0.86 | 0.78 | 0.73 | 0.38 | 0.55 | 0.68 | 0.80 | 0.24 | 0.26 | 0.73 | 0.73 | 0.19 | |
42 | Acc. | 0.35 | 0.28 | 0.22 | 0.47 | 0.13 | 0.38 | 0.17 | 0.34 | 0.26 | 0.56 | 0.26 | 0.41 | 0.00 | 0.44 | 0.22 | 0.41 | 0.09 | 0.34 | 0.26 | 0.44 | 0.09 | 0.31 | 0.30 | 0.44 | 0.00 | 0.28 | 0.13 | 0.41 | 0.00 | 0.56 | 0.22 | 0.47 | 0.09 |
F1 | 0.40 | 0.42 | 0.29 | 0.42 | 0.17 | 0.46 | 0.20 | 0.33 | 0.31 | 0.48 | 0.32 | 0.39 | 0.00 | 0.53 | 0.28 | 0.40 | 0.14 | 0.46 | 0.32 | 0.40 | 0.15 | 0.41 | 0.36 | 0.41 | 0.00 | 0.39 | 0.19 | 0.39 | 0.00 | 0.55 | 0.28 | 0.45 | 0.14 | |
43 | Acc. | 0.66 | 0.78 | 0.62 | 0.59 | 0.72 | 0.94 | 0.66 | 0.53 | 0.83 | 0.50 | 0.76 | 0.69 | 0.62 | 0.78 | 0.69 | 0.47 | 0.52 | 0.78 | 0.76 | 0.69 | 0.76 | 0.78 | 0.76 | 0.69 | 0.72 | 0.69 | 0.72 | 0.69 | 0.62 | 0.69 | 0.79 | 0.69 | 0.55 |
F1 | 0.61 | 0.56 | 0.46 | 0.50 | 0.46 | 0.41 | 0.47 | 0.42 | 0.35 | 0.24 | 0.49 | 0.51 | 0.29 | 0.62 | 0.53 | 0.41 | 0.38 | 0.68 | 0.54 | 0.46 | 0.27 | 0.71 | 0.57 | 0.50 | 0.36 | 0.55 | 0.51 | 0.59 | 0.31 | 0.41 | 0.56 | 0.51 | 0.26 | |
44 | Acc. | 0.93 | 0.90 | 0.87 | 0.87 | 0.77 | 0.87 | 0.90 | 0.87 | 0.07 | 0.71 | 0.90 | 0.87 | 0.07 | 0.84 | 0.90 | 0.87 | 0.93 | 0.84 | 0.90 | 0.90 | 0.97 | 0.94 | 0.90 | 0.84 | 1.00 | 0.94 | 0.90 | 0.87 | 0.97 | 0.74 | 0.90 | 0.84 | 0.37 |
F1 | 0.95 | 0.95 | 0.90 | 0.89 | 0.87 | 0.93 | 0.93 | 0.89 | 0.12 | 0.83 | 0.95 | 0.89 | 0.12 | 0.90 | 0.93 | 0.87 | 0.93 | 0.90 | 0.95 | 0.90 | 0.95 | 0.95 | 0.93 | 0.88 | 0.85 | 0.97 | 0.93 | 0.87 | 0.89 | 0.85 | 0.93 | 0.88 | 0.54 | |
45 | Acc. | 0.41 | 0.52 | 0.18 | 0.28 | 0.46 | 0.03 | 0.23 | 0.19 | 0.91 | 0.32 | 0.23 | 0.28 | 0.41 | 0.45 | 0.23 | 0.25 | 0.14 | 0.61 | 0.23 | 0.34 | 0.59 | 0.52 | 0.50 | 0.22 | 0.50 | 0.45 | 0.18 | 0.41 | 0.14 | 0.23 | 0.41 | 0.16 | 0.77 |
F1 | 0.51 | 0.62 | 0.22 | 0.27 | 0.40 | 0.06 | 0.24 | 0.23 | 0.26 | 0.05 | 0.23 | 0.25 | 0.23 | 0.57 | 0.26 | 0.25 | 0.17 | 0.68 | 0.26 | 0.29 | 0.32 | 0.63 | 0.47 | 0.26 | 0.23 | 0.57 | 0.21 | 0.38 | 0.19 | 0.31 | 0.40 | 0.19 | 0.23 | |
46 | Acc. | 0.38 | 0.44 | 0.32 | 0.47 | 0.24 | 0.16 | 0.27 | 0.47 | 0.12 | 0.00 | 0.35 | 0.56 | 0.27 | 0.56 | 0.50 | 0.53 | 0.32 | 0.56 | 0.29 | 0.44 | 0.15 | 0.50 | 0.29 | 0.50 | 0.09 | 0.53 | 0.35 | 0.59 | 0.12 | 0.44 | 0.35 | 0.66 | 0.03 |
F1 | 0.43 | 0.49 | 0.39 | 0.35 | 0.31 | 0.23 | 0.30 | 0.33 | 0.17 | 0.00 | 0.39 | 0.41 | 0.31 | 0.59 | 0.47 | 0.36 | 0.37 | 0.57 | 0.33 | 0.38 | 0.21 | 0.50 | 0.35 | 0.36 | 0.14 | 0.55 | 0.37 | 0.41 | 0.20 | 0.42 | 0.40 | 0.42 | 0.05 | |
47 | Acc. | 0.53 | 0.65 | 0.40 | 0.42 | 0.63 | 0.71 | 0.27 | 0.42 | 0.27 | 0.77 | 0.27 | 0.58 | 0.07 | 0.58 | 0.33 | 0.45 | 0.33 | 0.65 | 0.27 | 0.52 | 0.37 | 0.65 | 0.33 | 0.65 | 0.13 | 0.58 | 0.40 | 0.71 | 0.33 | 0.81 | 0.33 | 0.65 | 0.43 |
F1 | 0.64 | 0.74 | 0.53 | 0.55 | 0.73 | 0.79 | 0.39 | 0.55 | 0.28 | 0.69 | 0.38 | 0.65 | 0.11 | 0.69 | 0.45 | 0.56 | 0.43 | 0.73 | 0.39 | 0.58 | 0.48 | 0.77 | 0.45 | 0.63 | 0.21 | 0.72 | 0.51 | 0.70 | 0.43 | 0.72 | 0.45 | 0.63 | 0.36 | |
48 | Acc. | 0.79 | 0.41 | 0.38 | 0.10 | 0.42 | 0.28 | 0.38 | 0.07 | 0.17 | 0.62 | 0.38 | 0.03 | 0.50 | 0.50 | 0.54 | 0.07 | 0.67 | 0.66 | 0.29 | 0.10 | 0.21 | 0.50 | 0.50 | 0.10 | 0.21 | 0.47 | 0.38 | 0.07 | 0.63 | 0.22 | 0.38 | 0.03 | 0.21 |
F1 | 0.55 | 0.43 | 0.31 | 0.15 | 0.47 | 0.30 | 0.32 | 0.10 | 0.18 | 0.11 | 0.31 | 0.06 | 0.14 | 0.52 | 0.39 | 0.11 | 0.31 | 0.58 | 0.24 | 0.16 | 0.22 | 0.46 | 0.44 | 0.17 | 0.14 | 0.54 | 0.32 | 0.12 | 0.32 | 0.29 | 0.32 | 0.06 | 0.15 | |
49 | Acc. | 0.68 | 0.53 | 0.48 | 0.44 | 0.48 | 0.25 | 0.46 | 0.38 | 0.05 | 0.19 | 0.36 | 0.50 | 0.00 | 0.78 | 0.46 | 0.28 | 0.77 | 0.69 | 0.48 | 0.56 | 0.16 | 0.69 | 0.48 | 0.44 | 0.41 | 0.53 | 0.46 | 0.38 | 0.59 | 0.25 | 0.52 | 0.41 | 0.23 |
F1 | 0.59 | 0.51 | 0.42 | 0.44 | 0.47 | 0.34 | 0.41 | 0.39 | 0.07 | 0.23 | 0.36 | 0.42 | 0.00 | 0.60 | 0.44 | 0.35 | 0.46 | 0.61 | 0.42 | 0.47 | 0.24 | 0.59 | 0.45 | 0.38 | 0.31 | 0.49 | 0.43 | 0.40 | 0.40 | 0.25 | 0.46 | 0.37 | 0.26 | |
103 | Acc. | 0.79 | 0.81 | 0.76 | 0.72 | 0.79 | 0.56 | 0.82 | 0.78 | 0.40 | 0.63 | 0.76 | 0.53 | 0.16 | 0.72 | 0.76 | 0.75 | 0.74 | 0.75 | 0.84 | 0.50 | 0.74 | 0.84 | 0.82 | 0.69 | 0.61 | 0.81 | 0.79 | 0.72 | 0.74 | 0.59 | 0.79 | 0.72 | 0.32 |
