Improved MTF Measurement of Medical Flat-Panel Detectors Based on a Slit Model
<p>Schematic diagram of the MTF calculation process.</p> "> Figure 2
<p>Comparison of signal input and output with MTF calculation results.</p> "> Figure 3
<p>Comparison of three diffusion functions.</p> "> Figure 4
<p>The schematic diagram of LSF oversampling with slit without tilt angle (<b>A</b>) and with tilt angle (<b>B</b>).</p> "> Figure 5
<p>Comparison of MTF calculation results, before and after improvement.</p> "> Figure 6
<p>Local enlargements of MTF calculation results, before and after improvement.</p> "> Figure 7
<p>Comparison of MTF calculation results for different sampling intervals in the slit model.</p> "> Figure 8
<p>Local magnification of MTF calculation results for different sampling intervals of the slit model.</p> "> Figure 9
<p>The noise level is calculated by MTF under different sampling intervals.</p> ">
Abstract
:1. Introduction
2. MTF Testing Method
2.1. Relationship Between Point Diffusion, Line Diffusion, and Edge Diffusion Functions
2.2. Tungsten Edge Model Test Method
2.3. Point (Aperture) Model Testing Method
3. MTF Oversampling Improvement
- Optimization of the slit model; i.e., introducing a small phase shift between rows via the slit angle and employing the oversampled LSF method to synthesize a more accurate LSF, thereby enhancing the calculation accuracy of the MTF.
- Determining the optimal sampling interval and refining the calculation method, i.e., the step size corresponding to the actual placement angle of the tungsten plate × the pixel pitch is the sub-optimal sampling interval. For different tungsten plate angles, a more appropriate oversampling interval can be derived. Consequently, when calculating MTF, the sampling interval is determined based on the actual placement angle of the tungsten plate, i.e., the actual placement angle of the tungsten plate.
4. Test Results
4.1. Statistical Significance Analysis
4.2. The Influence of Different Focus Sizes on MTF
4.3. Model Comparison
4.4. Slit Model Test Results
4.5. Noise Reducing Strategy
- X-ray scattering noise: Due to the scattering of X-rays inside the detector material or in the imaging environment, some photons may not propagate along the expected path, resulting in signal attenuation and blurring, especially in the high spatial frequency range (>5 lp/mm).
- Detector electronic noise: Due to the uncertainty of the detector’s readout circuit, gain amplification process, and photoelectric conversion, the electronic noise will fluctuate in the low signal region, affecting the accuracy of MTF calculation.
- High sampling rate noise amplification effect: The smaller the sampling interval is, the denser the signal points are, but at the same time, the contribution of noise may be amplified, resulting in fluctuations in high-frequency MTF values. For example, the MTF high-frequency region (6–10 lp/mm) is unstable at the 1/50 sampling interval.
- (1)
- Select the optimal sampling interval. Through experiments, it is found that the 1/29 sampling interval is the best balance between MTF calculation and noise control. At this sampling interval, the high-frequency MTF is significantly improved, and the noise effect is still within an acceptable range.
- (2)
- X-ray filtering optimization. By adding a low-pass filter (such as a copper filter) to reduce the influence of scattering noise on the detector, especially in the frequency range of 6–10 lp/mm, the signal fluctuation can be effectively reduced.
- (3)
- Detector signal processing optimization. The signal averaging method (stacking 1800 frames) is used to reduce the random noise of a single exposure, and the gain control is optimized to reduce the electronic noise of the readout circuit.
- (4)
- Frequency domain noise-reduction processing. Wiener filtering or adaptive low-pass filtering of high-frequency noise after Fourier transform can reduce the fluctuation in the MTF high-frequency region and improve the measurement stability.
4.6. Uncertainty Analysis of MTF Measurement
5. Experimental Conclusions
5.1. Result Discussion
- MTF is an objective, comprehensive, and quantitative measure of a detector’s resolution at a given spatial frequency. It can be computed from images such as pinholes, slits, edges, star patterns, and line pairs. The frequency that a detector can resolve and the MTF at that frequency vary with the detector’s pixel size. This is an inherent property of the detector that does not change with variations in dose, frame rate, or other operational parameters. However, the MTF of the detector can be improved by optimizing the scintillator type, thickness, and bonding process.
