Time-Interval-Based Collision Detection for 4WIS Mobile Robots in Human-Shared Indoor Environments
<p>The 4WIS mobile robot platform used in this study.</p> "> Figure 2
<p>Hardware architecture of mobile robot.</p> "> Figure 3
<p>One of the primary driving methods employed by 4WIS mobile robot. (<b>a</b>) Illustration of the Parallel mode; (<b>b</b>) illustration of the bicycle model for Parallel mode.</p> "> Figure 4
<p>Wheel model in 3D coordinate system.</p> "> Figure 5
<p>Kinematic model of Parallel mode.</p> "> Figure 6
<p>Kinematic model of Ackermann mode.</p> "> Figure 7
<p>Flowchart for controlling a mobile robot.</p> "> Figure 8
<p>Quadrant-based steering angle determination for wheel control.</p> "> Figure 9
<p>Example of mobile robot trajectory calculation 3 s later in different speed setting.</p> "> Figure 10
<p>Overall structure of mobile robot trajectory calculation.</p> "> Figure 11
<p>(<b>a</b>) Preset human size parameters; (<b>b</b>) real-time human detection results.</p> "> Figure 12
<p>Human detection algorithm architecture.</p> "> Figure 13
<p>Visualization of real-time trajectory prediction results.</p> "> Figure 14
<p>Trajectory prediction system architecture.</p> "> Figure 15
<p>Collision detection approaches: (<b>a</b>) Traditional path-based detection; (<b>b</b>) Conventional method limitations; (<b>c</b>) Unnecessary collision responses; (<b>d</b>) Proposed trajectory prediction method.</p> "> Figure 16
<p>Collision detection system visualization.</p> "> Figure 17
<p>Overall flowchart of proposed collision detection system.</p> "> Figure 18
<p>HD map of experimental environment. (<b>a</b>) A 3D point cloud visualization of the test environment; (<b>b</b>) Top-view representation of the indoor space showing the corridor and room layouts.</p> "> Figure 19
<p>Environment mapping and localization system: (<b>a</b>) NDT matching visualization for real-time localization; (<b>b</b>) generated path planning overlay on the constructed HD map.</p> "> Figure 20
<p>First experimental setup and real-time visualization of the mobile robot path.</p> "> Figure 21
<p>First experimental setup and real-time visualization of mobile robot path.</p> "> Figure 22
<p>Comparison between command velocities and actual velocities of a 4WIS mobile robot in Ackermann mode during autonomous driving: (<b>a</b>) 2 km/h, (<b>b</b>) 3 km/h, (<b>c</b>) 4 km/h, and (<b>d</b>) 5 km/h. The red lines represent command values and blue lines show the actual robot response. The results demonstrate increasing trajectory tracking errors as the autonomous driving speed increases, particularly noticeable in both the linear velocity (linear.x) and angular velocity (angular.z) measurements.</p> "> Figure 23
<p>Human detection performance in Parallel and Ackermann modes at various speeds.</p> "> Figure 24
<p>Time-to-collision prediction for multiple human positions in Parallel mode.</p> "> Figure 25
<p>Human tracking results: (<b>a</b>) mobile robot speed of 2 km/h, (<b>b</b>) mobile robot speed of 3 km/h.</p> "> Figure 26
<p>Comparison of collision detection activation time between conventional and proposed methods at different speeds of mobile robot.</p> ">
Abstract
:1. Introduction
- Development of a time-interval-based collision detection system that integrates robot kinematics with human trajectory prediction, enabling proactive obstacle avoidance;
- Implementation of a stable human tracking method utilizing 4WIS Parallel mode capabilities, which maintains consistent sensor orientation during navigation;
- Experimental validation of the system’s effectiveness in realistic indoor scenarios, demonstrating improved navigation efficiency and reliability.
2. Related Works
2.1. Indoor Delivery Robot Systems
2.2. 4WIS Mobile Robot Systems
2.3. Human Detection and Tracking
2.4. Collision Avoidance in Indoor Environments
3. Materials and Methods
3.1. Modelings of 4WIS Mobile Robot
3.2. Hardware Architecture
3.3. Driving Mode of 4WIS Mobile Robot
3.4. Kinematics of Parallel Mode
- r: the radius of the wheel;
- : the speed of the wheel;
- : the direction of the wheel;
- v: the velocity of the wheel;
- : the rotational speed of the wheel.
