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Abstract: Mid-infrared (MIR) photonic sensors are revolutionizing optical sensing by en-
abling precise chemical and biological detection through the interrogation of molecules’
unique vibrational modes. This review explores the core principles of MIR photonics, em-
phasizing the light–matter interactions within the 2–20 µm wavelength range. Additionally,
it examines innovative sensor architectures, such as integrated photonic platforms and op-
tical fibers, that enhance sensitivity, specificity, and device miniaturization. The discussion
extends to groundbreaking applications in environmental monitoring, medical diagnostics,
industrial processes, and security, highlighting the transformative impact of these technolo-
gies. This comprehensive overview aims to illuminate the current state-of-the-art while
inspiring future developments in MIR photonic sensing.

Keywords: mid-infrared; molecular fingerprint; sensors; environmental monitoring;
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1. Introduction
Mid-infrared (MIR) photonic sensors, operating in the 2–20 µm wavelength range, are

rapidly gaining importance due to their exceptional capabilities for molecular sensing [1,2].
This part of the spectrum, known as the “molecular fingerprint” region, corresponds to
the fundamental vibrational and rotational energy levels of many molecules, allowing
for highly selective and sensitive detection. Unlike other spectral regions, the MIR range
enables direct access to these fundamental absorption bands, making it possible to detect
small concentrations of various substances with high specificity and minimal interference.
As a result, MIR photonic sensors offer distinct advantages over traditional detection
methods, which often rely on indirect or less sensitive approaches. Moreover, these sensors
can provide real-time, non-invasive, and in situ analysis, a crucial feature for applications
requiring rapid and reliable information [3].

Quantum cascade lasers (QCLs) [4] and interband cascade lasers (ICLs) [5] are two key
MIR light sources with distinct operating principles and application domains. QCLs rely
on intersubband transitions within a single conduction band, enabling operation at a wide
range of MIR wavelengths (typically 3–25 µm) with high output power and broadband
tunability. They are particularly suited for high-power applications such as healthcare,
remote sensing, free-space communication, and environmental gas detection [6,7]. In con-
trast, ICLs utilize interband transitions between the conduction and valence bands, making
them highly efficient at lower MIR wavelengths (typically 3–6 µm) with lower threshold
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currents and reduced power consumption. Due to their higher wall-plug efficiency and
compact size, ICLs are well suited for portable gas sensing, medical diagnostics, and in-
dustrial process monitoring [8]. While QCLs dominate high-power applications, ICLs
offer an energy-efficient alternative for battery-operated and field-deployable sensing sys-
tems, making both technologies complementary for various MIR photonic applications [9].
Today, these sensors are a critical component of modern sensing technologies, offering
unprecedented molecular detection capabilities across multiple domains [1,10,11].

Integrated photonic platforms leverage compact, chip-based technologies to create
components like waveguides, resonators, interferometers, and detectors tailored to the
MIR range [12–14]. Materials such as silicon, silicon nitride, germanium, and chalcogenide
glasses are commonly used due to their transparency and performance in this wavelength
range. Devices such as photonic crystal cavities [15,16], micro-ring resonators [17,18], and
Mach–Zehnder interferometers [19] can be engineered to enhance sensitivity and selectivity,
improving the detection limits of trace gases or pollutants [20,21]. With advances in on-chip
light sources and detectors, these integrated photonic devices offer a scalable, cost-effective
alternative to traditional bulkier MIR systems, making MIR sensing more accessible and
versatile across various fields [22–25].

One of the primary applications of MIR photonic sensors is in environmental mon-
itoring, where they are invaluable for detecting greenhouse gases, pollutants, and other
hazardous substances in real-time [26–28]. MIR sensors provide accurate measurements of
gases like carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), which exhibit
strong absorption bands within the MIR range, aiding in the monitoring and management
of air quality [29]. Additionally, MIR photonic sensors are used to assess water quality by
detecting organic pollutants and toxic compounds, contributing significantly to environ-
mental protection initiatives. With their high sensitivity and ability to provide real-time
data, these sensors support ongoing efforts to address environmental challenges effectively.
In the field of biomedical diagnostics, MIR photonic sensors are advancing non-invasive
diagnostic techniques through applications in breath analysis, tissue imaging, and biofluid
analysis. Human breath, for instance, contains biomarkers that serve as indicators of
various diseases, ranging from respiratory conditions to metabolic disorders. By analyzing
these molecular fingerprints, MIR sensors can help diagnose these conditions early and
accurately. They are also being explored for cancer marker detection and blood glucose
monitoring, paving the way for more personalized and preventive healthcare solutions [30].
The ability of MIR sensors to offer real-time analysis without requiring invasive procedures
makes them an attractive choice in modern medical diagnostics [31,32].

MIR photonic sensors are also crucial in industrial process control, particularly in the
monitoring of chemical processes, combustion systems, and emission control. In manufac-
turing environments, real-time sensing allows operators to optimize processes, detect faults
at early stages, and ensure compliance with environmental regulations. By monitoring
specific molecular signatures, MIR sensors improve process efficiency and product quality
while minimizing waste and energy consumption. In industries such as petrochemicals
and pharmaceuticals, where precise control over chemical composition is essential, MIR
photonic sensors provide reliable and accurate measurements, enhancing both safety and
productivity [1,33,34]. In defense and security applications, MIR photonic sensors play a
vital role in the detection of explosives, toxic chemicals, and other hazardous materials.
Their ability to identify substances based on their unique molecular signatures allows for
rapid screening of potentially dangerous compounds in public areas, military settings, and
border security checkpoints. Furthermore, MIR sensors contribute to infrared countermea-
sures and thermal imaging applications, improving the ability to detect and identify threats
in challenging environments. By providing rapid, reliable, and non-invasive detection capa-
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bilities, MIR photonic sensors significantly enhance security and defense measures [35,36].
The combination of molecular specificity, sensitivity, and adaptability makes MIR photonic
sensors indispensable across these diverse fields [37]. As MIR technology continues to
evolve, its application in the environmental, biomedical, industrial, and security sectors
is expected to grow, contributing to a safer, healthier, and more sustainable world [38–40].
Figure 1 presents a structured outline of the paper’s content’s logical flow and progression.
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2. Fundamentals, Material Platforms, and Fabrication Methods of
MIR Photonics

In this section, we have provided a concise yet comprehensive overview of the core
principles of MIR photonics, explored various material platforms, and detailed the fabrica-
tion techniques employed in developing MIR photonic devices.

2.1. Fundamentals of MIR Photonics

The MIR region is particularly significant in molecular sensing due to its ability to
probe fundamental vibrational transitions in molecular bonds. Molecular vibrations, such
as stretching, bending, and torsional modes, interact with MIR photons, resulting in distinct
absorption features that are characteristic of specific chemical bonds, including C-H, O-H,
N-H, C=O, and C≡N [41–43]. In the MIR region, molecules exhibit unique absorption
spectra due to complex vibrational combinations and overtones that enable high specificity
in molecular identification. This range is advantageous for molecular sensing because it en-
ables vibrational spectroscopy [44], allowing for the detailed characterization of molecular
structures through specific bond interactions. Each molecular bond has a unique vibra-
tional frequency within the MIR range, meaning MIR spectroscopy can effectively identify
individual molecules and complex mixtures based on their unique spectral profiles. This ca-
pability is essential for applications requiring molecular discrimination and quantification,
such as chemical analysis, environmental monitoring, and biomedical diagnostics [45]. Fur-
thermore, the MIR spectral region enables label-free, non-destructive analysis, eliminating
the need for additional reagents or sample modifications, which preserves sample integrity.
Additionally, the MIR region is highly effective for detecting trace-level concentrations of
gases, liquids, and solids due to the strong, specific absorption coefficients of molecular
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bonds in this range. The MIR’s sensitivity to concentration allows quantitative analysis,
commonly utilizing the Beer–Lambert law, which correlates absorbance to the analyte
concentration in a sample [26,46,47].

MIR photonic sensors operate based on interactions between MIR light and molecular
structures within a sample, leveraging mechanisms such as absorption, transmission, and
reflection. These interactions provide valuable data on the sample’s molecular composition,
concentration, and, in some cases, its physical state. The sensing mechanism is fundamen-
tally based on the molecular vibrational modes that occur when molecules absorb MIR
photons, resulting in measurable spectral signatures. These signatures can reveal detailed
information about the sample’s molecular composition.

(I) Absorption: In MIR sensing, absorption is the primary mechanism of interaction.
When MIR light passes through or interacts with a sample, molecules absorb specific
wavelengths corresponding to their vibrational frequencies, creating excitation of
bonds within the molecule [48]. The wavelengths at which this absorption occurs are
unique to specific molecular bonds and functional groups, resulting in a character-
istic spectrum that serves as a “molecular fingerprint.” By analyzing the absorption
spectrum, it is possible to identify and quantify various compounds within a mixture.
This is especially useful in applications requiring precise molecular identification, as
each molecular bond and functional group has a distinct spectral location within the
MIR region [49].

(II) Transmission: Transmission-based MIR sensing involves passing MIR light through
a sample and measuring the transmitted light. As the light travels through the sam-
ple, certain wavelengths are selectively absorbed by specific molecular bonds [50].
The remaining transmitted light intensity, recorded as a function of wavelength, re-
veals both qualitative and quantitative information about the sample’s composition.
Transmission spectroscopy is particularly effective for gas-phase or thin-film samples,
where minimal sample thickness allows for clear and interpretable spectra [51]. The
Beer–Lambert law is frequently applied in transmission-based MIR sensing to calcu-
late the concentration of analytes by relating the measured absorbance to the analyte
concentration within the optical path [52].

(III) Reflection: Reflection-based MIR sensing is commonly employed for samples that
are opaque or highly absorbing, where transmission is impractical. In this approach,
MIR light is directed onto the sample surface, and the reflected light is measured [53].
One of the most widely used reflection techniques is attenuated total reflectance
(ATR) spectroscopy, which involves coupling MIR light into a high-refractive-index
crystal [54]. The light undergoes multiple total internal reflections within the crystal,
creating an evanescent wave that extends slightly into the sample in contact with the
crystal. This wave interacts with the sample, resulting in absorption at specific MIR
wavelengths. ATR spectroscopy is highly versatile and enables the analysis of a wide
range of media, including solids, liquids, and gels, by using various crystal materials
to optimize light coupling with different sample types [55].

(IV) Frequency upconversion: Frequency upconversion is a powerful technique that en-
hances the detection and resolution of signals in the MIR region [56,57]. By converting
MIR signals to higher-frequency signals, such as NIR or visible light, this method
enables the use of more efficient and sensitive detectors that are commonly avail-
able [58,59]. The upconversion process, often achieved through nonlinear optical
interactions or multi-photon absorption, improves the signal-to-noise ratio and allows
for enhanced imaging and sensing capabilities [60]. This is particularly valuable
in applications like chemical sensing, gas detection, and biomedical imaging [61],
where MIR wavelengths are crucial for molecular vibration analysis, but their direct
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detection can suffer from noise or sensitivity limitations [62]. By upconverting these
MIR signals to more detectable wavelengths, the technique provides clearer, more
accurate measurements and opens up new possibilities for real-time, high-resolution
imaging and sensing in fields such as environmental monitoring, medical diagnostics,
and industrial inspections [63,64].

2.2. Material Platforms

In this section, several known material platforms for MIR photonics are discussed.
Moreover, Table 1 summarizes the widely used material platforms for MIR photonics.