- The angle of the slit induces a slight phase shift from line to line in the LSF. The LSF obtained through oversampling is significantly more accurate than that obtained using the pixel pitch. In comparison to traditional testing methods, such as the tungsten edge model and point (aperture) model, the accuracy improves by 5–13%. During MTF testing, the slit model should be placed at a specified angle, and oversampling should be applied in the calculation of the LSF. This helps mitigate aliasing effects and enhances the signal-to-noise ratio, leading to more accurate MTF measurements.
- The optimal oversampling interval for MTF testing is approximately 29 times the pixel pitch. However, when calculating MTF, the oversampling interval should be determined by the actual placement angle of the tungsten edge. This approach results in a more flexible and accurate oversampling interval that more closely matches the tungsten edge, yielding MTF measurements that are more precise and reflect actual conditions.
5.2. Limitation Discussion
- High Precision Requirements for Equipment and Operation: The improved method demands precise adjustment of the slit angle (e.g., 1.5° to 3°) and high accuracy for the tungsten edge (10 μm). These stringent requirements impose elevated technical standards on the manufacturing and operation of experimental equipment, potentially increasing both the complexity and cost of actual testing.
- Sensitivity to Noise: Although the oversampling method improves the sampling accuracy of the LSF, it may be more prone to noise interference in practical applications. The influence of X-ray scattering and detector electronic noise could cause instability in the high-frequency range of the MTF.
- Limitations in Application Scenarios: This method is primarily suited for high-resolution detectors with small pixel sizes (20 μm pixel pitch). For detectors with larger pixel sizes (e.g., >200 μm), the performance of the proposed method may not be as effective as that of other low-complexity measurement techniques (e.g., point model or edge model).
- High Control Requirements for Experimental Environment: The experiment necessitates stable exposure parameters (e.g., X-ray voltage, focal spot size), particularly in complex clinical environments where completely avoiding equipment and operational errors is challenging.
- Data Volume and Computational Load Due to High Sampling Intervals: The oversampling method requires a large number of data points, leading to increased storage and computational resource demands, which may hinder its suitability for rapid testing in resource-limited settings.
- Lack of Systematic Adjustment of Parameters: This study mainly adjusts the slit angle and sampling interval to optimize the MTF measurement accuracy. However, the influence of X-ray tube operating parameters (such as voltage, tube current) on MTF ethods calculation is also important. A higher tube voltage may affect the photon conversion efficiency of the scintillator, and a larger tube current may increase the noise level and affect the accuracy of MTF calculation. These parameters have not been systematically adjusted in this study. Future work will further analyze the influence of X-ray tube parameters on MTF measurement to enhance the applicability of the method.
5.3. Clinical Utility Evaluation
5.3.1. Case Study: Application in Mammography Imaging
5.3.2. Clinical Applicability Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, K.; Chen, X.; Dong, Q.; Shi, B.; Hu, X.; Yan, S.; Zhang, J. A novel non-destructive testing approach for asphalt concrete density measurement based on coplanar capacitance: Theory, numerical simulation, and experiment. Constr. Build. Mater. 2025, 458, 139727. [Google Scholar] [CrossRef]
- Issa, F.; Martin, N.; Beatriz, M.; Sanchez, L. Assessment of the CFRP–Concrete Interface Integrity of Original Champlain Bridge Diaphragms through Nondestructive and Semidestructive Testing. J. Compos. Constr. 2025, 29, 04025004. [Google Scholar]