3.5. Control System Architecture
3.6. Mobile Robot Trajectory Calculation
3.7. Human Detection
3.8. Human Trajectory Prediction
- Prediction step: estimates future states based on the current state and system model;
- Update step: refines these predictions using actual measurements.
3.9. Time Interval Collision Detection
3.10. System Integration and Workflow
4. Results
4.1. Experiments Setup
- Blue position: 0.5 m away;
- Green position: 1.75 m away;
- Orange position: 3.5 m away.
- Blue position: 1.45 m away;
- Green position: 3.25 m away;
- Orange position: 5.0 m away.
4.2. Experiments 1
4.3. Experiments 2
5. Discussion and Conclusions
- 1.
- Integration of machine learning approaches to improve the prediction accuracy of human movement patterns in complex scenarios [62];
- 2.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, V.; Malviya, B.; Arya, S. An overview of electronic commerce (e-Commerce). J. Contemp. Issues Bus. Gov. 2021, 27, 665–670. [Google Scholar]
- Sun, L.; Chen, J.; Li, Q.; Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 2020, 11, 5366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, L.; Wei, H.; Tan, X.; Zhou, W.; Li, W.; Qian, Y. Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. J. Clean. Prod. 2022, 46, 130988. [Google Scholar] [CrossRef]
- Ventriglio, A.; Torales, J.; Castaldelli-Maia, J.; De Berardis, D.; Bhugra, D. Urbanization and emerging mental health issues. CNS Spectrums 2021, 26, 43–50. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Arvin, M.B.; Nair, M. Urbanization, transportation infrastructure, ICT, and economic growth: A temporal causal analysis. Cities 2021, 115, 102343. [Google Scholar] [CrossRef]
- Mangiaracina, R.; Perego, A.; Seghezzi, A.; Tumino, A. Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: A literature review. Int. J. Phys. Distrib. Logist. Manag. 2019, 49, 901–920. [Google Scholar] [CrossRef]
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-Mile Delivery Concepts: A Survey from an Operational Research Perspective. Spectrum 2021, 43, 1–58. [Google Scholar] [CrossRef]
- Gu, Q.; Fan, T.; Pan, F.; Zhang, C. A vehicle-UAV operation scheme for instant delivery. Comput. Ind. Eng. 2020, 149, 106772. [Google Scholar] [CrossRef]
- Bakach, I.; Campbell, A.M.; Ehmke, J.F. A two-tier urban delivery network with robot-based deliveries. Networks 2021, 78, 461–483. [Google Scholar] [CrossRef]
- Pamucar, D.; Gokasar, I.; Ebadi Torkayesh, A.; Deveci, M.; Martínez, L.; Wu, Q. Prioritization of unmanned aerial vehicles in transportation systems using the integrated stratified fuzzy rough decision-making approach with the Hamacher operator. Inf. Sci. 2023, 622, 374–404. [Google Scholar] [CrossRef]
- Harrington, B.D.; Voorhees, C. The Challenges of Designing the Rocker-Bogie Suspension for the Mars Exploration Rover; Technical Report; NASA Center for AeroSpace Information (CASI): Cleveland, OH, USA, 2004. [Google Scholar]
- Alakshendra, V.; Chiddarwar, S.S. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dyn. 2017, 87, 2147–2169. [Google Scholar] [CrossRef]
- Chang-Soo, H.; Sang-Ho, L.; Sung-Kyu, H.; Un-Koo, L. Four-Wheel Independent Steering (4WIS) System for Vehicle Handling Improvement by Active Rear Toe Control. J. Automot. Eng. 1999, 42, 947. [Google Scholar]
- Zheng, H.; Yang, S. A Trajectory Tracking Control Strategy of 4WIS/4WID Electric Vehicle with Adaptation of Driving Conditions. Appl. Sci. 2019, 9, 168. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Li, X.; Liu, F.; He, Z.; Yao, Y.; Ruan, H.; Zhang, T. MPC-based high-speed trajectory tracking for 4WIS robot. ISA Trans. 2022, 123, 413–424. [Google Scholar] [CrossRef]