2.2.1. Silicon-Based Photonics

Silicon-on-insulator (SOI) photonic platforms are among the most extensively utilized
technologies in integrated photonics. SOI substrates are predominantly procured from
commercial suppliers, reflecting their standardized and widely available nature [65–68]. A
multitude of organizations provide commercial multi-project wafer (MPW) services tailored
for SOI-based photonics, facilitating the fabrication of both passive components [69,70],
such as waveguides, couplers, gratings, resonators, and active devices, including integrated
photodiodes and thermo-optical and optical modulators. This inherent versatility positions
SOI-based photonic integrated circuits (PICs) as an ideal choice for a broad spectrum of
applications, encompassing telecommunications, data communications across C, L, and O
bands, optical sensing, and LiDAR systems.

SOI-based PICs are predominantly designed with silicon structures positioned on a
buried oxide (BOX) layer (Figure 2). This architecture forms the foundation of the widely
used commercial platforms. Typically, photonic components are fabricated via dry etching,
primarily utilizing fluorine-based plasmas, though the specifics can vary. For example,
reactive ion etching (RIE) with CHF3/O2/SF6 has been employed to create rib waveg-
uides, achieving propagation losses of 3.4 ± 0.2 dB/cm at 3.8 µm and 2.9 ± 0.3 dB/cm at
3.73 µm [71]. Deep Reactive Ion Etching (DRIE) surpasses conventional RIE in applica-
tions requiring high-aspect-ratio structures, such as optical waveguides. DRIE achieves
significantly higher ratios, often exceeding 10:1, while RIE is typically limited to lower
ratios. It also produces nearly vertical sidewalls, which are crucial for effective optical
mode confinement, and offers faster etch rates, making it ideal for deep etching [72].
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Figure 2. An example of an MIR waveguide on an SOI platform demonstrates propagation losses
ranging from 2 to 3 dB/cm across the broad MIR spectrum of 3.68–3.88 µm. The bending losses were
as low as 0.02 dB per 90◦ turn for radii larger than 10 µm. The figure includes (a) a schematic of the
single-mode SOI channel waveguide, (b) SEM image of the straight waveguide with an inset of the
inverse taper tip, and (c) optical images of waveguide bends with a radius of 5 µm [65].

Additionally, DRIE, when properly optimized, causes less surface damage compared
to RIE, which can introduce defects due to continuous ion bombardment. However, the
Bosch process in DRIE can create scalloped sidewalls, leading to increased scattering
losses in waveguides. This issue can be mitigated through post-processing techniques like
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isotropic etching or thermal oxidation, which smooth the sidewalls and reduce propagation
loss. When carefully optimized, DRIE provides superior waveguide performance by
ensuring better mode confinement and minimizing optical losses. DRIE with SF6/C4F8, in
combination with e-beam lithography, has been used to fabricate MMIs and waveguides
with propagation losses as low as 1.00 ± 0.08 dB/cm [73].

Standard UV lithography followed by SF6/O2/CHF3 plasma has been utilized for
rib waveguide production, whereas alternating plasma cycles of SF6/O2 (etch) and C4F8

(passivation) were applied to fabricate strip waveguides [71]. Reported propagation losses
for strip waveguides were 4.9 ± 0.2 dB/cm (W = 1.2 µm), 4.5 ± 0.3 dB/cm (W = 1.4 µm),
and 4.2 ± 0.2 dB/cm (W = 1.6 µm) at a wavelength of 3.39 µm. Rib waveguides showed
propagation losses of 3.4 ± 0.2 dB/cm at 3.8 µm and 2.9 ± 0.3 dB/cm at 3.73 µm.

The spectral range of SOI devices is restricted to 3.5 µm due to silica’s absorption
characteristics. To address this limitation, techniques such as suspending waveguides are
employed [74]. This can be achieved using wet etching in HF solutions. For instance, one
study utilized an SOI wafer (device layer: 340 nm, BOX layer: 340 nm) with silicon layer
openings (hole radius: ~200 nm, spacing: 530 nm). The wafer underwent etching in 49% HF
for 30 s, followed by rinsing in deionized water [75]. Another structure with a 220 nm
device layer, a 1000 nm BOX layer, and holes of 240 nm radius (spaced 430 nm apart) was
suspended using a diluted HF solution (1:10 HF: water), although the etching duration
was unspecified [76]. Notably, gaps smaller than 150 nm in cladding were unsuitable for
liquid etching [76]. For narrower openings, such as subwavelength grating (SWG) cladding
in waveguides, HF vapor etching was required. However, this method extended the
process and introduced complexities due to water accumulation as a reaction by-product,
causing the etching rate to drop from 30 nm/min to nearly zero within 3–5 min. Sample
dehydration at 220 ◦C was necessary before continuing. Ultimately, a 450 nm gap was
achieved, enabling etching in an HF solution (1:7 HF: water) for 30 min, which produced
an etch depth of 2.5 µm. Waveguide propagation loss improved from 5 dB/cm at 2.75 µm
to 3.6 dB/cm after etching.

A key advantage of silicon-on-sapphire (SOS) devices over SOI devices is the absence
of silica, which strongly absorbs beyond a 3.6 µm wavelength [77]. This limitation in SOI
devices often necessitates measures like waveguide suspension. By contrast, sapphire
substrates in SOS devices exhibit low absorption up to 5–6 µm and possess a relatively
low refractive index compared to silicon [78]. However, operating at wavelengths be-
yond this range is challenging, effectively capping the spectral utility of SOS platforms at
approximately 6 µm.

SOS wafers are primarily fabricated through epitaxial growth processes [79,80].
Since the device layer in SOS is silicon, their production shares similarities with SOI
devices. Patterns on SOS wafers are typically created using dry etching with fluorine-based
chemistries (e.g., CF4 [79], C4F8/SF6 [81]) or occasionally chlorine-based chemistries (e.g.,
Cl2/HBr/He [82]), akin to SOI wafer processing techniques. Initially, propagation losses
in the SOS platform ranged from 4.3 to 4.9 dB/cm at 4.5 µm for a 1.8 × 0.6 µm ridge
waveguide (Figure 3) [79]. Later advancements demonstrated that chemical oxidation
followed by oxide stripping of silicon could significantly reduce losses to approximately
1 ± 0.3 dB/cm at 4 µm for a 2.4 × 0.48 µm nanowire waveguide.
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Figure 3. (a) A contour plot of the optical mode of the SOS waveguide, (b) a false-color scanning
electron micrograph of the cleaved end facet of a waveguide. Silicon is shown in green and sapphire
in blue [79].

2.2.2. Germanium-Based Photonics

Germanium-based platforms offer significant advantages due to their compatibility
with CMOS technology and their broad transmission range of 1.8 µm to 14 µm. With
a bandgap of 0.77 eV, germanium is well-suited for infrared photodetection and shows
strong potential for monolithic integration [83], as it can be directly grown on Si(100)
substrates [84,85]. Ridge waveguides based on germanium-on-silicon (GOS) for wave-
lengths around 5.8 µm were demonstrated using a 2 µm Ge layer, grown by reduced
pressure chemical vapor deposition (RP-CVD) and patterned with a fluorine-based reactive
ion etching (RIE) process. These waveguides exhibited propagation losses of 2.5 dB/cm
and bending losses of 0.12 dB for a 90◦ bend with a 115 µm radius [86]. Another study
described slot waveguides fabricated in a 3 µm thick Ge layer, etched with an inductively
coupled plasma reactive ion etching (ICP-RIE) process (Cl2: 10 sccm, Ar: 30 sccm, RF
power: 150 W, ICP power: 1000 W) using a nickel hard mask (Figure 4) [87]. The etching
achieved core and slot depths of 3 µm and 2 µm, respectively, with a sidewall angle of 78◦.
The measured losses for the TE mode were 4.59–5.51 dB/cm in channel waveguides and
5.59–5.79 dB/cm in slot waveguides.

Suspending Ge waveguides effectively reduced propagation losses from over
60 dB/cm to 5.3 dB/cm at a wavelength of 7.7 µm [88]. The significant initial losses
were likely attributed to the minimal separation between the SiO2 layer and the Ge waveg-
uide, with only a 50–60 nm Si layer in between (Figure 5a–c). To prepare the structure, the
SOI substrate (220 nm device layer, 3 µm BOX) was thermally oxidized and then wet-etched
to reduce the Si layer thickness to 50–60 nm. A 1 µm thick Ge layer was subsequently
deposited using RPCVD. The patterning process employed e-beam lithography, followed
by ICP etching (SF6/C4F8 chemistry) down to the BOX layer. Waveguide suspension
was accomplished by immersing the samples in a 1:7 HF:H2O solution for two hours
(Figure 6a–c). Simulation results indicated that further loss minimization and extended
propagation at wavelengths up to 15 µm could be achieved by optimizing the waveguide
cross-section design.
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Figure 6. The process for fabricating suspended germanium waveguides with subwavelength grating
lateral cladding involves multiple steps. (a) Dry etching is used to transfer the cladding holes from
the photoresist to the germanium layer and silicon film. (b) The silicon dioxide and remaining silicon
film are etched away using a wet etching technique. (c) The process concludes with the complete
removal of the silicon film and buried oxide [88].
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2.2.3. Two-Dimensional Materials

Two-dimensional (2D) materials have attracted considerable attention in recent years
due to their unique properties and potential applications in various photonic and optoelec-
tronic devices [89]. These materials, including black phosphorus (BP) [90] and transition
metal dichalcogenides (TMDs) [91], offer exceptional flexibility, tunability, and light–matter
interaction, making them particularly promising for mid-infrared (MIR) photonic sensors.
The ability of 2D materials to exhibit both strong optical absorption and efficient electron
transport in the MIR region presents significant advantages for applications like gas sensing,
environmental monitoring, and biomedical diagnostics.

BP, one of the most notable 2D materials, has gained substantial interest for MIR
sensing applications due to its highly tunable bandgap, which ranges from ~0.3 eV in bulk
to ~2 eV in monolayers. This tunability allows for efficient light absorption in the MIR
spectrum, particularly around the 4 to 5 µm range, where many molecular absorption
features occur. BP also possesses strong in-plane anisotropy, which can be exploited in
polarization-sensitive devices. Additionally, BP’s high carrier mobility (~1000 cm2/V·s)
enables fast and efficient charge transport, making it an excellent candidate for applications
that require rapid sensor response times. These unique characteristics make BP suitable
for integration into photodetectors (PDs), modulators, and waveguides, enhancing the
sensitivity and performance of MIR sensors [90,92].

Similarly, TMDs such as MoS2, MoSe2, WS2, and WSe2 exhibit remarkable optical
and electronic properties that extend into the MIR range. TMDs feature strong excitonic
absorption, even in the MIR regime, and can be engineered to achieve high absorption
coefficients and tunable optical properties. These materials are particularly attractive for
use in MIR PDs and modulators, where their high absorption and efficient light–matter
interactions enable precise measurements and high sensitivity [93,94]. Moreover, TMDs can
be integrated into silicon photonic platforms, making them an ideal choice for scalable, cost-
effective MIR sensors. Their mechanical flexibility further adds to their versatility, allowing
for the development of flexible and stretchable sensors for a wide range of applications,
from wearable health monitors to environmental sensors [95].