- Hu, F.; Qiu, L.; Zhou, H. Medical device product innovation choices in Asia: An empirical analysis based on product space. Front. Public Health 2022, 10, 871575. [Google Scholar] [CrossRef]
- Qiu, L.; Yu, R.; Hu, F.; Zhou, H.; Hu, H. How can China’s medical manufacturing listed firms improve their technological innovation efficiency? An analysis based on a three-stage DEA model and corporate governance configurations. Technol. Forecast. Soc. Chang. 2023, 194, 122684. [Google Scholar] [CrossRef]
- Christel, S.; Mats, D.; Mats, P. Compton coincidence in silicon photon-counting CT detectors. J. Med. Imaging 2022, 9, 013501. [Google Scholar]
- Tafti, S.; Abadia, A.; Fung, G.; Ramirez-Giraldo, J.C.; Doherty, J.O. Comparison of Hounsfield Unit variability between two same model photon counting CT detector systems. A phantom study applied to lung CT. Phys. Medica 2024, 126, 104828. [Google Scholar] [CrossRef] [PubMed]
- PanneerSelvam, S. Instrumentation of Photon Counting Ct Detector. J. Med. Imaging Radiat. Sci. 2023, 54, S36. [Google Scholar] [CrossRef]
- Liuxing, S.; Youcef, M.E.; Liang, A.K.; Zhao, Q.; Antonuk, L.E.; Cunningham, I.A. Theoretical Investigation of Detector MTF of Polycrystalline Mercuric Iodide X-ray Converters Incorporating Frisch Grid Structures for Digital Breast Tomosynthesis. Med. Imaging 2021 Phys. Med. Imaging 2021, 11595, 321–322. [Google Scholar]
- Hongrui, Q. The Principle and State-of-art Applications for CT Detector. J. Phys. Conf. Ser. 2022, 2386, 012060. [Google Scholar]
- Ji, Y.; Kim, Y.; Lee, R. Corrigendum: Dosimetric Evaluation of a Small Intraoral X-ray Tube for Dental Imaging. Prog. Med. Phys. 2020, 31, 8. [Google Scholar] [CrossRef]
- Guo, J.; Atha, J.; Halaweish, A.F.; Saba, O.; Hoffman, E.A. A Novel Device to Measure 3D MTF Accounting for CT Scanner, Protocol and the Thoracic Environment. Tp122 novel imaging methods and applications. Am. Thorac. Soc. 2021, 203, A4595. [Google Scholar]
- Medical Flat Panel Detector Market 2018 Global Trends, Market Share, Industry Size, Growth, Opportunities and Forecast to 2023. 2018. Available online: https://scholar.cnki.net/zn/Detail/index/GARJ2018/SPQD61E02FFDE94A49B69BA6D305C8111C09 (accessed on 10 January 2025).
- Concise Analysis of the International and Chinese Medical Flat Panel Detector Industry. 2014. Available online: https://scholar.cnki.net/zn/Detail/index/GARJ2014/SPQDF00DAE3BEE00474996F3D217E6F66F74 (accessed on 10 January 2025).
- Tan, Y.; Yang, J.; Zheng, H.; Liang, D.; Zhu, P.; Ge, Y. On the origin of MTF reduction in grating-based x-ray differential phase contrast CT imaging. Med. Phys. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Tzomakas, K.M.; Peppa, V.; Alexiou, A.; Karakatsanis, G.; Episkopakis, A.; Michail, C.; Valais, I.; Fountos, G.; Kalyvas, N.; Kandarakis, I.S. Image Quality and Information Parameters of Electronic Portal Imaging Devices. Appl. Sci. 2024, 14, 10260. [Google Scholar] [CrossRef]
- Grönberg, F.; Lundberg, J.; Sjölin, M.; Persson, M.; Bujila, R.; Bornefalk, H.; Danielsson, M. Medical Imaging—Radiology; Recent Findings from AlbaNova University Center Advance Knowledge in Radiology (Feasibility of unconstrained three-material decomposition: Imaging an excised human heart using a prototype silicon photon-counting CT detector). Chem. Chem. 2020, 30, 5904–5912. [Google Scholar]
