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Abstract: Topology control is important for extending networks lifetime and reducing
interference. The accuracy of topology identification plays a crucial role in topology control.
Traditional passive interception can only identify the connectivity among cooperative
sensor networks with known protocol. This paper proposes a novel method called Active
Interfere and Passive Interception (AIPI) to identify the topology of non-cooperative sensor
networks by using both active and passive interceptions. Active interception uses full
duplex sensors to disrupt communication until frequency hopped to acquire distance
information, and thus, infer their connectivity and calculate the location after modifying
error in a non-cooperative sensor network. Passive interception uses Granger causality
to infer the connectivity between two communication nodes after getting the time frame
structure in physical layer. Passive interception is applied to conserve power consumption
after obtaining physical information via active interception. Simulation results indicate that
AIPI can identify the topology of non-cooperative sensor networks with a higher accuracy
than traditional method.

Keywords: topology identification; active interfere; frequency hopping; passive interception;
Granger causality

1. Introduction
Wireless Sensor Networks (WSN) consisting of a large number of self-organizing

nodes are widely deployed in environmental monitoring, smart homes, and healthcare. In
these applications, network topology plays a crucial role. Topology not only affects capacity
and energy consumption but also directly impacts the data collection and reliability of the
network. Some algorithms including routing algorithms [1], data aggregation algorithms,
load balancing, and some data aggregation algorithms [2] need to know the topology to
ensure optimal performance. Therefore, identifying the topology of WSN is meaningful
for maintaining their operation. Traditional passive interception methods include the
correlation-based method [3], information-theory-based method [4], Granger-causality-test-
based method [5], compression-sensing-based method [6], drive-response-based method [7],
and graph-based neural network method [8]. Passive interception obtains the connections
between nodes by capturing and decoding data packets, and it is susceptible to channel
noise. The existing literature demonstrates that passive interception can identify the
topology of sensor network assuming known protocol [3–8], in which the type and structure
of the data package is known. Unlike cooperative WSN, the communication protocols
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of non-cooperative WSN are unknown. Such assumption limited their application scope
under non-cooperative WSN.

In response to non-cooperative networks, Xu et al. [9] first introduced the concept
of active interception, utilizing full-duplex on interception device. This method can inter-
fere signal reception of the suspicious receiver, thus intercepting suspicious information,
and thereby, enhancing eavesdropping. Subsequently, some scholars have further ap-
plied the strategy of Xu. Hui et al. [10] studied the problem of maximizing the average
monitoring rate of a lawful monitoring system which actively intercepts on suspicious
wireless links through interfering Rayleigh fading channels. Yunlong et al. [11] investigated
millimeter-wave information monitoring systems, where suspicious transmitters in the
network send messages to suspicious receivers under the supervision of a monitoring
controller, achieving lawful surveillance of suspicious links. In order to increase the proba-
bility of successful intercepting, Yitao et al. [12] proposed cognitive interference to alter
the long-term trust of the suspicious links under parallel channels, thereby encourage the
links to transmit on a smaller subset of unblocked channels with a lower transmission rate.
Hu et al. [13] investigated active intercepting of half-duplex lawful monitor in a wireless
power supply multi-channel suspicious system, where the suspicious transmitters harvest
energy from power beacons and then communicate with the suspicious destination through
parallel channels. Additionally, single-hop relay networks [14], unmanned aerial vehicle
(UAV)-assisted downlink multicast [15], broadcast and uplink multi-access [16], multi-
user communication [17], collaborative monitoring systems [18], and intelligent reflecting
surface-assisted intercepting networks [19] all applied active interception. Compare to pas-
sive interception, active interception exchange the information through interfering actively,
which avoids decoding data package. In order to identify the topology of sensor network
accurately, combining localization and active interception is a promising direction. The
location of the communication nodes provide extra information about topology. Existing
localization algorithm include range-dependent [20–22] and range-independent [23,24].
These techniques often require additional hardware and consume significant resources.
Recent advancements in sensing technologies [25] and distributed systems [26,27] offer
potential solutions to these challenges. To address the limitations of these methods, the level
of the power of signal from interfering device can used to infer position information (PI).