F1 | 0.85 | 0.87 | 0.79 | 0.81 | 0.79 | 0.68 | 0.84 | 0.83 | 0.54 | 0.68 | 0.79 | 0.68 | 0.26 | 0.79 | 0.82 | 0.81 | 0.84 | 0.83 | 0.84 | 0.67 | 0.85 | 0.89 | 0.83 | 0.77 | 0.72 | 0.87 | 0.85 | 0.79 | 0.82 | 0.68 | 0.83 | 0.81 | 0.48 | |
104 | Acc. | 0.97 | 0.84 | 0.94 | 0.75 | 0.74 | 0.78 | 0.94 | 0.75 | 0.21 | 0.00 | 0.88 | 0.69 | 0.00 | 0.97 | 0.88 | 0.84 | 0.21 | 0.94 | 0.94 | 0.63 | 0.15 | 0.94 | 0.88 | 0.78 | 0.03 | 0.91 | 0.94 | 0.78 | 0.12 | 0.56 | 0.91 | 0.81 | 0.32 |
F1 | 0.96 | 0.90 | 0.93 | 0.81 | 0.82 | 0.85 | 0.90 | 0.76 | 0.34 | 0.00 | 0.88 | 0.79 | 0.00 | 0.97 | 0.90 | 0.84 | 0.33 | 0.95 | 0.93 | 0.75 | 0.24 | 0.95 | 0.90 | 0.86 | 0.06 | 0.88 | 0.91 | 0.83 | 0.21 | 0.71 | 0.89 | 0.85 | 0.48 | |
105 | Acc. | 0.60 | 0.78 | 0.66 | 0.34 | 0.77 | 0.69 | 0.51 | 0.38 | 0.11 | 0.59 | 0.63 | 0.22 | 0.00 | 0.81 | 0.57 | 0.47 | 0.14 | 0.84 | 0.60 | 0.16 | 0.11 | 0.84 | 0.60 | 0.25 | 0.00 | 0.75 | 0.69 | 0.28 | 0.20 | 0.66 | 0.54 | 0.28 | 0.03 |
F1 | 0.66 | 0.67 | 0.64 | 0.37 | 0.65 | 0.52 | 0.54 | 0.38 | 0.17 | 0.34 | 0.65 | 0.27 | 0.00 | 0.70 | 0.61 | 0.46 | 0.24 | 0.68 | 0.62 | 0.22 | 0.19 | 0.67 | 0.65 | 0.31 | 0.00 | 0.65 | 0.69 | 0.32 | 0.26 | 0.46 | 0.60 | 0.35 | 0.05 | |
all | WA | 0.68 | 0.64 | 0.57 | 0.53 | 0.59 | 0.50 | 0.53 | 0.49 | 0.27 | 0.35 | 0.55 | 0.52 | 0.16 | 0.68 | 0.59 | 0.52 | 0.44 | 0.71 | 0.57 | 0.51 | 0.41 | 0.70 | 0.62 | 0.53 | 0.33 | 0.64 | 0.58 | 0.56 | 0.40 | 0.49 | 0.59 | 0.53 | 0.25 |
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Metric | Baseline | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. |
0 | Acc. | 0.50 | 0.50 | 0.40 | 0.30 | 0.30 | 1.00 | 0.40 | 0.30 | 0.00 | 0.50 | 0.40 | 0.30 | 0.00 | 1.00 | 0.40 | 0.30 | 0.20 | 1.00 | 0.40 | 0.40 | 0.50 | 1.00 | 0.40 | 0.30 | 0.20 | 0.50 | 0.40 | 0.50 | 0.70 | 1.00 | 0.40 | 0.40 | 0.00 |
F1 | 0.48 | 0.50 | 0.43 | 0.35 | 0.31 | 0.80 | 0.43 | 0.35 | 0.00 | 0.67 | 0.39 | 0.26 | 0.00 | 1.00 | 0.43 | 0.31 | 0.09 | 0.80 | 0.43 | 0.41 | 0.41 | 1.00 | 0.43 | 0.28 | 0.07 | 0.67 | 0.43 | 0.44 | 0.33 | 1.00 | 0.39 | 0.43 | 0.00 | |
1 | Acc. | 0.70 | 0.00 | 0.30 | 0.20 | 0.60 | 0.50 | 0.10 | 0.20 | 0.30 | 0.00 | 0.30 | 0.20 | 0.90 | 1.00 | 0.70 | 0.60 | 0.00 | 0.50 | 0.50 | 0.30 | 0.40 | 0.50 | 0.60 | 0.10 | 0.00 | 0.00 | 0.40 | 0.50 | 0.20 | 0.00 | 0.30 | 0.30 | 0.20 |
F1 | 0.53 | 0.00 | 0.23 | 0.16 | 0.15 | 0.50 | 0.08 | 0.10 | 0.17 | 0.00 | 0.13 | 0.11 | 0.18 | 0.80 | 0.57 | 0.51 | 0.00 | 0.50 | 0.39 | 0.26 | 0.35 | 0.50 | 0.43 | 0.10 | 0.00 | 0.00 | 0.32 | 0.39 | 0.06 | 0.00 | 0.21 | 0.23 | 0.13 | |
2 | Acc. | 0.80 | 1.00 | 0.80 | 0.70 | 0.00 | 1.00 | 0.80 | 0.50 | 0.00 | 1.00 | 0.90 | 0.80 | 0.00 | 1.00 | 0.80 | 0.80 | 0.10 | 1.00 | 0.70 | 0.80 | 0.60 | 1.00 | 0.70 | 0.60 | 0.00 | 1.00 | 0.90 | 0.90 | 0.20 | 1.00 | 0.90 | 0.40 | 0.00 |
F1 | 0.87 | 1.00 | 0.76 | 0.66 | 0.00 | 0.67 | 0.80 | 0.41 | 0.00 | 0.80 | 0.83 | 0.76 | 0.00 | 0.80 | 0.80 | 0.67 | 0.13 | 0.80 | 0.75 | 0.66 | 0.63 | 0.80 | 0.75 | 0.46 | 0.00 | 0.80 | 0.79 | 0.85 | 0.27 | 1.00 | 0.89 | 0.26 | 0.00 | |
3 | Acc. | 1.00 | 0.50 | 0.30 | 0.30 | 0.00 | 0.50 | 0.60 | 0.10 | 0.20 | 0.00 | 0.00 | 0.30 | 0.00 | 1.00 | 0.70 | 0.40 | 0.40 | 0.00 | 0.70 | 0.60 | 1.00 | 1.00 | 0.80 | 0.30 | 0.70 | 0.00 | 0.20 | 0.70 | 0.00 | 0.00 | 0.20 | 0.30 | 0.30 |
F1 | 0.92 | 0.50 | 0.22 | 0.26 | 0.00 | 0.40 | 0.43 | 0.05 | 0.05 | 0.00 | 0.00 | 0.33 | 0.00 | 1.00 | 0.58 | 0.41 | 0.40 | 0.00 | 0.63 | 0.57 | 0.69 | 0.67 | 0.72 | 0.18 | 0.61 | 0.00 | 0.11 | 0.63 | 0.00 | 0.00 | 0.16 | 0.29 | 0.07 | |
4 | Acc. | 0.90 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.40 | 0.10 | 0.60 | 0.00 | 0.00 | 0.50 | 0.00 | 0.50 | 0.60 | 0.20 | 0.90 | 1.00 | 0.60 | 0.60 | 0.50 | 1.00 | 0.60 | 0.10 | 0.80 | 1.00 | 0.10 | 0.50 | 0.00 | 0.50 | 0.30 | 0.10 | 0.60 |
F1 | 0.93 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.40 | 0.13 | 0.14 | 0.00 | 0.00 | 0.41 | 0.00 | 0.50 | 0.57 | 0.13 | 0.73 | 0.57 | 0.60 | 0.57 | 0.39 | 1.00 | 0.57 | 0.08 | 0.59 | 0.50 | 0.08 | 0.46 | 0.00 | 0.40 | 0.20 | 0.13 | 0.14 | |
5 | Acc. | 1.00 | 1.00 | 0.80 | 0.50 | 0.00 | 0.00 | 0.80 | 0.50 | 0.00 | 0.00 | 0.80 | 0.40 | 0.00 | 0.00 | 0.80 | 0.50 | 0.90 | 0.50 | 0.80 | 0.40 | 0.70 | 0.50 | 0.80 | 0.50 | 0.80 | 0.00 | 0.80 | 0.50 | 0.10 | 1.00 | 0.80 | 0.50 | 0.00 |