- O’Hora, L.; O’Brien, K.; Tuffy, J.; Craig, A.; Neville, N.; Sugrue, K.; Keaveney, M.; O’brien, E.; Quinn, E.; Egan, S. Establishing national diagnostic reference levels in fluoroscopy and fluoroscopically guided interventions in Ireland and comparing these with national diagnostic reference levels in Europe and internationally. Eur. J. Radiol. 2025, 183, 111890. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sisniega, A.; Zbijewski, W.; Dang, H.; Stayman, J.W.; Wang, X.; Foos, D.H.; Aygun, N.; E Koliatsos, V.; Siewerdsen, J.H. Evaluation of detector readout gain mode and bowtie filters for cone-beam CT imaging of the head. Phys. Med. Biol. 2016, 61, 5973–5992. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Quraishi, A.; Khan, E.M.; Ali, S.K.; Khan, A.U.; Bashiri, A.H.; Ahmad, M.A.; Kattayat, S.; Alvi, P. Performance improvement of GaAsSb/InGaAs DQW heterostructure by uni- and bi-axial pressure and field for IR-photodetector application. Phys. B Condens. Matter 2025, 699, 416853. [Google Scholar] [CrossRef]
- Heydarian, H.; Xie, X.; Vishnuradhan, A.; Cui, W.; Weck, A.; Gamouras, A.; Ménard, J.-M. Adaptable electro-optic detection of THz radiation using a laser-written bull’s-eye antenna. Sci. Rep. 2025, 15, 764. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ning, M.; Wang, Q.; Liang, Y.; Wang, Y.; Li, S.; Jiang, L.; Li, Z. SnS/Si heterostructure for visible light detector with very low detection limit. Opt. Mater. 2025, 159, 116627. [Google Scholar] [CrossRef]
- Youn, H.; Kam, S.; Han, J.C.; Kim, H.K. Optical crosstalk in CT detectors and its effects on CT images. In Proceedings of the Medical Imaging 2014: Physics of Medical Imaging, San Diego, CA, USA, 15–20 February 2014; Volume 9033, pp. 1357–1365. [Google Scholar]
- Heismann, B.; Bätz, L.; Pham-Gia, K.; Metzger, W.; Niederlöhner, D.; Wirth, S. Signal transport in Computed Tomography detectors. Nucl. Inst. Methods Phys. Res. A 2008, 591, 28–33. [Google Scholar] [CrossRef]
- Nofriandi, A.; Hamdi; Ratnawulan; Yulkifli. Ultra-sensitive light detection technologies based on single-photon detectors: A review. Sens. Technol. 2024, 2, 2404268. [Google Scholar] [CrossRef]
- Yin, S.; Zhou, X.; Gu, R.; Lu, J.; Ji, X.; Li, S.; Guo, Y.; Tang, W.; Li, X. GaN/CuI heterostructure ultraviolet photovoltaic detector for low-power optical communication. Opt. Lett. 2025, 50, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Gong, X.; Wang, Y.; Song, D.; Xu, Z.; Qiao, B.; Zhao, S. High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection. ACS Appl. Mater. Interfaces 2024, 17, 2615–2623. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Y.; Qiu, J.; Song, D.; Xu, Z.; Qiao, B.; Zhao, S. Iodine- and oxygen-free sensitization process for VPD-PbS: IO detectors. J. Alloys Compd. 2025, 1010, 177854. [Google Scholar] [CrossRef]
- Aznabayev, D.; Issatayev, T.; Lukyanov, M.S.; Smirnov, V.I.; Stukalov, S.S.; Solodov, A.N. Erratum to: Position Sensitive Detector Based on Microchannel Plates for Measuring the Characteristics of Fission Fragments at the MAVR Facility. Instrum. Exp. Tech. 2024, 67, 842. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, Y.; Pan, Z.; Lu, W. Advancements in Ga2O3-based heterojunction ultraviolet photodetectors: Types, fabrication techniques, and integrated materials for enhancing photoelectric conversion efficiency. J. Alloys Compd. 2025, 1010, 177757. [Google Scholar] [CrossRef]
- Shibata, T.; Mizuno, T.; Nojiri, T.; Yamane, T.; Hirata, Y.; Zhang, W.; Fukuzawa, H.; Kasatani, Y.; Tsukamoto, A. Spin photo detector by using a CoFeB magnetic tunnel junction. J. Phys. D Appl. Phys. 2025, 58, 06LT01. [Google Scholar] [CrossRef]
- Ikechi, O.; Marios, M.; Harris, T.C.; Corral Arroyo, P.; Huber, P.; Jacobson, M.W.; Berbeco, R.I. Monte Carlo model of a prototype flat-panel detector for multi-energy applications in radiotherapy. Med. Phys. 2023, 50, 5944–5955. [Google Scholar]
- Borden, S.; Detwiler, J.; Pettus, W.; Ruof, N. Characterization of Silicon Photomultiplier Photon Detection Efficiency at Liquid Nitrogen Temperature. J. Instrum. 2024, 19, P12014. [Google Scholar] [CrossRef]
- Vashaee, D. Thermoelectric infrared detectors: Design, fabrication, and performance assessment. J. Semicond. 2024, 45, 122304. [Google Scholar] [CrossRef]