Therefore, this paper combines active interception and local information extraction
to identify the topology of sensor network with unknown communication protocol and
use passive interception with the Granger causality test to identify the topology of sensor
network while the communication protocol is decoded. The topology sensing model
shown in Figure 1 is considered in this paper, where three full duplex sensors transmit the
information from target WSN to fusion center. Fusion center can apply active interception
or passive interception in different stage. Figure 2 illustrates the overall framework of the
AIPI method. In the initial stage, the AIPI method applies active interception to identify
topology and obtain physical layer information. To conserve power consumption, the AIPI
method applies passive interception to track dynamic topology constantly.

The three main contribution of this paper are as follows:

(1) Active interception identifies topology through interfering node communication with
an energy-effective dichotomy;

(2) Local information extraction with self-adaptive error distribution provides extra
effective information for active interception;

(3) Passive interception with the Granger causality test is proposed to track topology of
WSN with physical layer information.

Traditional passive interception such as the Granger causality test [28] and Hawkess
process [29] have advantages regarding power consumption because they only need to
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sense the signal. However, they are susceptible to noise and are only applicable to co-
operative WSN. AINL [30] is applicable to non-cooperative and cooperative WSN, but it
can only extract the node PI with dichotomy in a small noise environment. AIPI can not
only extract node PI with energy effective dichotomy, but it is also insensitive to noise
in non-cooperative WSN, which means that it has superior performance on universality,
ennergy efficience, and anti-interference. AIPI applies active and passive interception at
different stages, causing higher power consumption than pure passive interception and
less than pure AINL. A comparison of AIPI with existing works on topology inference is
shown in Figure 3.

The rest of this paper is organized as follows. In Section 2, we introduce the use
of active interference for local information extraction, and explain self-adaptive error
correction mechanism in our proposed method using the maximum likelihood function.
Finally, we apply passive interception to infer topology based on Granger causality. The
simulation results are given in Section 3 and the conclusions for the work are provided in
Section 4.

Figure 1. The system model of topology sensing.

Figure 2. Overall framework of AIPI.

Figure 3. The comparison of AIPI with existing works on topology inference.

2. Theoretical Basis
2.1. Problem Formulation

In mathematical notation, a network graph can be represented by g = {v, σ}, where
v = {1, 2, · · · N} denotes the set of vertices, N is the number of elements in v, that is,
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the number of nodes in the network, and σ denotes the set of edge. The element in the
adjacency matrix A of the network can be represented as (1),

ai,j =

1, (i, j) ∈ σ

0, (i, j) /∈ σ
(1)

where i, j ∈ N. We formulate the topology inference problem as (2),

min ∥X− − X∥2 + ∥A− − A∥1 (2)

where X− represents estimated node coordinate, X represents real node coordinate, and
A− represents the inference topology.

2.2. Active Interception

We use active interception to identify the topology of WSN with unknown protocol.
Assuming WSN has N communication nodes, while all the nodes can transmit and 20%
nodes can receive. In the target network, different node pairs communicate using different
frequency bands, preventing collisions. Three full duplex sensors locate the target node
by colliding on the corresponding frequency bands. As shown in Figure 4, T denotes the
transmitter, R denotes the receiver, and EVE nodes represent three interfering nodes. T
and R are communicating at X band, and then three full duplex sensors EVE1, EVE2, and
EVE3 send interference signals with different power levels until the frequency hopped in
communication. PI and connectivity are deduced through trilateration after transforming
power level into distance. We can distinguish different communication node when the
error between the real coordinate and the estimated coordinate is less than a threshold.

Figure 4. Full duplex sensors extract transmitter and receiver position information.

Algorithm 1 explains the strategy of power adapting for EVE. Define the upper and
lower bounds on EVE transmission pseudo-noise power as Pmax and Pmin, the transmission
distance is bounded by Rmax and Rmin. Define the Rreal to be the real distance between R
and EVE. Change power of EVE R1 through dichotomy coefficient until the error between
Rmax

1 and Rmin
1 is less than error δ. Apply same strategy to T can also obtain the coordinate.

The error of distance between R and EVE ϵ will inevitably occur when using the di-
chotomy to calculate it. The ϵ lead to the three circles cannot intersect at a single point based
on trilateration as shown in Figure 5. The error is actually subtle, and thus, for interpreting,
we enlarge it. In this case, we consider the midpoint (green) of the line connecting the two
closest intersection points (red) as the result of local information extraction.



Sensors 2025, 25, 1347 5 of 15

Algorithm 1 Interference Strategy of Active Interception.