2.2.4. Other Materials

Indium phosphide (InP) is a semiconductor material that has gained significant atten-
tion in MIR photonics due to its favorable electronic and optical properties [96,97]. With
a direct bandgap of 1.34 eV, InP offers efficient light absorption and emission in the MIR
range, making it ideal for applications in MIR optoelectronics such as lasers, detectors,
and modulators. Additionally, InP’s high electron mobility allows for fast device oper-
ation, which is beneficial for high-speed communication and sensing technologies [98].
The material’s compatibility with existing III-V compound semiconductors also enables
the development of integrated photonic circuits, paving the way for compact and high-
performance devices in applications like spectroscopy, environmental monitoring, and
biomedical diagnostics. InP’s ability to operate efficiently in the MIR spectrum, along
with its integration potential, positions it as a key material for advancing MIR photonic
technologies [99].

Porous materials have emerged as promising candidates for MIR photonics due to
their unique ability to engineer optical properties through controlled porosity and refractive
index modulation [100]. These materials, including porous silicon, metal-organic frame-
works (MOFs), and aerogels, offer tunable optical dispersion, low thermal conductivity,
and a high surface area, making them ideal for applications such as infrared sensing, ther-
mal imaging, and waveguiding [12,101,102]. Their porosity enables strong light–matter
interactions, facilitating enhanced absorption, nonlinear optical effects, and tailored trans-
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mission characteristics in the MIR spectrum [103]. Furthermore, the ability to fabricate
porous structures through techniques like electrochemical etching and templated synthesis
provides additional flexibility in designing photonic devices with optimized performance
in the MIR range [104,105].

The advancement of ChG photonic devices is expected to persist [34,106], with a strong
emphasis on minimizing optical losses for waveguide-based applications (Figure 7) [107].
This goal must be viewed in the broader context of alternative material platforms like SiN,
which have achieved exceptionally low losses, reaching sub 1 dB/m. While ChGs have the
inherent potential to match this performance—demonstrated by ultrahigh Q-factors of up
to 70 million in ChG microspheres [108]—realizing similar low attenuation on integrated
platforms requires substantial improvements in fabrication techniques. Another critical
research area involves extending the operational wavelength range of ChG on-chip devices
into the long-wave infrared (LWIR, 8–14 µm) and beyond. Although ChGs possess an
unparalleled level of infrared transparency, distinguishing them from materials such as Si
and SiN, most research has concentrated on near- and MIR applications, with only a few
studies venturing into longer wavelengths [109].
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Anne et al. explored the fabrication of chalcogenide fibers and planar waveguides.
Using MIR transparent optical fibers, a biosensor for rapid, in situ metabolic analysis via
remote infrared spectroscopy was developed [110]. The study examined spectral changes
linked to transient focal ischemia in rat brains and starvation in mouse livers, using
microdialysis as a reference. Additionally, reactive ion etching was employed to create rib
waveguides (2–300 µm wide) and Y optical junctions on chalcogenide films, enhancing
sensor sensitivity and stability. Initial functionalization tests were also conducted for
potential (bio)sensor applications [110].

Moreover, as low glass transition temperature materials, ChGs belong to a class of
‘soft glasses’ that exist in a thermodynamically metastable state. Over time, or when
subjected to moderate heat exposure—such as in backend processing or solder reflow
during packaging—their structure can gradually relax, leading to shifts in optical properties.
Addressing and mitigating these stability concerns through systematic characterization is
crucial to ensuring reliable performance in photonic applications [107].
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2.3. Integration Methods

In PICs, integration methods are essential for combining various photonic compo-
nents, such as waveguides, modulators, and light sources, on a single chip or platform.
Monolithic integration uses a single material, such as silicon or III-V semiconductors, to
fabricate all components together, enabling high-density integration and efficient produc-
tion, though material incompatibility can be a challenge [111]. Heterogeneous integration,
on the other hand, combines different materials for specific functions, like using III-V
materials for active components and silicon for passive ones, offering greater flexibility
but introducing complexities in bonding and alignment [112]. Hybrid integration is a
variation that combines photonic components sourced from different platforms, allowing
for specialized functionality but often at a higher cost. Module-based integration assembles
individual components into a larger package, offering flexibility but at the cost of a larger
form factor [113]. 3D integration stacks multiple layers of devices, enabling a reduced
footprint and high interconnection density but presenting challenges in heat dissipation
and alignment [114]. Lastly, free-space optics and fiber integration allow for complex opti-
cal components and long-range communication but require precise alignment and add to
system complexity. The choice of integration method depends on factors like performance
requirements, material compatibility, cost, and scalability, with a growing trend toward
heterogeneous and hybrid approaches for overcoming material limitations and achieving
advanced system capabilities.

An infrared thermopile sensor for broadband detection was integrated with MIR
waveguides via flip-chip bonding and grating couplers [115]. This device, constructed on
an SOI platform, was designed for N2O gas detection at 3.9 µm and achieved a resolution
of 1800 ppm. A distributed feedback quantum cascade laser (DBF QCL) was also integrated
heterogeneously onto silicon-on-nitride-on-insulator (SONOI) waveguides, which featured
surface gratings etched through ICP (C4F8/SF6/Ar) [116]. Several configurations were
explored (Figure 8), with lasers delivering over 200 mW of pulsed power and operating
at wavelengths from 4.62 to 4.86 µm. In [117], a thermo-optic switch utilizing a graphene
heater was developed and fabricated. The incorporation of graphene, a 2D material
with minimal losses in the MIR spectrum, enabled a significant reduction in cladding
thickness to just tens of nanometers, supporting direct heater placement on the waveguide.
Demonstrated devices included an MRR switch with an 8 dB extinction ratio and rise/fall
times of 3.72/3.96 µs, as well as a 2 × 2 MZI switch achieving an extinction ratio above
27 dB with rise/fall times of 4.92/4.97 µs.
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2.4. Lithography Methods

The choice of lithography techniques is primarily dictated by the dimensions of the
structures rather than the specific platform. Depending on the critical feature size, various
approaches may be employed. For MIR waveguides, which typically have dimensions
on the scale of a few micrometers, standard UV photolithography is sufficient [118] if
submicron features are not required. For higher precision or smaller features, advanced
techniques such as electron beam lithography (EBL), stepper-based UV lithography, or
nanoimprint lithography (NIL) are necessary.

In research applications, EBL is widely utilized due to its ability to produce high-
resolution patterns with smooth sidewalls [75,119]. Both negative-tone resists (e.g.,
HSQ [79], maN-2403 [120]) and positive-tone resists (e.g., ZEP-520A, AR-P 6200) are com-
patible with EBL. However, EBL is inherently expensive and time-intensive, which can
limit its practicality for large-scale fabrication. The high cost of EBL arises from the need
for specialized equipment, including electron beam writers, which are costly to purchase
and maintain. Additionally, the process is slower compared to other techniques, making it
less suitable for mass production and contributing to higher overall fabrication costs.

Stepper mask aligners, although less commonly used, can achieve submicron reso-
lution and have demonstrated success in producing waveguides as narrow as 400 nm
in silicon-on-sapphire platforms. They offer a faster alternative to EBL, but challenges
arise when fabricating features such as narrow gaps in ring resonators. The high pre-
cision required for MIR sensors, which often involve very fine details, can make even
advanced techniques like stepper lithography more complex and costly to implement, par-
ticularly when dealing with intricate designs that require multiple iterations or additional
patterning steps.

NIL provides another viable approach for high-resolution fabrication. It enables
the production of structures with low surface roughness and is particularly attractive for
scalable manufacturing. When paired with appropriate stamps and material choices, NIL
can function as a direct lithography method [121]. However, its adoption is constrained
by the high cost of stamp fabrication and associated process complexities. The stamp-
making process itself is highly specialized and expensive, and the integration of NIL
into the production of MIR sensors requires advanced infrastructure, further escalating
overall costs. NIL has been successfully applied in photonic device fabrication, including
metamaterials [122], antireflective coatings [123], and optical filters [124].

Hybrid approaches can also be employed to optimize performance, combining the
strengths of multiple techniques. For instance, EBL may be used to define high-precision
features, while laser lithography or other lower-resolution methods can pattern less critical
areas. This strategy balances the need for high resolution with the advantages of reduced
time and cost [125]. However, even when combining techniques, the overall fabrication
process for MIR sensors remains highly complex and costly due to the need for specialized
materials, sophisticated equipment, and cleanroom environments to ensure the precision
and reliability required for MIR performance. The intricate nature of these processes
drives up the price of MIR sensors, limiting their widespread use and making large-scale
manufacturing a significant challenge.
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Table 1. Characteristics of material platform for MIR photonics.

Material
Platform

Transparency
Range (µm)

Refractive
Index Thermal Stability Integration

Compatibility
Key
Advantages Challenges

Silicon (Si) ~1.1–9.0 ~3.4 High (up to 1200 ◦C) CMOS-
compatible

Mature
fabrication
technology, low
loss in MIR

Absorption
above 8 µm,
difficult for
high-power
applications
[20]

Silicon
Nitride
(Si3N4)

0.4–7.0 ~2.0 High (~1200 ◦C) CMOS-
compatible

Low loss, easy
to integrate
with Si
platforms

Limited
transparency
beyond 7 µm,
lower index
contrast [25]

Germanium
(Ge) 2.0–14.0 [126] ~4.0 Moderate (~600 ◦C) Compatible with

Si platforms

Broad MIR
range, high
index contrast

Expensive,
challenging for
high-
temperature
applications
[11]

Gallium
Arsenide
(GaAs)

0.9–17.0 ~3.3 High (~700 ◦C)
Compatible with
III-V platforms
[127]

Wide
transparency
range, strong
nonlinear
properties

Expensive,
complex
integration
[128]

Silicon
Carbide (SiC) 0.5–15.0 [129] ~2.6 Very High (~1500 ◦C) Compatible with

Si platforms

High power
handling, wide
range

Limited CMOS
compatibility,
challenging
fabrication
[129,130]

Chalcogenide
Glasses (ChG) 1.0–25 [131] ~2.2–2.8 Moderate (~400 ◦C) Non-standard

processes

Broad
transparency,
strong
nonlinear
properties

Low thermal
stability, limited
CMOS
compatibility
[131,132]

Indium
Phosphide
(InP)

1.0–12.0 ~3.2 High (~600 ◦C) Compatible with
III-V platforms

High efficiency
for light genera-
tion/detection
[133]

High cost,
challenging
integration
with Si [96,134]

Aluminum
Nitride (AlN) 0.2–13.6 [135] ~2.0 Very High (~1800 ◦C) CMOS-

compatible

High thermal
stability,
low loss

Limited
transparency in
deeper MIR
regions
[136,137]

Calcium
Fluoride
(CaF2)

0.2–9.0 [138] ~1.4 Moderate (~600 ◦C) Limited
Very low loss,
wide
transparency

Brittle,
challenging to
integrate with
standard
platforms [139]

Table 1 outlines various MIR materials, but a deeper analysis of their optical properties
and thermal stability is essential for understanding their trade-offs in MIR sensor applica-
tions. Si and Ge are both widely used, but Ge is preferred for longer MIR wavelengths due
to its broader transparency range (2–14 µm) compared to silicon (1.1–7 µm), which exhibits
significant absorption beyond 7 µm [11,23]. Additionally, Ge’s higher refractive index (~4.0)
enables stronger optical confinement, making it advantageous for compact MIR photonic
devices [86]. However, Si has superior thermal stability (up to ~1200 ◦C), whereas Ge
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degrades at ~600 ◦C in air, limiting its use in high-temperature environments. Similarly,
Si3N4 and ChGs present another trade-off; Si3N4 is highly thermally stable (~1200 ◦C) and
CMOS-compatible but is only transparent up to 7 µm, while ChGs support a much broader
MIR range (1–25 µm) but suffer from lower thermal stability (~400 ◦C). For III-V materials,
GaAs and InP both offer high refractive indices (~3.2–3.3) and wide transparency ranges,
with GaAs extending up to 13 µm, making it valuable for nonlinear optical applications.
However, these materials present integration challenges, with InP being more commonly
used for active optoelectronic devices such as MIR lasers. Ultimately, material selection
in MIR sensors depends on balancing optical performance with thermal and fabrication
constraints. Ge is preferred over Si for broader transparency and stronger optical confine-
ment, while Si remains ideal for high-temperature applications. Similarly, ChGs excel in
long-wavelength MIR sensing despite their low thermal stability, whereas Si3N4 is better
suited for integrated photonics. These trade-offs highlight the need for careful material
selection based on specific MIR sensing requirements.