F1 | 0.92 | 1.00 | 0.69 | 0.49 | 0.00 | 0.00 | 0.69 | 0.43 | 0.00 | 0.00 | 0.72 | 0.47 | 0.00 | 0.00 | 0.69 | 0.50 | 0.58 | 0.67 | 0.69 | 0.43 | 0.65 | 0.67 | 0.69 | 0.40 | 0.59 | 0.00 | 0.73 | 0.60 | 0.13 | 1.00 | 0.76 | 0.43 | 0.00 | |
6 | Acc. | 1.00 | 1.00 | 0.80 | 0.50 | 0.00 | 1.00 | 0.80 | 0.70 | 0.00 | 1.00 | 0.90 | 0.80 | 0.00 | 1.00 | 0.90 | 0.80 | 1.00 | 1.00 | 0.80 | 0.80 | 0.90 | 1.00 | 0.80 | 0.70 | 0.80 | 1.00 | 0.80 | 1.00 | 0.20 | 1.00 | 1.00 | 0.70 | 0.00 |
F1 | 1.00 | 1.00 | 0.80 | 0.49 | 0.00 | 1.00 | 0.80 | 0.66 | 0.00 | 0.80 | 0.93 | 0.61 | 0.00 | 0.80 | 0.93 | 0.72 | 0.79 | 1.00 | 0.76 | 0.68 | 0.81 | 1.00 | 0.76 | 0.63 | 0.51 | 0.80 | 0.83 | 0.86 | 0.13 | 1.00 | 0.96 | 0.63 | 0.00 | |
7 | Acc. | 0.40 | 0.00 | 0.50 | 0.60 | 0.70 | 0.00 | 0.40 | 0.30 | 0.00 | 1.00 | 0.20 | 0.60 | 0.00 | 0.00 | 0.40 | 0.30 | 0.00 | 0.00 | 0.20 | 0.70 | 0.10 | 0.00 | 0.30 | 0.40 | 0.00 | 0.00 | 0.40 | 0.30 | 0.40 | 0.50 | 0.40 | 0.50 | 0.00 |
F1 | 0.43 | 0.00 | 0.25 | 0.22 | 0.23 | 0.00 | 0.28 | 0.21 | 0.00 | 0.36 | 0.17 | 0.35 | 0.00 | 0.00 | 0.40 | 0.19 | 0.00 | 0.00 | 0.12 | 0.54 | 0.10 | 0.00 | 0.27 | 0.34 | 0.00 | 0.00 | 0.24 | 0.21 | 0.11 | 0.67 | 0.34 | 0.28 | 0.00 | |
8 | Acc. | 0.60 | 1.00 | 0.40 | 0.50 | 0.00 | 1.00 | 0.40 | 0.30 | 0.00 | 1.00 | 0.20 | 0.50 | 0.00 | 1.00 | 0.40 | 0.60 | 0.50 | 1.00 | 0.40 | 0.60 | 0.40 | 1.00 | 0.40 | 0.50 | 0.30 | 1.00 | 0.30 | 0.50 | 0.20 | 1.00 | 0.40 | 0.40 | 0.00 |
F1 | 0.52 | 0.80 | 0.36 | 0.44 | 0.00 | 1.00 | 0.36 | 0.29 | 0.00 | 1.00 | 0.16 | 0.47 | 0.00 | 1.00 | 0.27 | 0.55 | 0.40 | 1.00 | 0.36 | 0.55 | 0.43 | 1.00 | 0.29 | 0.53 | 0.27 | 0.80 | 0.26 | 0.53 | 0.27 | 1.00 | 0.36 | 0.44 | 0.00 | |
9 | Acc. | 1.00 | 1.00 | 0.70 | 0.40 | 0.00 | 1.00 | 1.00 | 0.30 | 0.40 | 1.00 | 0.30 | 1.00 | 0.00 | 1.00 | 1.00 | 0.70 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 1.00 | 1.00 | 0.80 | 1.00 | 0.20 | 1.00 | 1.00 | 0.80 | 0.00 |
F1 | 0.87 | 0.57 | 0.52 | 0.23 | 0.00 | 1.00 | 0.83 | 0.10 | 0.47 | 1.00 | 0.13 | 0.88 | 0.00 | 1.00 | 0.87 | 0.59 | 0.69 | 1.00 | 0.87 | 0.96 | 0.96 | 1.00 | 0.87 | 0.81 | 0.74 | 1.00 | 0.58 | 0.92 | 0.07 | 1.00 | 0.87 | 0.76 | 0.00 | |
all | WA | 0.79 | 0.60 | 0.50 | 0.42 | 0.16 | 0.60 | 0.57 | 0.33 | 0.15 | 0.55 | 0.40 | 0.54 | 0.09 | 0.75 | 0.67 | 0.52 | 0.50 | 0.70 | 0.61 | 0.62 | 0.61 | 0.80 | 0.64 | 0.44 | 0.46 | 0.55 | 0.51 | 0.64 | 0.22 | 0.70 | 0.57 | 0.44 | 0.11 |
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Metric | Baseline | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. | Gan | Reg. | Occ. | Ref. |
1 | Acc. | 0.10 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.05 | 0.13 | 0.00 | 0.25 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.10 | 0.28 | 0.00 | 0.00 | 0.05 | 0.13 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 |
F1 | 0.10 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 | 0.06 | 0.07 | 0.00 | 0.22 | 0.00 | 0.25 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.10 | 0.28 | 0.00 | 0.00 | 0.08 | 0.11 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | |
2 | Acc. | 0.65 | 0.25 | 0.45 | 0.43 | 0.00 | 0.25 | 0.65 | 0.13 | 0.05 | 0.25 | 0.00 | 0.50 | 0.00 | 0.50 | 0.45 | 0.40 | 0.45 | 0.25 | 0.55 | 0.53 | 0.20 | 0.50 | 0.55 | 0.28 | 0.10 | 0.50 | 0.50 | 0.48 | 0.30 | 0.25 | 0.00 | 0.28 | 0.00 |
F1 | 0.59 | 0.22 | 0.36 | 0.46 | 0.00 | 0.33 | 0.63 | 0.12 | 0.08 | 0.40 | 0.00 | 0.54 | 0.00 | 0.40 | 0.44 | 0.45 | 0.34 | 0.33 | 0.56 | 0.57 | 0.23 | 0.44 | 0.53 | 0.34 | 0.04 | 0.33 | 0.48 | 0.49 | 0.16 | 0.40 | 0.00 | 0.19 | 0.00 | |
3 | Acc. | 0.80 | 0.50 | 0.75 | 0.60 | 0.55 | 0.75 | 0.85 | 0.48 | 0.05 | 0.50 | 0.60 | 0.68 | 0.45 | 0.50 | 0.70 | 0.58 | 0.00 | 0.50 | 0.85 | 0.68 | 0.00 | 0.25 | 0.80 | 0.48 | 0.00 | 0.50 | 0.60 | 0.65 | 0.25 | 0.25 | 0.55 | 0.55 | 0.10 |
F1 | 0.77 | 0.67 | 0.69 | 0.54 | 0.21 | 0.67 | 0.77 | 0.44 | 0.05 | 0.67 | 0.57 | 0.59 | 0.12 | 0.57 | 0.65 | 0.56 | 0.00 | 0.67 | 0.71 | 0.59 | 0.00 | 0.33 | 0.73 | 0.46 | 0.00 | 0.57 | 0.56 | 0.59 | 0.18 | 0.33 | 0.61 | 0.50 | 0.06 | |
4 | Acc. | 0.75 | 0.75 | 0.70 | 0.58 | 0.05 | 0.75 | 0.80 | 0.53 | 0.30 | 0.75 | 0.75 | 0.65 | 0.00 | 0.75 | 0.75 | 0.68 | 0.40 | 0.75 | 0.75 | 0.65 | 0.25 | 0.75 | 0.70 | 0.58 | 0.20 | 0.75 | 0.75 | 0.70 | 0.25 | 0.75 | 0.80 | 0.68 | 0.25 |