- Zhang, Y.; Shan, Y.; Chang, F.; Liang, Y.; Zhang, X.; Wang, G.; Wu, D.; Jiang, D.; Hao, H.; Xu, Y.; et al. Improvement of mid-wavelength InAs/InAsSb nBn infrared detectors performance through interface control. Infrared Phys. Technol. 2024, 143, 105619. [Google Scholar] [CrossRef]
- Luo, X.; Li, W.; Yuan, L.; Xie, G.; Su, Y. Self-powered infrared detector enabled by interfacial anchoring and thermal reinforcement. Nano Trends 2024, 8, 100061. [Google Scholar] [CrossRef]
- Shirato, T.; Doryo, K.; Yamada, S.; Ozaki, Y. Modulation transfer function of digital breast tomosynthesis: A comparison of various edge devices. Radiol. Phys. Technol. 2024, 17, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Grabski, V.; Brandan, M.-E.; Ruiz-Trejo, C.; Villaseñor, Y. PSF, LSF and S/P in mammography: GEANT4 validation. Z. Fuer Med. Phys. 2006, 16, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lv, P.; Zhu, Z.; Li, J.; Tu, C.; Chen, C. Self-powered solar-blind ultraviolet detectors based on the amorphous boron nitride films. J. Alloys Compd. 2025, 1010, 177635. [Google Scholar] [CrossRef]
- Jiang, F.; Bu, Y. The impact of barrier modulation on carriers transport in GaN quantum well infrared detectors. Micro Nanostructures 2025, 197, 208026. [Google Scholar] [CrossRef]
- Gujjar, R.N.; Hadagali, D.M.; Yallur, C.B.; Itigimatha, N. Novel and Stability Indicating RP-HPLC Method Development and Validation for the Determination of Metformin HCL: A Potential Drug Against Diabetic Disorder, in Pure and Pharmaceutical Dosage Forms. Pharm. Chem. J. 2024, 58, 1332–1338. [Google Scholar] [CrossRef]
- Lai, Y.; Shen, Z.; Chen, Y.; Wang, J.; Guo, J.; Wei, Z. The Impact of Afterpulsing Effects in Single-Photon Detectors on the Performance Metrics of Single-Photon Detection Systems. Photonics 2024, 11, 1074. [Google Scholar] [CrossRef]
- Rahman, B.A.; Begum, S.; Kaawash, M.N.; Thabit, M.Y.; Narwade, V.N.; Halge, D.I.; Shaikh, S.J.; Bogle, K.A. Enhancing the photo-response of CuO thin film based infrared light photodetector via fabricating ZnO-capped CuO device. Phys. B Condens. Matter 2025, 697, 416713. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, S.; Cheng, W.; Ji, H.; Li, Z.; Li, Z. A double-sided 3D trench electrode detector using an 8-inch CMOS process: 3D simulation and experimental investigation. Nucl. Inst. Methods Phys. Res. A 2025, 1070, 169943. [Google Scholar] [CrossRef]
- Achtenberg, K.; Szplet, R.; Bielecki, Z. Advanced, Real-Time Programmable FPGA-Based Digital Filtering Unit for IR Detection Modules. Electronics 2024, 13, 4449. [Google Scholar] [CrossRef]
- Katsumi, T.; Kyohei, Y.; Masayoshi, N. Performance evaluation of micro-vessels imaging by deep learning reconstruction targeting ultra-high-resolution CT (UHR-CT). J. Med. Imaging Radiat. Sci. 2022, 53, S28. [Google Scholar]
- Migliozzi, F.; Bucci, S.; Rizzo, M.; Boltri, M.; Claps, F.; Liguori, G.; Trombetta, C. MtF sex reassignment surgery: Trombetta technique. Eur. Urol. Suppl. 2018, 17, 302. [Google Scholar] [CrossRef]
- Inderjeeth, C.A.; Raymond, W.D.; Briggs, A.M.; Geelhoed, E.; Oldham, D.; Mountain, D. Implementation of the Western Australian Osteoporosis Model of Care: A fracture liaison service utilising emergency department information systems to identify patients with fragility fracture to improve current practice and reduce re-fracture rates: A 12-month analysis. Osteoporos. Int. 2018, 29, 1759–1770. [Google Scholar] [PubMed]
- Xu, S.; Wang, T.; Liu, G.; Cao, Z.; Frank, L.A.; Jiang, S.; Zhang, C.; Li, Z.; Krasitskaya, V.V.; Li, Q.; et al. Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor. Sens. Actuators B Chem. 2021, 326, 128991. [Google Scholar] [CrossRef]
- MTF Biologics; MTF Biologics Distributes More Than 550,000 Tissue Grafts in 2017, Saving and Healing a Record Number of Lives. 2018. Available online: https://scholar.cnki.net/zn/Detail/index/GARJ2018/SPQDFF04A57657BBA6F22897FD0D9EEE7644 (accessed on 10 January 2025).