3. Sensing Mechanisms and Techniques
To effectively utilize MIR sensing techniques, it is essential to understand the un-

derlying mechanisms that drive their operation. Some of the most prominent sensing
methods include absorption spectroscopy, evanescent wave sensing, and photoacoustic
and photothermal techniques. Absorption spectroscopy, which encompasses methods
such as Fourier-transform infrared (FTIR) [41,140] and tunable diode laser absorption spec-
troscopy (TDLAS) [141,142], allows for highly specific molecular absorption measurements.
Evanescent wave sensing leverages surface-sensitive evanescent fields to detect molecular
interactions occurring near interfaces [143–145]. Meanwhile, photoacoustic and photother-
mal techniques transform absorbed MIR radiation into measurable acoustic or thermal
signals, facilitating the detection of trace amounts [146]. Additionally, emerging techniques
like MIR fluorescence and nonlinear optical effects (e.g., difference frequency generation)
offer enhanced sensitivity and precision, broadening the scope of MIR sensing in fields
such as environmental monitoring, industrial applications, and biomedical research [147].

Detectors used in various optical and imaging techniques are essential for capturing
and converting light or acoustic signals into measurable data. PDs are commonly used to
detect light across different wavelengths, converting light into an electrical signal. These in-
clude devices like photodiodes, photomultiplier tubes (PMTs), and charge-coupled devices
(CCDs), which are typically employed in applications such as spectroscopy, imaging, and
light detection in scientific research [148]. PDs can be sensitive to a wide range of light, from
UV to IR, depending on the material used. On the other hand, in photoacoustic techniques,
piezoelectric transducers are primarily used to detect the acoustic waves generated by
the rapid thermal expansion of a material after it absorbs pulsed light. These transducers
convert sound waves into electrical signals for imaging or analysis, playing a key role
in applications like medical imaging and material science [149]. Additionally, fiber-optic
sensors and Capacitive Micromachined Ultrasonic Transducers (CMUTs) are emerging as
important alternatives in these areas, offering enhanced sensitivity and resolution [150].
Each type of detector is selected based on the specific needs of the application, such as sen-
sitivity, response time, and the nature of the signals being measured, allowing for tailored
solutions in fields like biomedicine, material testing, and environmental monitoring.

3.1. Absorption Spectroscopy: Fourier-Transform Infrared (FTIR) and Tunable Diode Laser
Absorption Spectroscopy (TDLAS)

Absorption spectroscopy, particularly Fourier-transform infrared (FTIR), is one of the
most widely used techniques for analyzing samples with MIR light. First demonstrated
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in 1911 for biological sample analysis and further refined in the 1950s, FTIR is based on
the ability of molecules to absorb infrared radiation at specific wavelengths associated
with their unique vibrational transitions [151]. By examining the absorption spectra, FTIR
offers both qualitative and quantitative insights into a sample’s chemical composition [152].
Advanced variations, such as attenuated total reflectance (ATR), extend FTIR’s capabilities,
making it invaluable in fields like pharmaceuticals, biomedical research, and food quality
control [153].

The key to FTIR’s sensitivity lies in its ability to detect the “fingerprint” of a molecule,
as each substance has a distinctive absorption spectrum based on its molecular structure.
The basic operation of FTIR involves passing infrared radiation through a sample, with
an interferometer splitting and recombining the IR beam to create an interference pattern.
The IR beam interacts with the sample, where absorption occurs at specific wavelengths
corresponding to the functional groups of molecules. The unabsorbed radiation is then
detected, typically using sensors like Mercury Cadmium Telluride (MCT) or Deuterated
Triglycine Sulfate (DTGS). A Fourier-transform algorithm converts the data into a spectrum,
which displays absorption peaks related to the molecular vibrations. This non-destructive,
rapid technique provides detailed chemical information, enabling accurate identification
and analysis of substances [154].

Jahromi et al. developed an innovative gas sensor that combines a compact, high-
speed Fourier-transform spectrometer (FTS) with a broadband MIR supercontinuum (SC)
source [155]. Spanning the entire spectral range of the SC source (2–4 µm), the system
achieved an impressive spectral resolution of 1 GHz in just 6 s. It demonstrated excep-
tional detection sensitivity, reaching several hundred ppbv·Hz−1/2 for various gases. Key
performance metrics, including precision, linearity, long-term stability, and multi-species
detection capabilities, were thoroughly evaluated. The sensor was employed to analyze
volatile compounds emitted by fruits under different atmospheric conditions and was
compared with the performance of a previously developed scanning grating-based spec-
trometer [155].

Another prominent method for absorption spectroscopy is TDLAS, which is partic-
ularly effective in gas and plasma sensing. TDLAS works by directing a tunable diode
laser through a gas sample and measuring the absorption of light at specific wavelengths
that correspond to the molecular transitions of the target gas. The wavelength of the
laser is scanned across an absorption feature, and the resulting decrease in light intensity,
governed by the Beer–Lambert law, reveals the concentration of the gas. This technique
provides highly sensitive, real-time measurements of gas properties such as concentration,
temperature, and pressure. Advanced features like wavelength modulation further im-
prove sensitivity, making TDLAS invaluable for applications in environmental monitoring,
industrial processes, and gas analysis.

Food safety has become an increasingly critical focus in recent years, driven by the
need to ensure the quality and safety of food products. Rapid detection methods for identi-
fying contaminants in both the manufacturing process and final products have advanced
significantly. Gruska et al. explored the use of FT-MIR to identify various contaminants
in white sugar production [156]. The research highlighted the technique’s capability to
accurately detect impurities, including inorganic compounds such as calcium carbonate
(CaCO3), plastic materials like polypropylene, and oily substances from compressor sealing
and lubrication systems. FT-MIR spectroscopy proved to be a reliable and efficient method
for the rapid detection of sugar contaminants, even without reliance on complex spec-
tral analysis techniques. Additionally, the incorporation of commercial reference spectra
databases simplified and streamlined the application of this method, reinforcing its value
for enhancing safety measures in sugar production.
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An external, water-insoluble contaminant (Sample A) was identified in white sugar.
After dissolving the sugar in water and filtering the solution, a creamy-white precipitate
remained on the filter surface (Figure 9a). Due to the complexity of determining the
contamination’s nature and origin based solely on visual examination, MIR spectroscopy
was employed. The precipitate was combined with KBr to form a pellet. The resulting
spectra were analyzed statistically and the findings are depicted in Figure 9b [156].
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Figure 9. (a) Precipitate of the contaminant (Sample A) retained after filtering the white sugar
solution [156], (b) statistical analysis of the FT-MIR spectra for contaminants in white sugar (samples
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3.2. Evanescent Wave Sensing (EWS)

EWS relies on the principle of total internal reflection, where light traveling through
a high-refractive-index medium, such as an optical fiber or a waveguide, generates an
evanescent field at the interface with a lower-refractive-index medium, penetrating a short
distance into the external medium and decaying exponentially. This field interacts with
molecules, enabling the detection of their unique absorption spectra, particularly in the
MIR range (3–20 µm), where strong molecular vibrational bands provide detailed chemical
information [157,158]. Techniques such as Fiber-Optic Evanescent Wave Spectroscopy
(FEWS) combine optical fibers, often made of chalcogenide or silver halide, with Fourier-
transform infrared (FTIR) spectroscopy to record these spectra [159,160]. Applications
include environmental monitoring, where MIR-FEWS sensors detect pollutants like chlori-
nated hydrocarbons in seawater at ppb levels [157], and medical diagnostics, where FEWS
has been used to identify biochemical markers in skin lesions for the rapid, non-invasive de-
tection of melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC) [160].
Additionally, chalcogenide fibers have been employed to analyze chemical solutions, such
as acetone in water, demonstrating the versatility of EWS for real-time, in situ analysis
across various domains [159].

The integration of photonic chips with electronic and micromechanical systems is
poised to revolutionize laser spectroscopic sensors, enabling compact, precise, and reliable
solutions for climate research and industrial applications. However, the sensitivity of
chip-scale devices has been limited by challenges such as high waveguide losses, weak
light–analyte interactions, and interference effects caused by chip facets and defects.

To address these issues, Yallew et al. developed a nanophotonic waveguide specifically
designed for methane detection at 3270.4 nm, achieving an extraordinary detection limit
of 0.3 ppm—over two orders of magnitude better than current on-chip spectroscopy tech-
nologies [161]. Figure 10 highlights the design: (a) the cross-section of the slot waveguide
and (b) the top-view layout of the sensor, modeled using Lumerical software to function
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on commercial SOI wafers. Ambient air serves as the top cladding and the gas interac-
tion region. The waveguide design was optimized to support the fundamental TE mode,
reduce leakage through the buried oxide layer (BOX), and maximize Γair. As illustrated
in Figure 10c, Γair peaks broadly around a slot width of 90 nm. Considering fabrication
constraints, the slot width was set at 150 nm and the waveguide core width at 550 nm,
yielding Γair = 79% with leakage losses under 1 dB/cm.
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uide [161], (b) the sensor chip layout featuring double-tip couplers, (c) simulation results showing
the air confinement factor (solid lines) and substrate leakage loss (dotted lines) as functions of slot
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To further enhance performance, double-tip couplers (Figure 10d) were integrated at
both ends of the waveguide, improving coupling efficiency and suppressing reflections.
This innovation was made possible through a silicon slot waveguide optimized for robust
light–analyte interactions, combined with advanced double-tip fork couplers that effectively
eliminated unwanted etalon fringes at the waveguide facets [161].

3.3. Photoacoustic and Photothermal Techniques

Photoacoustic sensing is based on the generation of acoustic waves through the
absorption of modulated light energy by a sample, where the absorbed light energy is
converted into heat via non-radiative relaxation, producing pressure waves detectable
by a microphone. The principle relies on modulating the light source—commonly lasers
or LEDs—to create periodic heating and cooling in the sample, generating sound waves
proportional to the sample’s absorption characteristics. The technique can be enhanced
by using non-resonant photoacoustic cells for compact designs and resonant cells for
enhanced sensitivity, as used in an MIR fiber-coupled sensor for detecting glucose in
biomedical applications [162]. Another example is a miniature MIR photoacoustic gas
sensor, which uses a MEMS thermal light source and a PDMS membrane for detecting
dissolved CO2 in seawater with a detection limit of 0.72 ppm and a fast response time of
3.5 min [163]. Additionally, a low-cost photoacoustic CO2 sensor can be designed using
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an MIR LED to excite sound waves in a hermetically sealed chamber, demonstrating
a scalable approach for environmental monitoring [164]. These examples highlight the
adaptability of photoacoustic sensing in biomedical diagnostics, environmental monitoring,
and gas detection.