F1 | 0.80 | 0.75 | 0.73 | 0.61 | 0.08 | 0.86 | 0.84 | 0.57 | 0.43 | 0.86 | 0.76 | 0.71 | 0.00 | 0.86 | 0.79 | 0.70 | 0.52 | 0.86 | 0.78 | 0.72 | 0.34 | 0.86 | 0.75 | 0.62 | 0.29 | 0.75 | 0.75 | 0.76 | 0.27 | 0.86 | 0.76 | 0.66 | 0.31 | |
5 | Acc. | 0.55 | 0.50 | 0.45 | 0.28 | 0.10 | 1.00 | 0.40 | 0.53 | 0.40 | 0.75 | 0.50 | 0.40 | 0.00 | 0.75 | 0.45 | 0.38 | 0.40 | 1.00 | 0.40 | 0.40 | 0.00 | 0.75 | 0.50 | 0.25 | 0.20 | 0.75 | 0.30 | 0.33 | 0.50 | 1.00 | 0.50 | 0.30 | 0.10 |
F1 | 0.48 | 0.50 | 0.34 | 0.21 | 0.10 | 0.80 | 0.35 | 0.40 | 0.15 | 0.67 | 0.30 | 0.38 | 0.00 | 0.67 | 0.38 | 0.32 | 0.10 | 0.80 | 0.39 | 0.41 | 0.00 | 0.67 | 0.39 | 0.23 | 0.19 | 0.86 | 0.28 | 0.32 | 0.20 | 0.67 | 0.44 | 0.31 | 0.07 | |
6 | Acc. | 0.40 | 0.75 | 0.25 | 0.28 | 0.05 | 0.50 | 0.25 | 0.05 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.50 | 0.30 | 0.33 | 0.00 | 0.75 | 0.35 | 0.28 | 0.00 | 0.75 | 0.25 | 0.25 | 0.00 | 0.50 | 0.30 | 0.33 | 0.00 | 0.50 | 0.25 | 0.43 | 0.00 |
F1 | 0.38 | 0.60 | 0.31 | 0.27 | 0.08 | 0.50 | 0.28 | 0.03 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.40 | 0.27 | 0.31 | 0.00 | 0.60 | 0.32 | 0.26 | 0.00 | 0.60 | 0.18 | 0.22 | 0.00 | 0.40 | 0.27 | 0.30 | 0.00 | 0.40 | 0.20 | 0.38 | 0.00 | |
7 | Acc. | 0.45 | 0.25 | 0.40 | 0.43 | 0.50 | 0.25 | 0.35 | 0.33 | 0.30 | 0.00 | 0.15 | 0.65 | 0.00 | 0.25 | 0.40 | 0.43 | 0.00 | 0.25 | 0.45 | 0.68 | 0.00 | 0.25 | 0.45 | 0.45 | 0.00 | 0.25 | 0.35 | 0.55 | 0.20 | 0.25 | 0.35 | 0.53 | 0.00 |
F1 | 0.54 | 0.40 | 0.35 | 0.39 | 0.18 | 0.40 | 0.36 | 0.29 | 0.19 | 0.00 | 0.20 | 0.61 | 0.00 | 0.40 | 0.47 | 0.42 | 0.00 | 0.29 | 0.46 | 0.60 | 0.00 | 0.29 | 0.42 | 0.42 | 0.00 | 0.40 | 0.41 | 0.52 | 0.06 | 0.33 | 0.40 | 0.43 | 0.00 | |
8 | Acc. | 0.90 | 1.00 | 0.85 | 0.80 | 0.10 | 1.00 | 0.85 | 0.75 | 0.65 | 1.00 | 0.75 | 0.75 | 0.00 | 1.00 | 0.90 | 0.78 | 0.80 | 1.00 | 0.95 | 0.80 | 0.60 | 1.00 | 0.95 | 0.73 | 0.60 | 1.00 | 0.90 | 0.78 | 0.50 | 1.00 | 0.85 | 0.80 | 0.35 |
F1 | 0.88 | 1.00 | 0.81 | 0.79 | 0.13 | 1.00 | 0.83 | 0.74 | 0.71 | 1.00 | 0.77 | 0.77 | 0.00 | 1.00 | 0.84 | 0.79 | 0.75 | 0.89 | 0.87 | 0.79 | 0.58 | 1.00 | 0.88 | 0.74 | 0.63 | 1.00 | 0.88 | 0.81 | 0.56 | 1.00 | 0.80 | 0.84 | 0.46 | |
9 | Acc. | 0.65 | 1.00 | 0.30 | 0.35 | 0.50 | 0.75 | 0.25 | 0.30 | 0.40 | 1.00 | 0.20 | 0.33 | 0.80 | 1.00 | 0.40 | 0.40 | 0.00 | 1.00 | 0.35 | 0.38 | 0.00 | 1.00 | 0.35 | 0.28 | 0.00 | 1.00 | 0.40 | 0.35 | 0.10 | 1.00 | 0.25 | 0.30 | 0.65 |
F1 | 0.67 | 0.62 | 0.39 | 0.31 | 0.19 | 0.60 | 0.31 | 0.28 | 0.31 | 0.73 | 0.28 | 0.34 | 0.19 | 0.73 | 0.47 | 0.30 | 0.00 | 0.80 | 0.45 | 0.39 | 0.00 | 0.67 | 0.38 | 0.24 | 0.00 | 0.80 | 0.44 | 0.31 | 0.12 | 0.67 | 0.26 | 0.25 | 0.12 | |
10 | Acc. | 0.30 | 0.00 | 0.15 | 0.33 | 0.00 | 0.25 | 0.30 | 0.13 | 0.05 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 | 0.30 | 0.40 | 0.00 | 0.25 | 0.30 | 0.28 | 0.00 | 0.25 | 0.25 | 0.33 | 0.00 | 0.25 | 0.30 | 0.30 | 0.05 | 0.50 | 0.25 | 0.15 | 0.05 |
F1 | 0.24 | 0.00 | 0.12 | 0.27 | 0.00 | 0.22 | 0.21 | 0.07 | 0.06 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | 0.20 | 0.29 | 0.00 | 0.20 | 0.22 | 0.21 | 0.00 | 0.25 | 0.18 | 0.26 | 0.00 | 0.29 | 0.31 | 0.24 | 0.06 | 0.36 | 0.20 | 0.12 | 0.08 | |
11 | Acc. | 0.45 | 0.50 | 0.40 | 0.30 | 0.00 | 0.50 | 0.45 | 0.25 | 0.10 | 0.50 | 0.30 | 0.35 | 0.00 | 0.50 | 0.60 | 0.20 | 0.00 | 0.50 | 0.50 | 0.33 | 0.15 | 0.50 | 0.55 | 0.33 | 0.00 | 0.50 | 0.25 | 0.28 | 0.00 | 0.25 | 0.50 | 0.23 | 0.00 |
F1 | 0.34 | 0.31 | 0.31 | 0.24 | 0.00 | 0.31 | 0.32 | 0.14 | 0.10 | 0.33 | 0.23 | 0.26 | 0.00 | 0.36 | 0.43 | 0.15 | 0.00 | 0.40 | 0.44 | 0.25 | 0.10 | 0.36 | 0.39 | 0.31 | 0.00 | 0.31 | 0.17 | 0.21 | 0.00 | 0.18 | 0.29 | 0.19 | 0.00 | |
12 | Acc. | 0.45 | 0.25 | 0.35 | 0.40 | 0.00 | 0.00 | 0.25 | 0.40 | 0.35 | 0.25 | 0.55 | 0.23 | 0.00 | 0.25 | 0.30 | 0.35 | 0.40 | 0.00 | 0.20 | 0.35 | 0.90 | 0.00 | 0.10 | 0.38 | 0.80 | 0.00 | 0.50 | 0.23 | 0.20 | 0.00 | 0.35 | 0.20 | 0.10 |
F1 | 0.45 | 0.40 | 0.34 | 0.41 | 0.00 | 0.00 | 0.22 | 0.45 | 0.18 | 0.20 | 0.24 | 0.24 | 0.00 | 0.29 | 0.25 | 0.39 | 0.09 | 0.00 | 0.15 | 0.38 | 0.18 | 0.00 | 0.10 | 0.32 | 0.16 | 0.00 | 0.38 | 0.25 | 0.14 | 0.00 | 0.23 | 0.19 | 0.02 | |
all | WA | 0.54 | 0.48 | 0.42 | 0.41 | 0.15 | 0.50 | 0.45 | 0.33 | 0.22 | 0.44 | 0.32 | 0.45 | 0.10 | 0.50 | 0.46 | 0.42 | 0.20 | 0.52 | 0.48 | 0.47 | 0.18 | 0.50 | 0.46 | 0.37 | 0.16 | 0.50 | 0.43 | 0.44 | 0.20 | 0.48 | 0.39 | 0.37 | 0.13 |