1: Input: dichotomy coefficient α, error δ, Rreal
2: Initialization: Rmin

1 = Rmin,Rmax
1 = Rmax

3: Deploy transmitting node, receiving node, and EVE
4: EVE transmits interference signal
5: while Rmax

1 − Rmin
1 > δ do

6: R1 = Rmin
1 + α(Rmax

1 − Rmin
1 )

7: if R1 < Rreal then
8: set Rmin

1 = R1
9: else

10: set Rmax
1 = R1

11: end if
12: end while
13: Calculate node coordinate with Formula (4)
14: Output: (x, y)

It is impossible to extract the local information with a very small error δ because of the
environment noise. To extract the local information with a bigger error δ accurately, we
deploy data from train sample with same strategy to extract local information of unknown
WSN with self-adaptive error. Assuming a WSN whose PI is known, we use (x, y) represent
the result of local information extraction through trilateration and (x′, y′) represent the real
PI, so that the error between them can be denoted as (∆x, ∆y) = (x′ − x, y′ − y). Calculate
the errors of coordinates for all communication nodes. Since the coordinates of the nodes
are represented in two dimensions, we use two Gaussian functions to fit the obtained errors
through Algorithm 2.

The Gaussian Mixture Models can be represented as a linear combination of Gaussian
distributions as shown in (3):

p(x) =
K

∑
k=1

πkN (x | uk, Σk), (3)

where N follows a Gaussian distribution, uk and Σk are the mean and covariance matrix
corresponding of the Gaussian distribution, and πk is the probability of each Gaussian
distribution with πk satisfying ∑K

k=1 πk = 1. Solve the variable of Gaussian distribution
n1∼N (u1,Σ1) fitting ∆x and n2∼N (u2,Σ2) fitting ∆y through Expectation-Maximization
(EM) algorithm.

Figure 5. The error from trilateration.
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Algorithm 2 EM Algorithm for Gaussian Mixture Model Parameter Estimation

1: Input: Observed dataset X, number of components k, convergence threshold η
2: Initialization: Randomly initialize each Gaussian model parameter θk (the mean µk,

covariance matrix Σk, and weights πk for each Gaussian component), ensuring that
∑k πk = 1

3: while θt − θt−1 > η do
4: E-Step (Expectation):
5: for each observation xn do
6: Compute the posterior probability that xn belongs to each Gaussian component:

p(znk | xn) =
πk · N(xn | µk, Σk)

∑j πj · N(xn | µj, Σj)

7: end for
8: M-Step (Maximization):
9: for each Gaussian component k do

10: Update the weight:

πk =
Nk
N

, Nk is the number of data points belonging to the k-th component

11: Update the mean:

µk =
∑n p(znk | xn) · xn

∑n p(znk | xn)

12: Update the covariance matrix:

Σk =
∑n p(znk | xn) · (xn − µk)(xn − µk)

T

∑n p(znk | xn)

13: end for
14: end while
15: Output: the mean µk, covariance matrix Σk, and weights πk for each Gaussian compo-

nent

For acquiring PI of an unknown WSN, apply the parameter Σ and u to extract position
information. The coordinates of R is (xn, yn). The coordinates of EVE are (xi, yi), and
the distance between R and EVE are ri, where i = 1, 2, 3. Construct a set of trilateration
equations as shown in (4): 

r2
1 = (x1 − xn)2 + (y1 − yn)2

r2
2 = (x2 − xn)2 + (y2 − yn)2

r2
3 = (x3 − xn)2 + (y3 − yn)2

(4)

Derive (5) from (4):r2
2 − r2

1 = x2
2 − x2

1 − 2(x2 − x1)xn + y2
2 − y2

1 − 2(y2 − y1)yn

r2
3 − r2

1 = x2
3 − x2

1 − 2(x3 − x1)xn + y2
3 − y2

1 − 2(y3 − y1)yn
(5)

Transform (5) into matrix to obtain (6),[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
·
[

xn

yn

]
=

[
− 1

2 k2
2 +

1
2 r2

2 −
1
2 r2

1
− 1

2 k2
3 +

1
2 r2

3 −
1
2 r2

1

]
(6)
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where ki = x2
i − x2

1 + y2
i − y2

1, and the matrix equation can be simplified to represent
as HX = Y. Using (6) and the two Gaussian functions obtained from fitting the errors,
construct (7):

Y = HX + n1 + n2 (7)