Photothermal sensing is a highly sensitive technique that measures the absorption
of light by a sample and its conversion to heat, leading to localized changes in tempera-
ture, refractive index, or pressure [165]. The principle involves the use of a pump laser
to excite the sample and induce these changes, which are then detected by a probe light
via shifts in optical properties or interference patterns. Detection can be enhanced using
approaches such as hollow-core fibers, which confine light and gas interactions to achieve
high sensitivity, or microring resonators, which use the thermo-optic effect to transduce
MIR absorption into measurable optical changes [166]. Techniques like MIR Photothermal
(MIP) Microscopy offer label-free imaging of biological and material samples by exploiting
vibrational absorption-induced thermal effects, enabling high spatial resolution and mini-
mal interference from water absorption [167]. Applications span from trace gas detection,
such as nitrous oxide monitoring at sub-ppm levels [165], to chemical imaging of polymers
and cellular structures [166,167], making photothermal sensing versatile in environmental
monitoring, biosensing, and material science.

Zheng et al. introduced on-chip photothermal spectroscopy (PTS) as a powerful
technique for gas detection, achieving exceptional sensitivity and an extended dynamic
range [168]. The study meticulously analyzed the photothermal field, generated through
the non-radiative relaxation of gas molecules, and its resulting phase modulation. To
optimize thermal field accumulation, ChG was selected as the core material, and thermally
isolated ChG-on-SU8 waveguides were designed. This design enhanced photothermal
phase modulation by a factor of two compared to ChG-on-SiO2 waveguides (Figure 11a).
Unlike DAS, which is often limited by multi-path etalon noise, PTS was primarily in-
fluenced by piezoelectric transducer noise within the interferometer. For comparison,
acetylene (C2H2) detection experiments were conducted using both PTS and DAS with a
2 cm-long ChG-on-SU8 waveguide. PTS delivered an impressive detection limit of 4 ppm,
outperforming DAS by a factor of 16. Moreover, its dynamic range spanned five orders of
magnitude, approximately three times broader than that of DAS [168].
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Figure 11. (a) Diagram of the on-chip PTS setup with a modulated pump, where the phase of the
probe beam is altered due to pump absorption. The inset displays the C2H2 absorption cross-section
at the pump and probe wavelengths [168]. (b) Illustration of the processes responsible for PT-induced
phase modulation in the waveguide [168].

Figure 11b illustrates the process and key factors involved in the on-chip PT-induced
probe phase modulation. In a hollow-core fiber (HCF), the variation in the probe phase
was mainly influenced by the thermal optical coefficient (TOC) of the gas medium inside
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the core. In a waveguide, significant enhancement of PT phase modulation can be achieved
by utilizing a strong pump field near the waveguide interface, materials with high TOC
and thermal expansion coefficients (TEC), and selecting an appropriate probe wavelength.
The resulting phase modulation can be effectively detected using an optical interferometer,
such as a Mach–Zehnder interferometer (MZI), with active homodyne stabilization. This
outstanding performance opens the door to fully integrated chip-level sensors for low-
power, lightweight applications [168].

3.4. Fluorescence and Nonlinear Techniques

The above-mentioned methods cover the most common techniques; however, there
are also other techniques worth looking at. Some of them involve fluorescence and lumi-
nescence effects but others also use nonlinear effects.

Fluorescence sensing involves detecting specific substances by measuring the emission
of light (fluorescence) from a material, often after excitation by a light source [169–171]. In
MIR fluorescence sensing, materials such as Dy3+-doped Ga5Ge20Sb10S65 glass fibers emit
light at specific wavelengths when excited, leveraging their unique fluorescence properties
to overlap with absorption bands of target molecules like CO2. This technique relies on a
differential measurement principle, comparing the intensity of emitted light within and
outside the absorption band of the target molecule to determine its concentration with
high sensitivity and resolution. For example, Dy3+-doped fibers, excited with a laser at
920 nm, emit fluorescence around 4.35 µm, which overlaps with the CO2 absorption band,
enabling atmospheric and geological CO2 monitoring [172]. Similarly, in single-molecule
spectroscopy, plasmonic nanocavities enhance fluorescence by coupling vibrational and
electronic transitions, allowing MIR photons to be upconverted into visible wavelengths
for highly sensitive molecular detection [41]. These approaches demonstrate the versatility
of fluorescence sensing for applications in environmental monitoring, gas detection, and
molecular-level spectroscopy. Nevertheless, it is worth mentioning that also taking leverage
of nonlinear effects can be beneficial for sensing applications [173].

4. Types of MIR Photonic Sensors
This section explores two distinct types of MIR photonic sensors: waveguide-based

sensors and fiber-based sensors. Each offers unique advantages and applications in the
field of photonic sensing.

4.1. Optical Waveguide-Based Sensors

Waveguides play a crucial role in the design of PICs, irrespective of the material
platform or the spectral range they operate within [174–176]. Beyond their primary function
of guiding light, they also serve as sensors or as media for nonlinear interactions. Effective
light guiding in waveguides typically demands minimal optical power losses and compact
bending radii, which facilitate higher packing densities in photonic circuits [73,177]. When
used as sensors, waveguides must enable the guided optical signal to interact with the
target medium—be it gas, liquid, or solid [28,178–180]. This interaction is achieved through
the evanescent field, a portion of the optical signal that extends into the interface between
the waveguide and its surroundings [143,181]. Using waveguides with thicknesses smaller
than the propagating wavelength can establish a consistent evanescent field, leading to
improved sensitivity compared to other sensor types, such as those based on optical fibers
or bulk elements leveraging total internal reflection. Enhancing the interaction between the
waveguide and the material being measured involves increasing the penetration depth of
the evanescent field.
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Optical waveguide sensors operating in the MIR wavelength range are of significant
importance due to their ability to exploit the strong molecular absorption features character-
istic of many chemical and biological species in this spectral region [26,29]. The MIR range,
often referred to as the “molecular fingerprint region”, allows for highly selective and
sensitive detection of gases, liquids, and solids by directly probing their unique absorption
lines [182]. These sensors are particularly valuable in environmental monitoring, enabling
the precise detection of greenhouse gases such as CO2, CH4, and N2O [183–185]. They are
also critical in industrial process control, where real-time monitoring of volatile organic
compounds (VOCs) enhances safety and efficiency [186]. Furthermore, MIR waveguide
sensors are advancing medical diagnostics through non-invasive analysis of biomarkers in
human breath and body fluids. Their compactness, robustness, and integration potential
make them ideal for portable sensing devices, opening new possibilities in remote sensing,
homeland security, and food quality assurance.

Efficient gas sensors are essential for detecting hazardous gases, but conventional
single-output sensors face issues like drift, size, and cost. Zhang et al. presented a sensor
combining chemiresistive and potentiometric outputs, compatible with various electrodes
and solid electrolytes for customizable sensing [187]. Enhanced with a mixed-conducting
perovskite electrode, it demonstrated exceptional sub-ppm sensitivity, distinguishing hu-
midity from seven hazardous gases (2-Ethylhexanol, ethanol, acetone, toluene, ammonia,
carbon monoxide, and nitrogen dioxide), while providing early fire hazard warnings. C-P
gas sensing using a SnO2-based SE on a GDC solid electrolyte substrate was presented,
as shown in Figure 12a. The C signal was caused by changes in resistance due to the
interaction of analyte gases with oxygen on the SE surface, while the P signal (SnO2-Pt)
arose from potential changes at the gas/SE/electrolyte three-phase boundary. Figure 12b,c
display the dynamic response of SnO2 to seven gases, including four VOCs (2-Ethylhexanol,
ethanol, acetone, toluene) and three inorganic gases (NH3, CO, NO2). When exposed to
reducing (oxidizing) gases, both resistance and potential decrease (increase), exhibiting
typical n-type and non-Nernstian sensing behavior, SnO2 showed strong responses to 2-EH,
a marker for indoor air pollutants and fire hazards, while responses to NH3, CO, and
NO2 are weaker (Figure 12d,e). The responses to other VOCs were moderate for P, with C
responses smaller than for 2-EH. These differences indicate that the sensing mechanisms
are independent.

An MIR hollow waveguide gas sensor was developed to detect the absorption lines
of H2

18O, H2
16O, H2

17O, and HDO at 3662.9196, 3663.04522, 3663.32128, and 3663.84202
cm−1, respectively [188]. The sensor utilized wavelength modulation spectroscopy with
a 2.73 µm distributed feedback diode laser. Gas absorption was measured using a 5 m
long hollow waveguide fiber with a 1 mm inner diameter. Calibration was performed
using a dew point generator containing liquid water with known water/isotope ratios.
Detection limits achieved were 35.18 ppbv for H2

18O, 4.69 ppmv for H2
16O, 60.53 ppbv for

H2
17O, and 3.88 ppbv for HDO with a 96 s integration time. This allowed for isotopic ratio

measurement precisions of 0.85‰ for δ18O, 0.57‰ for δ17O, and 10.48‰ for δD. Field tests
for H2

18O, H2
16O, and H2

17O concentrations were carried out at the Nanchang Hangkong
University campus to assess the sensor’s performance [188].
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400 ◦C [187].

Subwavelength grating (SWG) metamaterial sensors are designed using periodic
structures with minute dimensions that still enable light propagation [14,189]. Employing
a periodic arrangement of pillars, which permits the analyte to enter the gaps, enhances
the interaction between the light mode and the surrounding material under examination.
This design significantly increases the sensitivity of the sensor element [76]. Achieving
optimal sensitivity in SWG metamaterial structures requires careful geometric design. In
addition to enhanced sensitivity, SWG elements offer other advantages, such as the ability
to modify waveguide dispersion, isolate the fundamental mode, and control the optical
bandwidth [190,191]. Two critical parameters for achieving these functionalities are the
grating period and the duty cycle, defined as the ratio of the individual pillar length to
the period. To prevent Bragg reflection, the grating period must be smaller than the Bragg
period. Furthermore, the period should be significantly reduced to ensure operation in the
subwavelength regime [192].

An MIR SWG coupler and suspended membrane waveguide (SMW) on a silicon-on-
insulator wafer were investigated. For a transverse-electric mode uniform SWG, finite-
difference time-domain simulations predicted a coupling efficiency of 44.2%, a 1 dB band-
width of approximately 220 nm, and a backreflection of 0.78% at a wavelength of 2.75 µm.
The uniform SWG was then modified into a focusing SWG using a phase-matching formula.
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The SMWs were analyzed using the finite element method and subsequently fabricated.
A co-doped MIR fiber laser was employed for device characterization, and the fabricated
MIR SWG coupler achieved a coupling efficiency of 24.7% [193].