References
- Wang, P.; Li, W.; Ogunbona, P.; Wan, J.; Escalera, S. RGB-D-based human motion recognition with deep learning: A survey. Comput. Vis. Image Underst. 2018, 171, 118–139. [Google Scholar] [CrossRef]
- Papadakis, A.; Mathe, E.; Spyrou, E.; Mylonas, P. A geometric approach for cross-view human action recognition using deep learning. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 23–25 September 2019; pp. 258–263. [Google Scholar]
- Zhang, Z. Microsoft kinect sensor and its effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef]
- Peng, K.; Roitberg, A.; Yang, K.; Zhang, J.; Stiefelhagen, R. Delving deep into one-shot skeleton-based action recognition with diverse occlusions. IEEE Trans. Multimed. 2023, 25, 1489–1504. [Google Scholar] [CrossRef]
- Kim, J.; Shin, W.; Park, H.; Baek, J. Addressing the occlusion problem in multi-camera people tracking with human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 5463–5469. [Google Scholar]
- Ahad, M.; Tan, J.; Kim, H.; Ishikawa, S. Solutions to motion self-occlusion problem in human activity analysis. In Proceedings of the 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 24–27 December 2008. [Google Scholar]
- Giannakos, I.; Mathe, E.; Spyrou, E.; Mylonas, P. A study on the Effect of Occlusion in Human Activity Recognition. In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 29 June–2 July 2021; pp. 473–482. [Google Scholar]
- Vernikos, I.; Spyrou, E.; Kostis, I.A.; Mathe, E.; Mylonas, P. A deep regression approach for human activity recognition under partial occlusion. Int. J. Neural Syst. 2023, 33, 2350047. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fu, Y.; Wang, L. Skeleton based action recognition with convolutional neural network. In Proceedings of the 2015 3rd IAPR Asian conference on pattern recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November 2015; pp. 579–583. [Google Scholar]
- Wang, P.; Li, Z.; Hou, Y.; Li, W. Action recognition based on joint trajectory maps using convolutional neural networks. In Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 102–106. [Google Scholar]
- Hou, Y.; Li, Z.; Wang, P.; Li, W. Skeleton optical spectra-based action recognition using convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 807–811. [Google Scholar] [CrossRef]
- Li, C.; Hou, Y.; Wang, P.; Li, W. Joint distance maps based action recognition with convolutional neural networks. IEEE Signal Process. Lett. 2017, 24, 624–628. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H.; Chen, C. Enhanced skeleton visualization for view invariant human action recognition. Pattern Recognit. 2017, 68, 346–362. [Google Scholar] [CrossRef]
- Ke, Q.; An, S.; Bennamoun, M.; Sohel, F.; Boussaid, F. Skeletonnet: Mining deep part features for 3-d action recognition. IEEE Signal Process. Lett. 2017, 24, 731–735. [Google Scholar] [CrossRef]
- Iosifidis, A.; Tefas, A.; Pitas, I. Multi-view human action recognition under occlusion based on fuzzy distances and neural networks. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 1129–1133. [Google Scholar]
- Angelini, F.; Fu, Z.; Long, Y.; Shao, L.; Naqvi, S.M. 2D pose-based real-time human action recognition with occlusion-handling. IEEE Trans. Multimed. 2019, 22, 1433–1446. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Liu, Z. Action recognition based on a bag of 3d points. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 9–14. [Google Scholar]
- Kim, M.H.; Kim, M.J.; Yoo, S.B. Occluded Part-aware Graph Convolutional Networks for Skeleton-based Action Recognition. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 7310–7317. [Google Scholar]
- Chen, Z.; Wang, H.; Gui, J. Occluded Skeleton-Based Human Action Recognition with Dual Inhibition Training. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canad, 29 October–3 November 2023; pp. 2625–2634. [Google Scholar]
- Gu, R.; Wang, G.; Hwang, J.N. Exploring severe occlusion: Multi-person 3d pose estimation with gated convolution. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 8243–8250. [Google Scholar]
- Yang, D.; Wang, Y.; Dantcheva, A.; Garattoni, L.; Francesca, G.; Brémond, F. Self-Supervised Video Pose Representation Learning for Occlusion-Robust Action Recognition. In Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), Jodhpur, India, 15–18 December 2021; pp. 1–5. [Google Scholar]