- Danwei, W.; Feng, Q. Trajectory planning for a four-wheel-steering vehicle. In Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), Seoul, Republic of Korea, 21–26 May 2001; pp. 3320–3325. [Google Scholar]
- Yim, S. Comparison among Active Front, Front Independent, 4-Wheel and 4-Wheel Independent Steering Systems for Vehicle Stability Control. Electronics 2020, 9, 798. [Google Scholar] [CrossRef]
- Ye, Y.; He, L.; Zhang, Q. Steering Control Strategies for a Four-Wheel-Independent-Steering Bin Managing Robot. IFAC-PapersOnLine 2016, 49, 39–44. [Google Scholar] [CrossRef]
- Mitchell, W.C.; Staniforth, A.; Scott, I. Analysis of Ackermann Steering Geometry; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Zhao, J.S.; Liu, X.; Feng, Z.J.; Dai, J.S. Design of an Ackermann-type steering mechanism. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2013, 227, 2549–2562. [Google Scholar]
- Malu, S.K.; Majumdar, J. Kinematics, localization and control of differential drive mobile robot. Glob. J. Res. Eng. 2014, 14, 1–9. [Google Scholar]
- Choi, M.W.; Park, J.S.; Lee, B.S.; Lee, M.H. The performance of independent wheels steering vehicle (4WS) applied Ackermann geometry. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Republic of Korea, 14–17 October 2008; pp. 197–202. [Google Scholar]
- Wang, J.; Wang, Q.; Jin, L.; Song, C. Independent wheel torque control of 4WD electric vehicle for differential drive assisted steering. Mechatronics 2011, 21, 63–76. [Google Scholar]
- Hutabarat, D.; Rivai, M.; Purwanto, D.; Hutomo, H. Lidar-based Obstacle Avoidance for the Autonomous Mobile Robot. In Proceedings of the 2019 12th International Conference on Information and Communication Technology and System (ICTS), Surabaya, Indonesia, 18 July 2019; pp. 197–202. [Google Scholar]
- Petrie, G. An introduction to the technology: Mobile mapping systems. GeoInformatics 2010, 13, 32–43. [Google Scholar]
- Zou, Q.; Sun, Q.; Chen, L.; Nie, B.; Li, Q. A Comparative Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6907–6921. [Google Scholar] [CrossRef]
- Premebida, C.; Ludwig, O.; Nunes, U. LIDAR and vision-based pedestrian detection system. J. Field Robot. 2009, 26, 696–711. [Google Scholar] [CrossRef]
- Rudenko, A.; Palmieri, L.; Herman, M.; Kitani, K.M.; Gavrila, D.M.; Arras, K.O. Human motion trajectory prediction: A survey. Int. J. Robot. Res. 2020, 39, 895–935. [Google Scholar] [CrossRef]
- Welch, G. An Introduction to the Kalman Filter; Technical Report; University of North Carolina: Chapel Hill, NC, USA, 1995. [Google Scholar]
- Olsson, J.; Hellström, D.; Pålsson, H. Framework of Last Mile Logistics Research: A Systematic Review of the Literature. Sustainability 2019, 11, 7131. [Google Scholar] [CrossRef]
- Geng, C.; Mostefai, L.; Denai, M.; Hori, Y. Direct Yaw-Moment Control of an In-Wheel-Motored Electric Vehicle Based on Body Slip Angle Fuzzy Observer. IEEE Trans. Ind. Electron. 2009, 56, 1411–1419. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Yu, Y.; Zheng, L.; Li, W. Integrated lateral control for 4WID/4WIS vehicle in high-speed condition considering the magnitude of steering. Veh. Syst. Dyn. 2020, 58, 1711–1735. [Google Scholar] [CrossRef]
- Song, Y.; Shu, H.; Chen, X. Chassis integrated control for 4WIS distributed drive EVs with model predictive control based on the UKF observer. Sci. China Technol. Sci. 2020, 63, 397–409. [Google Scholar] [CrossRef]