Liu et al. presented a long wave-infrared (LWIR) photonic platform for rapid and
sensitive on-chip gas sensing, utilizing suspended silicon waveguides supported by sub-
wavelength grating (SWG) metamaterial claddings (Figure 13a) [194]. Figure 13b presents
an optical microscope image of the spiral structure used in the experiment, featuring a
sensing length of 28.4 mm. Figure 13c provides a close-up view of the spiral sensing area.
In this setup, toluene molecules were evenly distributed around the waveguide, including
the SWG cladding and the upper and lower air claddings, where they interacted with the
evanescent field of the guided light, leading to additional absorption. This approach effec-
tively leveraged the transparency window of silicon while the SWG structure optimized the
mode profile for enhanced light–analyte interaction. Propagation and bending losses were
analyzed across the 6.4–6.8 µm wavelength range. High-performance functional devices,
including grating couplers, Y-junctions, and directional couplers, were demonstrated. The
platform’s sensing capability was showcased through toluene vapor detection, achieving
a detection limit of 75 ppm with response and recovery times of approximately 0.8 and
3.4 s, respectively. These results highlighted the platform’s potential for on-site medical
and environmental applications [194].
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Figure 13. (a) Diagram of the suspended Si waveguide gas sensing platform, which includes grating
couplers, tapers, a Y-junction power splitter, and spiral waveguides. Inset: Cross-sectional SEM image
of the waveguide [194]. (b) Optical image of the suspended Si spiral waveguide [194]. (c) Close-up
view of the sensing waveguide surrounded by toluene molecules, highlighted by the yellow box
in (a) [194]. (d) Schematic of suspended slot membrane waveguide based on Ge-on-SOI platform
for CO2 gas detection. The inset shows the E-field distribution at an operational wavelength of
4.23 µm [195].
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Recently, Butt et al. proposed an innovative suspended slot membrane waveguide
designed on a germanium-on-silicon-on-insulator (Ge-on-SOI) platform, specifically for
detecting CO2 gas (Figure 13d) [195]. The proposed structure was tailored to operate
at the CO2 absorption wavelength of 4.23 µm in the MIR spectrum. The waveguide’s
geometry was meticulously engineered to maximize the evanescent field ratio (EFR) while
minimizing propagation losses, enhancing its suitability for evanescent field absorption-
based gas detection. The optimized design achieved a high EFR of 0.86, a propagation loss
as low as 1.07 dB/cm, and exceptional sensitivity of approximately ~1.12 × 10−4 ppm−1

with a compact SSMW length of only 0.9 cm.
Plasmonic waveguide-based sensors for MIR applications represent a cutting-edge

approach to the highly sensitive detection of molecular fingerprints and environmen-
tal monitoring [196,197]. These sensors leverage surface plasmon polaritons (SPPs)—
electromagnetic waves coupled to electron oscillations at metal–dielectric interfaces—to
confine and guide light at subwavelength scales. Plasmonic waveguides, designed with
materials like gold, silver, or emerging MIR-compatible alternatives (e.g., graphene or
doped semiconductors), enhance light–matter interactions, thus improving detection lim-
its [42,198]. Their compact size, tunable response, and compatibility with integrated
photonic circuits make them ideal for developing portable and efficient sensing platforms
in applications ranging from environmental monitoring to medical diagnostics [199].

David et al. proposed LWIR/MIR PICs by integrating photolithographic patterning of
organic polymers with dielectric-loaded surface plasmon polariton (DLSPP) waveguides
(Figure 14a) [196]. This configuration comprised a dielectric ridge positioned above a
metallic layer. The cross-sectional and top-view of the E- field distribution for a polyethy-
lene ridge is depicted in Figures 14b and 14c, respectively. Notably, polyethylene exhibits
advantageous optical characteristics, such as a low refractive index and extensive trans-
parency spanning from the MIR range to 200 µm. The entire development process was
explored, covering the design, fabrication, and analysis of polyethylene-based DLSPP
waveguides, highlighting their plasmonic behavior and mode-guiding performance in
-bend configurations for the first time. These waveguides demonstrated minimal bending
losses and enable propagation over significant straight-section lengths, setting the stage for
intricate on-chip MIR photonic systems. Additionally, DLSPPs provided precise control
over mode properties, including propagation length and guiding efficiency, making them
suitable for advanced applications in sensing and telecommunications through compact,
chip-scale devices.
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Graphene-based plasmonics, which can confine MIR light beyond the optical diffrac-
tion limit, present a promising approach for photonic chip integration. However, existing
designs are limited to propagation lengths of approximately 10 µm at a working frequency
of 20 THz. Huang et al. introduced a waveguide structure utilizing multilayer graphene
metamaterials (MLGMTs) that support the fundamental volume plasmon polariton mode
by coupling plasmon polaritons across graphene sheets on a silicon nano-rib structure [200].
The 3D view and cross-sectional view of the waveguide is shown in Figures 14d and 14e,
respectively. Due to the high conductivity of MLGMTs, the guided mode exhibited sig-
nificantly lower loss compared to conventional graphene-based plasmonic waveguides
with similar mode sizes. The proposed design achieved propagation lengths of around
20 µm—four times the current limitation—while maintaining a mode area as small as
10−6 A0, where A0 represents the diffraction-limited mode area. Detailed investigations of
the modal characteristics based on geometric and material parameters were conducted to
optimize device performance. The robustness of the structure was also evaluated against
fabrication imperfections. Furthermore, crosstalk analysis between adjacent waveguides
confirmed strong mode confinement, enabling high-density on-chip integration. This de-
sign provided a viable approach for developing tunable, large-area photonic integrated
circuits [200].

4.2. Optical Fiber-Based Sensors

MIR optical fiber-based sensors have garnered significant attention due to their capa-
bility to operate in the MIR spectral range, which is highly suited for applications requiring
high sensitivity and specificity [201]. Optical fibers designed for this spectral range serve
as efficient waveguides, enabling the remote delivery and collection of MIR radiation [202].
Unlike conventional free-space systems, fiber-based sensors offer enhanced flexibility, com-
pactness, and compatibility with complex environments, paving the way for their use in
harsh industrial settings, medical diagnostics, and environmental monitoring [203,204].

The performance of MIR fiber-based sensors depends significantly on the material
properties of the fiber. Traditional silica fibers are unsuitable for this range due to their high
attenuation beyond 2.4 µm. Instead, specialized materials such as ChGs, fluoride glasses,
and hollow-core fibers have emerged as leading solutions [205,206]. Chalcogenide fibers,
composed of elements like sulfur, selenium, and tellurium, exhibit excellent transparency
and robustness in the MIR spectrum, making them ideal for chemical sensing [207]. Fluoride
fibers, on the other hand, provide lower losses in the short-wave MIR region, catering to
applications requiring minimal signal attenuation. Hollow-core fibers, which guide light
through air or gas-filled cores, offer even broader transmission windows with reduced
material absorption, making them suitable for high-power and long-distance sensing [208].

MIR fiber-based sensors are particularly valuable in detecting trace gases, hazardous
chemicals, and biomolecules, owing to the strong molecular fingerprints in the MIR range.
They are widely employed in spectroscopy-based systems, where the fiber enables pre-
cise light delivery and sample interrogation. Innovations in fiber fabrication techniques
and integration with microfluidics and photonic chips have further expanded their appli-
cation scope, enabling real-time monitoring in fields like healthcare diagnostics, where
non-invasive blood glucose sensing and cancer biomarker detection are gaining traction.
Similarly, environmental monitoring benefits from their ability to detect pollutants like
methane and carbon dioxide with high accuracy [209]. Despite their promise, MIR optical
fiber-based sensors face challenges such as fabrication complexity, fragility of advanced
materials, and high costs. Research efforts are focused on improving the durability and
scalability of these fibers while reducing manufacturing expenses. With continuous ad-
vancements in materials science and integration technologies, the future of MIR optical
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fiber-based sensors looks bright, promising transformative applications across multiple
domains [210,211].

Recently, Shiryaev et al. highlighted the recent advancements in passive and active
optical waveguides crafted from high-purity ChGss, tailored for MIR fiber optic evanescent
wave spectroscopy of liquids and gases [212]. Innovative and highly sensitive fiber probes
were designed using selenide and telluride glass fibers (Figure 15a–c) connected to the
IR Fourier spectrometer using a lens system (Figure 15d). Additionally, radiation sources
emitting in the 4.2–6 µm wavelength range were developed using Pr(3+)- and Tb(3+)-doped
Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, enabling their application in all-fiber sensor
systems [212].
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spectrometer; 2—ZnSe focusing lenses; 3—chalcogenide fiber with polymer coating; 4—uncoated
fiber sensing segment; 5—container with the liquid sample; 6—HgCdTe detector; 7—amplifier.
(e) Image of the experimental setup used for in situ sensor testing. Absorption spectra of isopropyl
alcohol in water–alcohol mixtures: 1—pure water; 2—0.1% vol. isopropyl alcohol; 3—0.5% vol.;
4—1.0% vol.; 5—2.0% vol.; 6—3.0% vol.; 7—4.0% vol.; 8—5.0% vol [212].

In industrial production settings, one of the key challenges is the real-time measure-
ment of liquid chemical composition directly within the flow stream. To explore the
feasibility of such measurements using fiber probes, a pipeline setup was developed. This
system comprised soldered polypropylene pipes equipped with valves for flow rate control.
A submersible pump was used to maintain a liquid mixture flow at a linear velocity of
0.5–1 m/s. The fiber-optic sensor was securely installed into the pipeline using a threaded
plug and PTFE seal (Figure 15e, inset). The test liquid was a “water–isopropyl alcohol”
mixture with alcohol concentrations ranging from 1 to 10 vol.%. The sensor demonstrated
high sensitivity, linearity in its analytical signal, and robustness under turbulent flow con-
ditions, highlighting its potential for in-line monitoring of liquid chemical compositions in
industrial processes [212].

5. Applications of MIR Photonic Sensors
The MIR region offers significant potential for applications in biosensing, gas detection,

medical diagnostics, environmental monitoring, and more. Figure 16 represents the selected
material’s absorption peaks in the MIR range [213].
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5.1. Environmental Monitoring

Environmental monitoring is essential for understanding and addressing the chal-
lenges of greenhouse gases, air pollutants, and water contaminants [184]. One of the tools
that may be used for such applications is optical sensors operating on the MIR region.
Regarding detecting greenhouse gases, MIR sensors exceed in the detection of CO2. The
accelerating climate change is a big problem for the environment. CO2 should be moni-
tored not only in the air but also in underground storage systems. Researchers developed
methods for continuous environmental monitoring. One uses rare-earth-doped ChGss
as optical materials for MIR environmental sensors. These glasses, doped with Pr3+ and
Dy3+ ions, exhibit luminescence properties that match the CO2 absorption band at 4.3 µm.
ChGs exhibit high IR transmission (up to 25 µm) and low non-radiative relaxation, improv-
ing sensor efficiency. It has been demonstrated that with these materials, a sensitivity of
15 ppmv can be achieved [214].

Moreover, Butt et al. presented a suspended slot membrane waveguide based on a
Ge-on-SOI platform for CO2 gas sensing [195]. The design targeted the CO2 absorption line
in the MIR spectrum at 4.23 µm, with a geometry optimized to maximize the evanescent
field ratio (EFR) while minimizing propagation losses. These enhancements significantly
improved sensitivity for evanescent field absorption-based gas detection. The optimized
waveguide achieved an EFR of 0.86, a low propagation loss of 1.07 dB/cm, and a high
sensitivity of approximately 1.12 × 10−4 ppm−1 for SSMW lengths as short as 0.9 cm.