- Ma, L.; Huang, K.; Wei, D.; Ming, Z.; Shen, H. Fda-gan: Flow-based dual attention gan for human pose transfer. IEEE Trans. Multimed. 2021, 25, 930–941. [Google Scholar] [CrossRef]
- Hernandez, A.; Gall, J.; Moreno-Noguer, F. Human motion prediction via spatio-temporal inpainting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7134–7143. [Google Scholar]
- Lee, W.; Park, S.; Kim, T. Denoising Graph Autoencoder for Missing Human Joints Reconstruction. IEEE Access 2024, 12, 57381–57389. [Google Scholar] [CrossRef]
- Irsch, M.P. Semi-Supervised Human Activity Recognition with the Wearable Respeck Sensor Using GANs. Master’s Thesis, School of Informatics, University of Edinburgh, Edinburgh, UK, 2019. [Google Scholar]
- Li, X.A.; Luo, J.; Younes, R. ActivityGAN: Generative adversarial networks for data augmentation in sensor-based human activity recognition. In Proceedings of the Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, Virtual, 12–17 September 2020; pp. 249–254. [Google Scholar]
- Abedin, A.; Rezatofighi, H.; Ranasinghe, D.C. Guided-GAN: Adversarial Representation Learning for Activity Recognition with Wearables. arXiv 2021, arXiv:2110.05732. [Google Scholar]
- Rahman, M.M.; Gurbuz, S.Z.; Amin, M.G. Physics-aware generative adversarial networks for radar-based human activity recognition. IEEE Trans. Aerosp. Electron. Syst. 2022, 59, 2994–3008. [Google Scholar] [CrossRef]
- Soleimani, E.; Nazerfard, E. Cross-subject transfer learning in human activity recognition systems using generative adversarial networks. Neurocomputing 2021, 426, 26–34. [Google Scholar] [CrossRef]
- Jimale, A.O.; Noor, M.H.M. Fully connected generative adversarial network for human activity recognition. IEEE Access 2022, 10, 100257–100266. [Google Scholar] [CrossRef]
- Qu, L.; Wang, Y.; Yang, T.; Sun, Y. Human activity recognition based on WRGAN-GP-synthesized micro-Doppler spectrograms. IEEE Sens. J. 2022, 22, 8960–8973. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Gu, Y.; Xiao, Y.; Pan, H. Sensorygans: An effective generative adversarial framework for sensor-based human activity recognition. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Gammulle, H.; Denman, S.; Sridharan, S.; Fookes, C. Multi-level sequence GAN for group activity recognition. In Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Revised Selected Papers, Part I 14; Springer International Publishing: Basel, Switzerland, 2019; pp. 331–346. [Google Scholar]
- Erol, B.; Gurbuz, S.Z.; Amin, M.G. GAN-based synthetic radar micro-Doppler augmentations for improved human activity recognition. In Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–5. [Google Scholar]
- Zadeh, M.Z.; Ramesh Babu, A.; Jaiswal, A.; Kyrarini, M.; Makedon, F. Self-supervised human activity recognition by augmenting generative adversarial networks. In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 29 June–2 July 2021; pp. 171–176. [Google Scholar]
- Wang, D.; Yang, J.; Cui, W.; Xie, L.; Sun, S. Multimodal CSI-based human activity recognition using GANs. IEEE Internet Things J. 2021, 8, 17345–17355. [Google Scholar] [CrossRef]
- Hasan, K.; Uddin, M.Z.; Ray, A.; Hasan, M.; Alnajjar, F.; Ahad, M.A.R. Improving Gait Recognition through Occlusion Detection and Silhouette Sequence Reconstruction. IEEE Access 2024, 12, 158597–158610. [Google Scholar] [CrossRef]
- Xu, L.; Song, Z.; Wang, D.; Su, J.; Fang, Z.; Ding, C.; Gan, W.; Yan, Y.; Jin, X.; Yang, X.; et al. Actformer: A gan-based transformer towards general action-conditioned 3d human motion generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–3 October 2023; pp. 2228–2238. [Google Scholar]
- Fukushi, K.; Nozaki, Y.; Nishihara, K.; Nakahara, K. Few-shot generative model for skeleton-based human action synthesis using cross-domain adversarial learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 3946–3955. [Google Scholar]
- Song, S.; Liu, J.; Lin, L.; Guo, Z. Learning to recognize human actions from noisy skeleton data via noise adaptation. IEEE Trans. Multimed. 2021, 24, 1152–1163. [Google Scholar] [CrossRef]