Derive (8) from (7):
Y − HX − n2 = n1 (8)

Since n1 follows a Gaussian distribution, Y − HX − n2 also follows a Gaussian distribution
with the same parameters. Let M represent Y − HX − n2, then the distribution of M is
expressed as (9),

N
(

M
∣∣u1, Σ1

)
=

1
2π

1
|Σ1|1/2 exp

{
− 1

2
(M − u1)

TΣ−1
1 (M − u1)

}
(9)

of which log-likelihood function, after taking the logarithm, can be expressed as (10):

ln p(M|u1, Σ1) =

− ln(2π)− 1
2

ln |Σ1| −
1
2
(M − u1)

TΣ−1
1 (M − u1)

(10)

Opening the (M − u1)
TΣ−1

1 (M − u1), we can obtain (11):

(Y − HX − n2 − u1)
TΣ−1

1 (Y − HX − n2 − u1)

= YTΣ−1
1 Y − YTΣ−1

1 HX − YTΣ−1
1 n2 − YTΣ−1

1 u1

− XT HTΣ−1
1 Y + XT HTΣ−1

1 HX

+ XT HTΣ−1
1 n2 + XT HTΣ−1

1 u1

− nT
2 Σ−1

1 Y + nT
2 Σ−1

1 HX + nT
2 Σ−1

1 n2 + nT
2 Σ−1

1 u1

− uT
1 Σ−1

1 Y + uT
1 Σ−1

1 HX + uT
1 Σ−1

1 n2 + uT
1 Σ−1

1 u1

(11)

Since n2 is independent, derive (12) from (10) and (11):

∂ ln p
(

M
∣∣u1,Σ1

)
∂X

=

HTΣ−1
1 HX + (HTΣ−1

1 H)TX + HTΣ−1
1 u1

+ HTΣ−1
1

T
u1 − HTΣ−1

1
T

Y − HTΣ−1
1 Y

(12)

Let Equation (12) equal zero, solve for X, and thus, obtain the PI. Distinguishing the
different communication nodes in WSN, we can identify the topology of WSN.

2.3. Passive Interception

After active interception distinguish communication mode in physical layer, we ap-
ply steadily passive interception to monitor the topology of WSN in a long time, which
can conserve energy effectively. Assume the WSN applies Transmission Control Proto-
col/Internet Protocol (TCP/IP) and Automatic Repeat-reQuest (ARQ) protocol, which
means that communication node will receive an Acknowledge character package (ACK)
from the other communication node after transmitting data package successfully. The EVE
captures the package from WSN at a period T and then acquire its transmission time and
transmitter information. Divide period T time into L slots to acquire the time series. In
the IEEE 802.15.4 standard, the baud rate is 250 kbps. The time slot length t should be less
than the data transmission time Ti = Ldata/Br, where Ldata is the data package length and
the Br is the baud rate. The optimal number of slots L can be obtain through L = T/Ls.
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Considering the WSN is sparse and undirected, apply the Granger causality to infer two
time series from two communication nodes whether exist causality relationship and then
identify the connectivity. We can identify the topology of WSN after deducing all pairs of
communication if there exists connectivity.

For each node i ∈ v, a time series is generated when the node transmits a data package
and an ACK package. More precisely, for the set of packet transmitting times Ti, the binary
time series xi,I is represented as (13),

xi,I =

1, ITs < Ti < (L − I)Ts

0, others
(13)

where i represents the node ID, I indicates the time slot index, L is the total number of time
slots, and Ts represents the length of the time slots. The schematic diagram of the node’s
time series can be represented as shown in Figure 6.

Figure 6. Schematic diagram of the time series data.

Granger causality is used to compare prediction error to determine whether two
variables are related. For the time series X = {x1, x2, x3, . . .} and Y = {y1, y2, y3, . . .}, if the
knowledge of past values of Y contributes some additional information about xn more than
the knowledge of just past of X, we consider that Y Granger causes X. Granger causality is
always modeled as a hypothesis test problem, where the null hypothesis H0 means that Y
does not Granger cause X and the alternative hypothesis H1 means that Y Granger X. The
hypothesis test is represented as (14) and (15),

H0 : X[n] =
k

∑
i=1

aiX[n − i] + ε[n] (14)

H1 : X[n] =
k

∑
i=1

biX[n − i] +
k

∑
i=1

ciY[n − i] + η[n], (15)

where X[n] is the value of X in the nth slot, ai and bi are the parameters of the regression,
which quantify the relative importance of the past values, k is the order of the model, and
ϵ[n] and η[n] are the errors of H0 and H1, respectively. If the knowledge of the past of Y
cannot contribute additional information about xn, H0 will have less error variance ϵ[n]
than H1.