In addition, regarding gas monitoring, it is worth mentioning the possibility of de-
tecting ammonia and nitric oxide by using MIR wavelengths. Atmospheric monitoring of
urban pollutants, including NH3 and NO, is critical for understanding air quality. Presented
solutions use techniques like photoacoustic spectroscopy (PAS) and quartz-enhanced PAS
(QEPAS), that allow even results of ppb resolution to be achieved. All these sensing devices
operate on quantum cascade (QC) and interband cascade (IC) lasers [215].
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Concerning water contamination, MIR Attenuated Total Reflectance (ATR) sensors
deserve to be highlighted. The detection of organic pollutants, particularly hydrocarbons,
in aqueous environments can be carried out by this method and achieve detection limits of
10–100 ppb in the concentration range. By using MIR ATR, it is possible to detect aromatic
compounds, alkyl halides, and phenols in oceans, lakes, and rivers [46].

5.2. Industrial Quality Control and Safety

MIR sensors play a critical role in industrial and chemical process control, offering
unmatched capabilities for detecting gases, liquids, and solids. Their high sensitivity,
selectivity, and robustness make them indispensable tools for maintaining quality and
safety standards across diverse industrial sectors. The integration of MIR sensors into
industrial systems enhances process safety and minimizes environmental risks by enabling
continuous the monitoring and early detection of hazardous leaks or contaminants. Gases
such as CO, CO2, CH4, and SO2 exhibit strong fundamental absorption features in the
MIR range, which are orders of magnitude stronger than their NIR overtones, and due to
their distinct spectra of different molecules, the cross interference is minimized [216]. An
exemplary gas sensor presented by Dong et al. can be built by using a single broadband
light source covering the absorption bands of CO (4.65 µm), CO2 (4.26 µm), and CH4

(3.31 µm) and multiple pyroelectric detectors mounted on a rotating disc controlled via a
stepper motor, enabling sequential gas detection. It could find applications in coal mine
safety, where monitoring gases like CO, CO2, and CH4 is critical to prevent accidents and
ensure worker safety. The presented sensor achieved detection limits of 2.96 ppmv (CO),
4.54 ppmv (CO2), and 2.84 ppmv (CH4) [217].

Beneitez et al. introduced a novel evanescent wave sensing platform operating in
the 6.5 to 7.5 µm wavelength range, demonstrated for the detection of toluene in aqueous
solutions [218]. The system featured a Ge-on-Si waveguide with a hydrophobically func-
tionalized mesoporous silica cladding and integrated microlenses for alignment-tolerant
optical coupling to a tunable laser spectrometer. The functionalized cladding enhanced
the enrichment of apolar analytes while minimizing water interference with the evanes-
cent wave. Performance evaluation with aqueous toluene standards achieved an LOD
of 7 ppm. Adsorption and desorption profiles followed Freundlich isotherms, exhibiting
rapid equilibration and response times of just a few seconds, highlighting its potential for
real-time water quality monitoring. Further improvements in LOD are expected with re-
ductions in spectrometer noise, currently at a relative standard deviation of approximately
10−2 A.U [218].

5.3. Biomedical and Clinical Diagnostics

It is also worth mentioning that the MIR wavelength region can also be useful in other
sensing applications than environmental monitoring. Biomedical and clinical diagnostics is
also a very big market for optical sensors [4,6]. Fortunately, MIR sensors are already finding
applications in these areas. MIR sensors play a significant role in pharmaceutical testing.
The already-known techniques as FTIR and ATR combined with ChGs offer an efficient
and versatile solution for non-destructive pharmaceutical testing and analyzing hazardous
chemicals, aqueous systems, and complex solid or liquid formulations. This method
has been used for more than 25 years and is already well-developed [219]. However,
with the advancement of technological possibilities, new ideas emerge. The trend for
miniaturization, faster measurements, and processing of more data at the same time
also applies to MIR sensors. Nevertheless, there have been demonstrations of MIR chip-
scale chemical sensors, realized on the PIC technological platform of SOI. By proposing
an innovative air-clad pedestal waveguide geometry, the transparency window for this
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material platform can be extended and reach wavelengths that match absorption regions
for certain chemicals (gases or liquids), so an EWS mechanism can be implemented [220].

Koyama et al. presented an MIR spectroscopic system featuring a high-speed,
wavelength-swept, and pulsed QCL designed for healthcare applications, including blood
glucose measurement [6]. The system incorporated an ATR setup with a QCL equipped
with a micro-electromechanical system (MEMS)-scanning grating, hollow optical fibers,
and an InAsSb detector. By integrating multiple comb-shaped spectra with slight timing
shifts, a continuous spectrum was generated. This method eliminated the need for complex
calculations, enabling real-time acquisition of absorption spectra. Increasing the number of
integrated spectra significantly improved the signal-to-noise ratio, allowing us to measure
the absorption spectrum of a 0.1% aqueous glucose solution. Furthermore, the absorption
spectra of human lips were recorded, demonstrating the potential for blood glucose esti-
mation using a model equation derived through partial least squares regression analysis.
Compared to conventional Fourier-transform infrared-based systems and other tunable
QCL spectroscopic setups with large, movable gratings, this MEMS-scanning grating QCL
system offered advantages in compactness and cost efficiency [6].

5.4. Non-Invasive Glucose Monitoring

MIR photonic techniques for non-invasive glucose monitoring leverage the unique
properties of glucose molecules in the MIR region of the electromagnetic spectrum. One way
to monitor glucose by MIR sensors is to use photoacoustic spectroscopy (PAS). Modulated
MIR light induces thermal expansion in glucose molecules, generating acoustic waves
proportional to glucose concentration. It is an innovative idea for a non-invasive way
of in vivo glucose monitoring. However, it still needs to improve the penetration depth
of MIR light and the signal interference from other blood components, though it looks
promising [30,221]. Kitazaki et al. introduced MIR passive spectroscopic imaging as a
novel approach for remote glucose measurement [32]. For the first time, spectroscopic
imaging of thermal radiation from the human body successfully detected glucose-induced
luminescence from a distance. Additionally, glucose emission spectra recorded from the
wrist at regular intervals over 60 min demonstrated a strong correlation with blood glucose
levels measured using an invasive sensor. This breakthrough technology holds promise for
real-time monitoring of diabetic patients, enabling the detection of nocturnal hypoglycemia
and hyperglycemia in broader populations. Furthermore, this approach could pave the way
for innovations in remote biochemical sensing, allowing the detection of various substances
without direct contact [32].

Nevertheless, not only PAS methods are incorporated for glucose detection. MIR
quantum cascade laser spectroscopy can also be used for predicting blood glucose levels
non-invasively in live human subjects, targeting glucose-specific vibrational absorption
features within the “fingerprint region”. By employing a hollow-core fiber-based optical
system and chemo-metric analysis using partial least squares regression, clinically accurate
glucose predictions 84% of the time within a range of 80–160 mg/dL can be achieved.
However, this method also meets the problem that MIR light cannot penetrate deep into
tissues [222]. It is also worth mentioning that by using a tunable MIR quantum cascade
laser, it is possible to develop a sensor that would aim not only to measure glucose but
also lactate, and triglycerides in blood serum. A tunable QCL operating in the range of
1030–1230 cm−1 accesses the unique absorption features of the target analytes [223].

5.5. Cancer Detection and Biomarker Analysis

MIR spectroscopy is increasingly recognized for its transformative potential in biomed-
ical applications, particularly in non-invasive and rapid cancer detection. One notable
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advancement is the Digistain method, a clinically oriented technique that employs an
MIR imaging system for the precise chemical analysis of biopsy tissues. This method
generates diffraction-limited chemical images by measuring MIR light absorption, enabling
the identification of specific molecular biomarkers that differentiate cancerous tissues from
healthy ones.

The Digistain system stands out for its speed and cost-efficiency, offering a stream-
lined alternative to traditional histopathology. Unlike conventional methods, which require
intricate processes such as tissue slicing, staining, and subjective visual grading by patholo-
gists, the Digistain technique provides reproducible and objective results. This innovative
approach holds significant promise for improving diagnostic accuracy and reducing the
time and expense associated with cancer detection [224–226].

The method mentioned above is already well-developed; however, other techniques
can also be used for cancer detection. With the development of tunable QCL MIR light
sources, new ideas and applications are emerging where they can be utilized. An innovative
way of realizing vibrational spectroscopy for cancer detection can be realized by combining
scattering-type Scanning Near-field Optical Microscopy (s-SNOM) with Quantum Cascade
lasers. It allows ultra-high resolution and breaking the diffraction limit to be achieved, but
its main disadvantage is that the system is very expensive and sophisticated [226].

Methods such as FTIR spectroscopy can also be used to identify biochemical changes
in tissues and cells by analyzing their molecular vibrations. It may be used to detect several
cancers, including those of the breast, colon, liver, and cervix. Its main advantages are
that the method is reagent-free, rapid, non-invasive, and cost-effective, requiring minimal
tissue samples [227]. Regarding non-invasive tools for early skin cancer detection, MIR
spectroscopy also has a lot to offer. Fiber-optic evanescent wave spectroscopy (FEWS) can
be used for detecting skin cancers such as melanoma, basal cell carcinoma (BCC), and
squamous cell carcinoma (SCC), utilizing silver halide and bromide (AgClBr) flexible MIR
optical fiber probes [160]. Nevertheless, methods employing other optical fiber materials
such as chalcogenides are also being developed [228]. MIR methods surpass traditional
histopathology by offering a non-invasive, objective, and real-time molecular analysis
of tissues.

5.6. Defense and Security

MIR photonics is an essential and rapidly advancing field in security and defense,
providing unparalleled capabilities in threat detection, imaging, communication, and coun-
termeasures. Operating in the MIR wavelength range leverages the ability of IR radiation
to perceive heat signatures and molecular fingerprints, making it particularly valuable in
both military and homeland security applications. One of the most prominent uses of MIR
photonics in defense is in IR imaging systems [229,230]. These systems allow for the detec-
tion of heat emitted by objects, which is especially useful for surveillance, reconnaissance,
and target acquisition in low-visibility conditions such as nighttime operations, or through
obscurants like smoke, fog, and dust [231]. Thermal IR cameras using MIR wavelengths
are crucial for monitoring borders, identifying potential threats, and enhancing battlefield
awareness by providing real-time thermal images [230].

In addition to imaging, MIR photonics is instrumental in chemical sensing and iden-
tification. Many toxic chemicals, explosives, and harmful gases have distinct absorption
features in the MIR range, allowing sensors to identify and monitor them with high preci-
sion. This makes MIR technology highly effective for detecting chemical warfare agents,
improvised explosive devices (IEDs), and environmental hazards, contributing signifi-
cantly to both defense operations and counter-terrorism efforts [232,233]. Moreover, MIR
photonics are used in secure communication systems [234]. The unique properties of
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MIR wavelengths, such as their resistance to atmospheric interference and their ability to
transmit large amounts of data over optical fibers, make them highly suitable for secure,
long-range communications in military networks [235,236].

VIGO Photonics has pioneered an innovative technology for manufacturing high-
performance instruments designed to efficiently sense IR radiation across a wide spectrum,
ranging from 2 to 16 µm [237]. These advanced detectors offer flexibility by operating at
ambient temperatures or being enhanced with thermoelectric cooling systems for greater
precision. Built for durability, they are engineered to perform reliably in extreme conditions,
such as the intense heat of desert environments or the high-acceleration forces experienced
in cutting-edge fighter jets. Tanks and military vehicles generate substantial heat, primarily
in the MIR range, due to their engines and operational equipment. For such scenarios, long-
wave infrared (LWIR) spectrum is recommended, especially in ground combat situations
where factors like smoke or burning vehicles are prevalent. LWIR detectors excel at identify-
ing and differentiating these heat-emitting objects from their environment. VIGO Photonics’
advanced detection technology allows for the precise, efficient targeting of moving vehicles,
providing exceptional accuracy in the moments leading up to an attack [237].