- Zalameda, J.G.; Kruse, B.; Glandon, A.M.; Witherow, M.A.; Shetty, S.; Iftekharuddin, K.M. Generalized Adversarial and Hierarchical Co-occurrence Network based Synthetic Skeleton Generation and Human Identity Recognition. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar]
- Degardin, B.; Neves, J.; Lopes, V.; Brito, J.; Yaghoubi, E.; Proença, H. Generative adversarial graph convolutional networks for human action synthesis. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 1150–1159. [Google Scholar]
- Avola, D.; Cascio, M.; Cinque, L.; Foresti, G.L.; Massaroni, C.; Rodolà, E. 2-D skeleton-based action recognition via two-branch stacked LSTM-RNNs. IEEE Trans. Multimed. 2019, 22, 2481–2496. [Google Scholar] [CrossRef]
- Shen, J.; Dudley, J.; Kristensson, P.O. The imaginative generative adversarial network: Automatic data augmentation for dynamic skeleton-based hand gesture and human action recognition. In Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), Jodhpur, India, 15–18 December 2021; pp. 1–8. [Google Scholar]
- Pan, Q.; Zhao, Z.; Xie, X.; Li, J.; Cao, Y.; Shi, G. View-normalized skeleton generation for action recognition. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 1875–1883. [Google Scholar]
- Liu, L.; Wang, X.; Li, F.; Chen, J. Active Generation Network of Human Skeleton for Action Recognition. arXiv 2024, arXiv:2401.17086. [Google Scholar]
- Li, Z.; Li, D. Action recognition of construction workers under occlusion. J. Build. Eng. 2022, 45, 103352. [Google Scholar] [CrossRef]
- Papadakis, A.; Mathe, E.; Vernikos, I.; Maniatis, A.; Spyrou, E.; Mylonas, P. Recognizing human actions using 3d skeletal information and CNNs. In Engineering Applications of Neural Networks: 20th International Conference, EANN 2019, Xersonisos, Crete, Greece, 24–26 May 2019; Proceedings 20; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Vernikos, I.; Mathe, E.; Papadakis, A.; Spyrou, E.; Mylonas, P. An image representation of skeletal data for action recognition using convolutional neural networks. In Proceedings of the 12th ACM International Conference on Pervasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; pp. 325–326. [Google Scholar]
- Mathe, E.; Mitsou, A.; Spyrou, E.; Mylonas, P. Arm Gesture Recognition using a Convolutional Neural Network. In Proceedings of the 2018 13th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Zaragoza, Spain, 6–7 September 2018. [Google Scholar]
- Mathe, E.; Maniatis, A.; Spyrou, E.; Mylonas, P. A deep learning approach for human action recognition using skeletal information. In GeNeDis 2018: Computational Biology and Bioinformatics; Springer International Publishing: Basel, Switzerland, 2020; pp. 105–114. [Google Scholar]
- Spyrou, E.; Mathe, E.; Pikramenos, G.; Kechagias, K.; Mylonas, P. Data augmentation vs. domain adaptation—A case study in human activity recognition. Technologies 2020, 8, 55. [Google Scholar] [CrossRef]
- Vernikos, I.; Mathe, E.; Spyrou, E.; Mitsou, A.; Giannakopoulos, T.; Mylonas, P. Fusing handcrafted and contextual features for human activity recognition. In Proceedings of the 2019 14th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Larnaca, Cyprus, 9–10 June 2019; pp. 1–6. [Google Scholar]
- Liu, C.; Hu, Y.; Li, Y.; Song, S.; Liu, J. Pku-mmd: A large scale benchmark for continuous multi-modal human action understanding. arXiv 2017, arXiv:1703.07475. [Google Scholar]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Shahroudy, A.; Liu, J.; Ng, T.T.; Wang, G. Ntu rgb+ d: A large scale dataset for 3d human activity analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1010–1019. [Google Scholar]
- Hu, J.F.; Zheng, W.S.; Lai, J.; Zhang, J. Jointly learning heterogeneous features for RGB-D activity recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5344–5352. [Google Scholar]
- Xia, L.; Chen, C.C.; Aggarwal, J.K. View invariant human action recognition using histograms of 3d joints. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 20–27. [Google Scholar]
- Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf. Manag. Data Insights 2021, 1, 100004. [Google Scholar] [CrossRef]
- Jovanovic, M.; Campbell, M. Generative artificial intelligence: Trends and prospects. Computer 2022, 55, 107–112. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 3 March 2025).