We denote the squared-sum residuals of H0 as RSS0 = ∑T
i=1(ε[i])

2, and similarly, the
squared-sum residuals of H1 as RSS1 = ∑T

i=1(η[i])
2, where T = L − k and L is the number

of data points. Therefore, the F-statistic is given by (16),

GY→X =
(RSS0 − RSS1)/k

RSS1/(T − 2k − 1)
∼ F(d1, d2), (16)

where d1 = k and d2 = T − 2k − 1. H0 will be rejected if GY→X is greater than the critical
value of F-distribution. The connectivity of two nodes will be existed if the time series of
them display Granger causality. We acquired all the connectivity of WSN after deducing
Granger causality among all nodes.
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3. Experiment and Analysis
The console object specifies the number of communication nodes, randomly generates

the positions of communication nodes within a 100*100 rectangular area, and stipulates that
the distance between two nodes cannot be less than a certain threshold. All communication
nodes have the capability to transmit information within the specified range. Additionally,
it defines the connectivity, creating channels with ten frequency bands in each one. The
console is also responsible for allocating channels between communication nodes and
reallocating frequency bands after frequency hopping.

3.1. Experimental Setup

Considering the small error δ of dichotomy in a known WSN, the result of fitting the
coordinate error with a Gaussian mixture model is shown in Figure 7, where the vertical
axis represents the error on the y-axis, and the horizontal axis represents the error on the
x-axis. The two Gaussian distributions are denoted by two sets of contour lines.

We deployed the parameter to extract local information with self-adaptive error
distribution. The comparison of the local information extraction error obtained through the
maximum likelihood function and the local information extraction error obtained through
trilateration is shown in Figure 8. The horizontal axis represents the node number. The
values of the red bars indicate the distance between the estimated coordinates obtained
through trilateration and the true coordinates. The values of the blue bars represent the
distance between the estimated coordinates applied maximum likelihood function and the
true coordinates. It is evident that the overall blue bars are lower than the red bars, which
means that extract PI with the maximum likelihood function significantly reduces the error.

The console generates the coordinates of 90 communication nodes and the connectivity,
as shown in Figure 9a.The visualization of the topology matrix is shown in Figure 9b, whose
transverse and longitudinal axis represent the node numbers and a white block is displayed
when there is a connectivity between two nodes and a black block is displayed when there
is no connectivity.

The console generates channels with each channel having 10 frequency bands, and each
frequency band corresponds to a different Signal-to-Noise Ratio (SNR). The corresponding
relationships are shown in Table 1. The console also allocates channels and frequency bands
to each pair of communication nodes as shown in Table 2.

Table 1. Channel-band-SNR allocation chart.

channel 1 1 1 1 1 1 1 1 1 1
band 1 2 3 4 5 6 7 8 9 10
SNR 114 99 90 79 123 129 178 30 172 10

Table 2. Channel and band of the communication node.

Transmitting Node 1 2 3 3 3 4
Receiving Node 39 25 6 24 42 29

Channel Number 7279 5483 1456 3665 3027 7904
Band Number 5 5 7 6 3 3

EVE draws interfering circles around the transmitting and receiving nodes. After
interfering all communication nodes, the identified topology matrix visualization is shown
in Figure 9c.
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Figure 7. Gaussian mixture model fitting error.

Figure 8. Comparison of PI errors.

In order to reduce the error, we extract PI with the maximum likelihood function.
Deploying the extra effective information, we can identify the more precise topology, as
shown in Figure 9d.

As time goes on, the topology of WSN changes, whose matrix visualization is shown
in Figure 9e. We utilized the BIC model [31] to determine the maximum lag order of the
time series and deployed the Granger causality test to infer whether there is a connectivity
between two nodes. The identified topology matrix is shown in Figure 9f.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

Figure 9. Topology of WSN. (a) Network topology diagram. (b) Initial topology matrix. (c) Topology
matrix without modifying. (d) Topology matrix after modifying. (e) Dynamic topology matrix.
(f) Dynamic topology deduced by passive interception.