Directional Infrared Countermeasures (DIRCM) and Common Infrared Countermea-
sures (CIRCM) are advanced anti-missile defense systems designed to protect aircraft from
infrared-guided missiles [238,239]. DIRCM works by detecting incoming missile threats
and then using a high-intensity laser to disrupt the missile’s IR seeker, effectively blinding
it and steering it off course. CIRCM, a next-generation system, operates similarly but is
more compact and modular, designed to protect a wide range of military aircraft with
enhanced flexibility. Both systems rely on real-time detection and jamming, providing a
critical layer of defense against heat-seeking missiles [240]. A small company based in
Herndon, Virginia, focuses on developing and manufacturing fiber-optic devices for MIR
applications [241]. A demonstration of IRFlex’s Laser-Based IRCM technology is presented
in Figure 17.
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6. Challenges, Limitations, and Outlook
SOI is a strong contender for integrated photonics platforms, benefiting from its

well-established technological processes derived from CMOS electronics, the extensive
availability of research facilities and foundries, and its ability to integrate control electronics
on the same substrate [242,243]. SOI is particularly effective for light transmission at
wavelengths above 3.5 µm, though silicon oxide’s absorption beyond this range presents
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challenges. Addressing this issue often involves removing the silicon oxide layer beneath
the waveguides, which complicates fabrication and compromises the mechanical stability
of waveguides mounted on membranes or pillars [195]. Additionally, considerations such
as Bragg wavelengths and lateral leakage arise when waveguides are supported by grid
structures. Using submicron grids introduces further challenges in photolithography and
etching, complicating wafer separation and subsequent optoelectronic packaging [244].

Even if silicon oxide’s absorption issue is resolved, silicon can transmit optical signals
only up to 8 µm. Expanding the spectral range may involve germanium-based platforms.
However, simple germanium waveguides on silicon substrates do not extend the spectral
range due to silicon’s absorption above 8 µm. Other challenges include the significant
lattice mismatch between Ge and Si layers, surface roughness of the germanium layer,
high dislocation density, and low refractive index contrast between Ge and Si [245,246].
To exploit the broader spectrum of germanium beyond 8 µm, the silicon layer beneath
must be removed. This solution, while effective, results in components that are mechan-
ically fragile when mounted on membranes or gratings. Additionally, these fabrication
processes are intricate and present scalability challenges [247], compounded by the limited
commercial availability of germanium substrates. Alternative platforms, such as those
based on chalcogenides, halides, or heavy metal oxides, also face significant hurdles [248].
These materials are often incompatible with CMOS processes, leading to limited equipment
availability and underdeveloped manufacturing techniques, which increase production
costs [2,20]. Chalcogenides, in particular, pose an additional concern due to their toxic-
ity [246]. However, in 2007, a low-loss fabrication technique for single-mode chalcogenide
strip waveguides that was fully compatible with Si-CMOS processing was proposed [249].
Utilizing lift-off as a novel patterning method for ChG films, this approach offered several
key advantages: seamless integration with Si-CMOS workflows, the ability to produce
submicron-scale single-mode waveguides, and significantly reduced sidewall roughness.
High-index-contrast Ge23Sb7S70 strip waveguides fabricated using this method exhibited
exceptional uniformity in propagation loss, achieving the lowest reported loss. Addition-
ally, the fabrication of small-core Ge23Sb7S70 rib waveguides was demonstrated via lift-off,
with loss values below 0.5 dB/cm [249].

The development of a passive integrated circuit designed for specific tasks, such as
measurement, is only one step toward developing a complete sensor. For full functionality,
the PIC must interface with an optical signal source, and the output signal must be detected,
converted into electrical current, and further processed by electronic systems. Additionally,
the entire device must be isolated from environmental influences and thermally stabilized.
Each of these requirements presents distinct challenges. Monolithic integration of PICs
with detector lasers on advanced silicon and germanium platforms for the MIR range
remains unfeasible. While monolithic integration has been successfully achieved for group
III–V material platforms [250,251], these materials are less suited for MIR photonics due to
inherent limitations, preventing them from dominating this domain.

For passive platforms such as silicon and germanium, heterogeneous or hybrid in-
tegration methods, such as wafer-to-wafer or chip-to-wafer bonding, offer a solution. In
this approach, passive and active components are manufactured separately—often in
different production lines—before being combined. While effective, this method signifi-
cantly increases the complexity of fabrication, reduces scalability, and raises production
costs [112,252]. Its key advantage is the elimination of the need for active alignment during
assembly [252]. Another challenge in developing miniaturized systems for MIR photon-
ics is the requirement for specialized, efficient power supplies and control electronics to
operate compact QCL lasers effectively.
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Devices incorporating PICs with QCD lasers and PDs face significant challenges
related to temperature stabilization. Active components, which generate substantial heat,
have specific operational temperature ranges and require effective cooling mechanisms.
Efficient heat dissipation and distribution across the thermoelectric module (TEM) are
essential [253]. Integrating lasers into a PIC necessitates the development of structures,
such as heat-conductive elements in the waveguide layer, to direct heat away from active
components and into the substrate [254]. Without proper thermal management, lasers
may fail to operate correctly, and passive components, like ring resonators, could become
misaligned due to temperature fluctuations in the circuit.

In biosensors, waveguide surfaces can be biofunctionalized with receptors that bind to
specific analytes, enabling high specificity and sensitivity [255,256]. These sensors operate
at a single wavelength selected to match the analyte’s absorption characteristics. When
the analyte interacts with the receptor, the evanescent field detects this binding by ob-
serving a reduction in the transmitted signal. Sensitivity can be enhanced by increasing
the waveguide’s interaction area, but larger dimensions may reduce the evanescent field
strength [257]. Spectroscopic sensors differ in that they do not use receptors or require
surface biofunctionalization. Instead, they rely on a broadband optical source to analyze
analytes near the waveguide surface through the evanescent field. These sources are partic-
ularly challenging to implement in the MIR range. The resulting spectrum often contains
multiple features, requiring complex decoding that can be influenced by environmental
variability [258].

A practical limitation in the development of MIR PICs is the scarcity of suitable
substrates. Beyond SOI substrates, alternatives are difficult to procure, with delivery times
stretching over months and inconsistent quality. This is due to the complex fabrication
processes for these substrates compared to standard electronic ones and their relatively
limited market demand.

Despite the larger components required for MIR wavelengths compared to visible or
NIR wavelengths, PICs in this range still involve small critical dimensions. This is particu-
larly true for sensor designs employing ring resonators, slot waveguides, or subwavelength
gratings. Manufacturing such components, which have features at the scale of hundreds
of nanometers, demands advanced lithographic techniques. Electron beam lithography is
often used for research and prototyping due to its precision in achieving features as small
as tens of nanometers without requiring expensive masks. However, its low throughput,
with single processes taking hours, makes it impractical for even limited-scale production.
Addressing this issue requires investment in costly wafer steppers or scanners. Addition-
ally, improving lithographic quality necessitates using thin resist layers. While thin resists
offer high pattern fidelity, they may lack the durability required for etching waveguide
layers, which are typically thicker than those in CMOS technologies.

Optoelectronic packaging represents another barrier to reducing costs and improving
the scalability of MIR PICs. This process is intricate, involving numerous steps that are
difficult to automate. For small-scale prototyping, manual packaging is commonly used,
but it significantly increases costs and limits scalability. The lack of standardized PIC
parameters further complicates automation, as it hinders the packaging of circuits produced
by different foundries [244].

Future advancements in MIR photonic sensors are leveraging materials like graphene
and metamaterials for enhanced performance. Graphene, with its broadband optical ab-
sorption and tunable electronic properties, allows dynamic control through electrostatic
gating or chemical doping, making it ideal for tunable MIR detectors and modulators [259].
Its strong plasmonic resonances in the MIR range also enhance light–matter interactions,
enabling high-sensitivity PDs and modulators. However, challenges such as high optical
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losses and integration complexity remain. Metamaterials, with subwavelength features,
offer precise control over electromagnetic waves, enabling sensitive MIR detection and
functionalities like beam steering and spectral filtering. They also provide perfect absorbers
for applications like thermal imaging and gas sensing. Though promising, metamate-
rials face challenges in scalability, optical losses, and integration. Both graphene and
metamaterials hold significant potential for advancing MIR photonic sensors, with future
research focused on overcoming fabrication and integration hurdles to fully exploit their
capabilities [260,261].

The integration of artificial intelligence (AI) and machine learning (ML) with MIR
photonic sensors holds great promise for advancing complex sample analysis, particularly
in multi-component gas mixture detection [262]. AI-powered algorithms can significantly
improve spectral deconvolution, enabling the precise identification of overlapping ab-
sorption features from multiple gases [263]. This is particularly beneficial for real-time
environmental monitoring, industrial safety, and medical diagnostics, where accurate quan-
tification of trace gases is critical. ML models trained on large spectral datasets can enhance
sensor calibration, compensate for temperature and pressure variations, and improve sensi-
tivity to low-concentration analytes. Additionally, AI-driven edge computing can allow
for real-time, on-site data processing, reducing reliance on centralized analytical facilities
and enabling autonomous decision-making. These advancements suggest that combin-
ing MIR photonic sensing with AI will lead to next-generation smart sensors capable of
high-precision, real-time multi-gas analysis [1,264].

7. Concluding Remarks
MIR photonic sensors have emerged as powerful tools in the field of chemical sensing,

due to their ability to operate in a spectral range (2–20 µm) where many organic compounds
exhibit unique absorption signatures. This allows MIR sensors to detect specific chemical
compositions with high sensitivity and selectivity. Key technological advances have focused
on making sensors smaller, more sensitive, and better integrated with electronic systems.
Progress in MIR-specific materials, such as QCLs, ICLs, and transparent materials like
chalcogenides and fluoride glasses, has paved the way for more compact and cost-effective
MIR sensing devices. These innovations have expanded MIR applications to areas including
environmental monitoring, biomedical diagnostics, industrial process control, and defense.
However, significant challenges remain, including the high cost of MIR components, limited
availability of suitable materials, and issues with system integration and durability for
field use.

MIR photonic sensors hold immense potential across various industries. In healthcare,
for example, MIR sensors can enable rapid, non-invasive diagnostics through the detection
of trace biomarkers in breath or body fluids. Environmental monitoring also stands to
benefit, as MIR sensors can identify greenhouse gases and pollutants with a high degree of
specificity. Similarly, MIR sensors in industrial settings enhance process control, leading
to greater efficiency and precision in sectors such as petrochemical processing and food
safety. Given their broad applicability and the growing demand for accurate, real-time
sensing, MIR photonic sensors are well-positioned to drive advances in public health,
environmental monitoring, and industrial productivity.

Future developments in MIR photonic sensors are expected to arise from continued
advancements in material science, fabrication techniques, and photonic integration. Emerg-
ing materials such as graphene, metamaterials, and plasmonic waveguides show promise
in further enhancing MIR sensor sensitivity. Integrated photonic circuits will also likely
play a key role, allowing for smaller, lower-power, multi-functional sensor designs. As
sensor technology evolves, the integration of data processing methods will likely improve
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real-time analysis and enable more complex applications. Together, these advancements
could reshape the MIR sensor field, making it more versatile, robust, and widely applicable
across diverse fields in the years to come.
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