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A system for Large-Scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Vernikos, I.; Spyropoulos, T.; Spyrou, E.; Mylonas, P. Human Activity Recognition in the Presence of Occlusion. Sensors 2023, 23, 4899. [Google Scholar] [CrossRef]
- Kwon, T.; Tekin, B.; Tang, S.; Pollefeys, M. Context-aware sequence alignment using 4D skeletal augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8172–8182. [Google Scholar]
- Li, B.; Cui, W.; Wang, W.; Zhang, L.; Chen, Z.; Wu, M. Two-stream convolution augmented transformer for human activity recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 19–21 May 2021; Volume 35, pp. 286–293. [Google Scholar]
- Koutrintzes, D.; Mathe, E.; Spyrou, E. Boosting the Performance of Deep Approaches through Fusion with Handcrafted Features. In Proceedings of the ICPRAM, Online, 3–5 February 2022; pp. 370–377. [Google Scholar]
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||
---|---|---|---|---|---|---|---|---|---|---|
Gans | - | max | 0.86 | 0.87 | 0.78 | 0.93 | 0.93 | 0.93 | 0.86 | 0.89 |
min | 0.83 | 0.85 | 0.75 | 0.91 | 0.92 | 0.91 | 0.84 | 0.87 | ||
Reg. | - | 0.82 | 0.84 | 0.70 | 0.89 | 0.90 | 0.91 | 0.84 | 0.86 | |
Occ. | - | 0.78 | 0.65 | 0.83 | 0.80 | 0.87 | 0.84 | 0.87 | 0.80 | |
Ref. | - | 0.68 | 0.40 | 0.21 | 0.90 | 0.80 | 0.80 | 0.48 | 0.41 | |
Bas. | 0.92 | - | - | - | - | - | - | - | - | - |
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||
---|---|---|---|---|---|---|---|---|---|---|
Gans | - | max | 0.64 | 0.50 | 0.35 | 0.68 | 0.71 | 0.70 | 0.64 | 0.49 |
min | 0.61 | 0.47 | 0.33 | 0.65 | 0.68 | 0.67 | 0.61 | 0.47 | ||
Reg. | - | 0.57 | 0.53 | 0.55 | 0.59 | 0.57 | 0.62 | 0.58 | 0.59 | |
Occ. | - | 0.53 | 0.49 | 0.52 | 0.52 | 0.51 | 0.53 | 0.56 | 0.53 | |
Ref. | - | 0.59 | 0.27 | 0.16 | 0.44 | 0.41 | 0.33 | 0.40 | 0.25 | |
Bas. | 0.68 | - | - | - | - | - | - | - | - | - |
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||
---|---|---|---|---|---|---|---|---|---|---|
Gans | - | max | 0.60 | 0.60 | 0.55 | 0.75 | 0.70 | 0.80 | 0.55 | 0.70 |
min | 0.55 | 0.56 | 0.50 | 0.72 | 0.64 | 0.74 | 0.51 | 0.66 | ||
Reg. | - | 0.50 | 0.57 | 0.40 | 0.67 | 0.61 | 0.64 | 0.51 | 0.57 | |
Occ. | - | 0.42 | 0.33 | 0.54 | 0.52 | 0.62 | 0.44 | 0.64 | 0.44 | |
Ref. | - | 0.16 | 0.15 | 0.09 | 0.50 | 0.61 | 0.46 | 0.22 | 0.11 | |
Bas. | 0.79 | - | - | - | - | - | - | - | - | - |
None | LA | RA | LA+RA | LL | RL | LL+RL | LA+LL | RA+RL | ||
---|---|---|---|---|---|---|---|---|---|---|
Gans | - | max | 0.48 | 0.50 | 0.44 | 0.50 | 0.52 | 0.50 | 0.50 | 0.48 |
min | 0.42 | 0.43 | 0.37 | 0.45 | 0.45 | 0.43 | 0.43 | 0.42 | ||
Reg. | - | 0.42 | 0.45 | 0.32 | 0.46 | 0.48 | 0.46 | 0.43 | 0.39 | |
Occ. | - | 0.41 | 0.33 | 0.45 | 0.42 | 0.47 | 0.37 | 0.44 | 0.37 | |
Ref. | - | 0.15 | 0.22 | 0.10 | 0.20 | 0.18 | 0.16 | 0.20 | 0.13 | |
Bas. | 0.54 | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernikos, I.; Spyrou, E. Skeleton Reconstruction Using Generative Adversarial Networks for Human Activity Recognition Under Occlusion. Sensors 2025, 25, 1567. https://doi.org/10.3390/s25051567
Vernikos I, Spyrou E. Skeleton Reconstruction Using Generative Adversarial Networks for Human Activity Recognition Under Occlusion. Sensors. 2025; 25(5):1567. https://doi.org/10.3390/s25051567
Chicago/Turabian StyleVernikos, Ioannis, and Evaggelos Spyrou. 2025. "Skeleton Reconstruction Using Generative Adversarial Networks for Human Activity Recognition Under Occlusion" Sensors 25, no. 5: 1567. https://doi.org/10.3390/s25051567
APA StyleVernikos, I., & Spyrou, E. (2025). Skeleton Reconstruction Using Generative Adversarial Networks for Human Activity Recognition Under Occlusion. Sensors, 25(5), 1567. https://doi.org/10.3390/s25051567