3.2. Comparison Result

Based on similar framework AINL also proposed interference strategy. However, the
author’s simulation experiments only considered the low noise of interference strategy,
and the number of simulations was relatively small. When reproducing the experiment, we
increased the noise and continuously changed the positions of the communication nodes to
obtain more convincing simulation results.

The number of communication nodes can be regarded as an important indicator of
wireless sensor networks scale. We compared the accuracy rates of AIPI, AINL, and passive
interception for network topology identification under different network scales and physical
layer communication modes. We changed the network scale and the communication mode
of the physical layer with Time Division Multiple Access (TDMA), Frequency Division
Multiple Access (FDMA), Orthogonal Frequency Division Multiplexing (OFDM), and Code
Division Multiple Access (CDMA). The accuracy rates of the identified topology are shown
in Figure 10a, Figure 10b, Figure 10c, and Figure 10d, respectively. These four simulation
diagrams are obtained by taking the average five repetitions, in order to avoid contingency.
It can be seen from Figure 10 and Table 3 that when facing different network scales and
physical layer mode, the accuracy rate of our method for network topology identification
is above 99%. It has an obvious advantage over the AINL method especially in small-
scale networks. The WSN network is sparse, with most nodes not being connected. As
the number of nodes increases, the number of non-connected relationships far exceeds
the connected ones. AINL method has low positioning accuracy, making it difficult to
distinguish between different nodes, which leads to a significant drop in accuracy when
dealing with small-scale networks. The passive interception method is generally inferior to
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the other two methods. This is because passive interception depends on the accuracy of
packet decoding. When the channel conditions are poor, the source or type of data packets
cannot be accurately decoded, resulting in a low accuracy rate of topology identification.
The impact of noise on the four communication modes is similar. Taking OFDM as an
example, we define the network size as 40 and conduct topology identification simulations
under different SNR levels. As shown in Figure 11, with the increasing of SNR, the accuracy
of passive interception, including the Granger causality test and Hawkess process, shows
an upward trend. AINL shows an steady performance in different SNR, while AIPI shows
an better performance. We considered using four different methods to perform topology
identification on the same network five times. As shown in Figure 12, with the increase of
the network scale, the power consumption of four methods show the same trend. Given the
premise that topology inference requires successfully deciphering non-cooperative network
packets, passive interception only requires signal sensing to infer the topology, resulting
in the lowest energy consumption. AINL, on the other hand, conducts active interception
in every topology identification process, leading to the highest energy consumption. In
contrast, AIPI performs active interception only during the initial identification process
and utilizes the acquired information for passive interception in subsequent topology
identification processes, resulting in moderate energy consumption.

(a) (b)

(c) (d)

Figure 10. The accuracy rates of the identified topology with different communication modes:
(a) TDMA, (b) FDMA, (c) OFDM, and (d) CDMA.
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Table 3. Comparison of the average accuracy of different methods with various network scales.

Methods
Accuracy

15 Nodes 50 Nodes 100 Nodes 150 Nodes 200 Nodes

AIPI 99.32% 99.20% 99.63% 99.73% 99.80%
AINL 96.18% 98.03% 99.00% 99.35% 99.54%

Hawkess Process 96.45% 97.06% 97.40% 96.57% 97.13%
Granger causality test 95.53% 95.73% 95.72% 95.51% 95.69%

Figure 11. The accuracy rates of the identified topology with FDMA based on different SNRs.

Figure 12. Power loss of four methods with different network scales for five-time identification.

4. Conclusions
Even if the network nodes are in a disconnected state, these four methods can still

perform real-time identification of the network topology, and AIPI has a higher accuracy
rate. The simulation experiments indicate that AIPI combine active and passive interception
can inference topology of WSN with high accuracy rates. Active interception is suitable for
any protocol but consumes large amounts of energy, and passive interception consumes
less energy but is only suitable for the specified protocol. AIPI balances consumption and
applicability properly.

The system generates communication nodes within a certain rectangular area, but
when the number of communication nodes is excessive, the system’s local information
extraction error is relatively large. However, establishing a mixed Gaussian model requires
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a larger dataset to avoid randomness. When the number of nodes is small, the Gaussian
mixture model cannot fit the errors well, which also means that the correction of errors
does not achieve a satisfactory effect, leaving considerable room for improvement in
error correction.
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