- Mora, E.; Carrillo, A.; Giribet, A.; Becerra, A.; Lucio, M.J.; Cobeta, I. Translation, Cultural Adaptation, and Preliminary Evaluation of the Spanish Version of the Transgender Voice Questionnaire for Male-to-Female Transsexuals (TVQ MtF). J. Voice 2017, 32, 514.e1–514.e6. [Google Scholar] [CrossRef] [PubMed]
- Narváez, M.; Graffigna, P.J.; Gómez, E.M.; Romo, R. Application of Oversampling to obtain the MTF of Digital Radiology Equipment. J. Phys. Conf. Ser. 2016, 705, 012057. [Google Scholar] [CrossRef]
- Liu, G.; Wei, J.; Li, X.; Tian, M.; Wang, Z.; Shen, C.; Sun, W.; Li, C.; Li, X.; Lv, E.; et al. Near-Infrared-Responded High Sensitivity Nanoprobe for Steady and Visualized Detection of Albumin in Hepatic Organoids and Mouse Liver. Adv. Sci. 2022, 9, 2202505. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wei, J.; Lv, E.; Li, C.; Liu, G.; Sun, Y.; Yang, W.; Wang, Q.; Shen, C.; Zhang, C.; et al. Drug evaluation platform based on non-destructive and real-time in situ organoid fate state monitoring by graphene field-effect transistor. Chem. Eng. J. 2024, 498, 155355. [Google Scholar] [CrossRef]
Measuring Point | Surface Roughness (Ra, nm) | Maximum Deviation (μm) |
---|---|---|
A | 8.5 | 9.7 |
B | 9.0 | 9.8 |
C | 9.2 | 9.9 |
Pixel_pich = 20 μm | 1.5° Step Size (About 0.524 μm) | 2.0° Step Size (About 0.698 μm) | 2.5° Step Size (Approx. 0.873 μm) | 3.0° Step Size (About 1.048 μm) | Actual Angle 2.06° (Calculated Step Size 0.719 μm) | Actual Angle 2.06° (Calculated Step Size 2.0 μm) | Actual Angle 2.06° (Calculated Step Size 10 μm) |
---|---|---|---|---|---|---|---|
Freq (1 p/mm) | MTF | ||||||
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
0.5 | 0.946 | 0.957 | 0.957 | 0.956 | 0.957 | 0.955 | 0.951 |
1 | 0.879 | 0.901 | 0.901 | 0.901 | 0.899 | 0.897 | 0.887 |
1.5 | 0.814 | 0.844 | 0.845 | 0.842 | 0.845 | 0.839 | 0.823 |
2 | 0.743 | 0.783 | 0.783 | 0.779 | 0.783 | 0.775 | 0.755 |
2.5 | 0.674 | 0.722 | 0.722 | 0.718 | 0.722 | 0.713 | 0.690 |
3 | 0.619 | 0.677 | 0.676 | 0.671 | 0.676 | 0.665 | 0.634 |
3.5 | 0.551 | 0.620 | 0.619 | 0.612 | 0.619 | 0.606 | 0.567 |
4 | 0.527 | 0.603 | 0.60 | 0.594 | 0.601 | 0.525 | 0.529 |
4.5 | 0.482 | 0.549 | 0.545 | 0.539 | 0.546 | 0.534 | 0.478 |
5 | 0.451 | 0.503 | 0.498 | 0.494 | 0.499 | 0.489 | 0.440 |
5.5 | 0.418 | 0.456 | 0.452 | 0.449 | 0.454 | 0.444 | 0.398 |
6 | 0.368 | 0.400 | 0.399 | 0.397 | 0.401 | 0.392 | 0.339 |
6.5 | 0.354 | 0.377 | 0.378 | 0.375 | 0.377 | 0.371 | 0.311 |
7 | 0.326 | 0.331 | 0.334 | 0.331 | 0.333 | 0.329 | 0.265 |
7.5 | 0.307 | 0.314 | 0.319 | 0.319 | 0.319 | 0.316 | 0.258 |
8 | 0.279 | 0.321 | 0.319 | 0.319 | 0.317 | 0.313 | 0.205 |
8.5 | 0.344 | 0.321 | 0.319 | 0.319 | 0.317 | 0.313 | 0.205 |
9 | 0.286 | 0.262 | 0.265 | 0.266 | 0.264 | 0.265 | 0.178 |
9.5 | 0.261 | 0.268 | 0.271 | 0.271 | 0.271 | 0.272 | 0.171 |
10 | 0.219 | 0.202 | 0.201 | 0.201 | 0.201 | 0.197 | 0.121 |
10.5 | 0.203 | 0.211 | 0.211 | 0.212 | 0.213 | 0.208 | 0.113 |
11 | 0.198 | 0.221 | 0.219 | 0.218 | 0.221 | 0.214 | 0.108 |
11.5 | 0.195 | 0.204 | 0.199 | 0.198 | 0.201 | 0.194 | 0.092 |
12 | 0.178 | 0.164 | 0.157 | 0.156 | 0.158 | 0.159 | 0.063 |
12.5 | 0.1389 | 0.134 | 0.144 | 0.139 | 0.145 | 0.134 | 0.063 |
13 | 0.126 | 0.131 | 0.131 | 0.123 | 0.133 | 0.119 | 0.056 |
13.5 | 0.129 | 0.144 | 0.146 | 0.142 | 0.148 | 0.125 | 0.051 |
14 | 0.129 | 0.119 | 0.122 | 0.115 | 0.121 | 0.098 | 0.046 |
14.5 | 0.125 | 0.148 | 0.151 | 0.146 | 0.148 | 0.125 | 0.051 |
15 | 0.125 | 0.108 | 0.109 | 0.104 | 0.104 | 0.095 | 0.033 |
15.5 | 0.156 | 0.157 | 0.153 | 0.151 | 0.152 | 0.143 | 0.039 |
16 | 0.200 | 0.092 | 0.081 | 0.079 | 0.073 | 0.087 | 0.023 |
16.5 | 0.127 | 0.133 | 0.146 | 0.152 | 0.149 | 0.144 | 0.028 |
17 | 0.111 | 0.065 | 0.077 | 0.086 | 0.082 | 0.076 | 0.012 |
17.5 | 0.171 | 0.123 | 0.117 | 0.177 | 0.12 | 0.113 | 0.015 |
18 | 0.075 | 0.134 | 0.145 | 0.152 | 0.148 | 0.154 | 0.014 |
18.5 | 0.109 | 0.077 | 0.073 | 0.074 | 0.069 | 0.073 | 0.008 |
19 | 0.097 | 0.111 | 0.111 | 0.112 | 0.111 | 0.109 | 0.008 |
19.5 | 0.086 | 0.093 | 0.098 | 0.096 | 0.091 | 0.091 | 0.005 |
20 | 0.044 | 0.079 | 0.078 | 0.077 | 0.077 | 0.075 | 0.006 |
20.5 | 0.042 | 0.059 | 0.059 | 0.053 | 0.060 | 0.044 | 0.005 |
21 | 0.025 | 0.047 | 0.052 | 0.044 | 0.053 | 0.044 | 0.004 |
21.5 | 0.134 | 0.040 | 0.014 | 0.011 | 0.011 | 0.042 | 0.006 |
22 | 0.127 | 0.107 | 0.108 | 0.107 | 0.113 | 0.092 | 0.005 |
22.5 | 0.037 | 0.129 | 0.143 | 0.139 | 0.146 | 0.124 | 0.006 |
23 | 0.044 | 0.057 | 0.051 | 0.054 | 0.055 | 0.039 | 0.006 |
23.5 | 0.044 | 0.057 | 0.050 | 0.054 | 0.055 | 0.039 | 0.006 |
24 | 0.118 | 0.128 | 0.127 | 0.126 | 0.132 | 0.114 | 0.006 |
24.5 | 0.096 | 0.086 | 0.086 | 0.083 | 0.082 | 0.077 | 0.012 |
25 | 0.053 | 0.080 | 0.086 | 0.081 | 0.080 | 0.073 | 0.006 |
Sampling Interval Comparison | p-Value (MTF at 6 lp/mm) | Statistical Significance (p < 0.05) |
---|---|---|
0.698 μm vs. 2.00 μm | <0.001 | Significant |
0.698 μm vs. 10.00 μm | <0.001 | Significant |
0.719 μm vs. 2.00 μm | 0.032 | Significant |
0.719 μm vs. 10.00 μm | 0.025 | Significant |
2.00 μm vs. 10.00 μm | 0.078 | Not Significant |
0.698 μm vs. 0.719 μm | 0.412 | Not Significant |
Spatial Frequency (lp/mm) | 0.1 mm Focus (MTF) | 0.6 mm Focus (MTF) | 0.7 mm Focal Spot (MTF) |
---|---|---|---|
1 | 0.98 | 0.92 | 0.90 |
2 | 0.85 | 0.78 | 0.75 |
3 | 0.75 | 0.65 | 0.60 |
4 | 0.62 | 0.50 | 0.45 |
5 | 0.50 | 0.38 | 0.32 |
6 | 0.40 | 0.28 | 0.22 |
Frequency (lp/mm) | Traditional Edge Method MTF | Traditional Point Spread Method MTF | Slit Model Method MTF | Increase (%) |
---|---|---|---|---|
1.0 | 0.908 | 0.898 | 0.946 | +5.1% |
2.0 | 0.740 | 0.735 | 0.783 | +6.1% |
3.0 | 0.620 | 0.615 | 0.677 | +9.2% |
4.0 | 0.530 | 0.520 | 0.603 | +11.8% |
5.0 | 0.442 | 0.432 | 0.503 | +14.1% |
6.0 | 0.346 | 0.341 | 0.402 | +15.1% |
Sampling Interval (Pixel Pitch) | Low-Frequency MTF (2 lp/mm) | High Frequency MTF (6 lp/mm) | Noise Level (MTF Fluctuation) |
---|---|---|---|
1/10 (standard) | 0.85 | 0.40 | low |
1/19 (medium) | 0.87 | 0.45 | low |
1/29 (optimized) | 0.89 | 0.50 | moderate |
1/38 (high) | 0.90 | 0.51 | moderate |
1/50 (limit | 0.91 | 0.51 | high (noise increase) |
Frequency (lp/mm) | Average MTF | Standard Deviation (SD) | Coefficient of Variation (CV,%) |
---|---|---|---|
1.0 | 0.946 | 0.005 | 0.53% |
2.0 | 0.783 | 0.007 | 0.89% |
3.0 | 0.677 | 0.009 | 1.33% |
4.0 | 0.603 | 0.012 | 1.99% |
5.0 | 0.503 | 0.015 | 2.98% |
6.0 | 0.400 | 0.018 | 4.50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ji, Z. Improved MTF Measurement of Medical Flat-Panel Detectors Based on a Slit Model. Sensors 2025, 25, 1341. https://doi.org/10.3390/s25051341
Zhang H, Ji Z. Improved MTF Measurement of Medical Flat-Panel Detectors Based on a Slit Model. Sensors. 2025; 25(5):1341. https://doi.org/10.3390/s25051341
Chicago/Turabian StyleZhang, Haiyang, and Zhiyong Ji. 2025. "Improved MTF Measurement of Medical Flat-Panel Detectors Based on a Slit Model" Sensors 25, no. 5: 1341. https://doi.org/10.3390/s25051341
APA StyleZhang, H., & Ji, Z. (2025). Improved MTF Measurement of Medical Flat-Panel Detectors Based on a Slit Model. Sensors, 25(5), 1341. https://doi.org/10.3390/s25051341