- Cariou, C.; Lenain, R.; Thuilot, B.; Berducat, M. Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. J. Field Robot. 2009, 26, 504–518. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Taipalus, T.; Ahtiainen, J. Human detection and tracking with knee-high mobile 2D LIDAR. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), Karon Beach, Thailand, 7–11 December 2011; pp. 1672–1677. [Google Scholar]
- Kobilarov, M.; Sukhatme, G.; Hyams, J.; Batavia, P. People tracking and following with mobile robot using an omnidirectional camera and a laser. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, USA, 15–19 May 2006; pp. 557–562. [Google Scholar]
- Yan, Z.; Duckett, T.; Bellotto, N. Online learning for 3D LiDAR-based human detection: Experimental analysis of point cloud clustering and classification methods. Auton. Robot. 2020, 44, 147–164. [Google Scholar] [CrossRef]
- Yan, Z.; Duckett, T.; Bellotto, N. Online learning for human classification in 3D LiDAR-based tracking. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 864–871. [Google Scholar]
- Wang, Y.; Luo, G.; Zhang, H.; Wang, L.; Fang, D.; Jiang, Y. Extended Kalman Filter Trajectory Prediction Method Based on Constant Angular Velocity and Velocity Kinematics Model. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 4357–4362. [Google Scholar]
- Abbas, M.T.; Jibran, M.A.; Song, W.C.; Afaq, M. An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter. Trans. Emerg. Telecommun. Technol. 2020, 31, e3932. [Google Scholar] [CrossRef]
- Xie, G.; Gao, H.; Qian, L.; Huang, B.; Li, K.; Wang, J. Vehicle Trajectory Prediction by Integrating Physics- and Maneuver-Based Approaches Using Interactive Multiple Models. IEEE Trans. Ind. Electron. 2018, 65, 5999–6008. [Google Scholar] [CrossRef]
- Simon, D. Kalman filtering with state constraints: A survey of linear and nonlinear algorithms. IET Control Theory Appl. 2010, 4, 1303–1318. [Google Scholar] [CrossRef]
- Li, Q.; Li, R.; Ji, K.; Dai, W. Kalman Filter and Its Application. In Proceedings of the 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), Tianjin, China, 1–3 November 2015; pp. 74–77. [Google Scholar]
- D’Arco, M.; Fratelli, L.; Graber, G.; Guerritore, M. Detection and Tracking of Moving Objects Using a Roadside LiDAR System. IEEE Instrum. Meas. Mag. 2024, 27, 49–56. [Google Scholar] [CrossRef]
- Gasparetto, A.; Boscariol, P.; Lanzutti, A.; Vidoni, R. Path Planning and Trajectory Planning Algorithms: A General Overview; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 29. [Google Scholar]
- Zhang, H.y.; Lin, W.m.; Chen, A.x. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [Google Scholar] [CrossRef]
- Sánchez-Ibáñez, J.R.; Pérez-Del-Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots: A Review. Sensors 2021, 21, 7898. [Google Scholar] [CrossRef]
- Czubenko, M.; Kowalczuk, Z. A Simple Neural Network for Collision Detection of Collaborative Robots. Sensors 2021, 21, 4235. [Google Scholar] [CrossRef]
- Das, N.; Yip, M. Learning-Based Proxy Collision Detection for Robot Motion Planning Applications. IEEE Trans. Robot. 2020, 36, 1096–1114. [Google Scholar] [CrossRef]
- Qiangqiang, Y.; Tian, Y.; Wang, Q.; Wang, S. Control Strategies on Path Tracking for Autonomous Vehicle: State of the Art and Future Challenges. IEEE Access 2020, 8, 161211–161222. [Google Scholar]
- Peng, H.; Wang, W.; An, Q.; Xiang, C.; Li, L. Path Tracking and Direct Yaw Moment Coordinated Control Based on Robust MPC with the Finite Time Horizon for Autonomous Independent-Drive Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6053–6066. [Google Scholar] [CrossRef]
- Mohammed, A.; Schmidt, B.; Wang, L. Active collision avoidance for human–robot collaboration driven by vision sensors. Int. J. Comput. Integr. Manuf. 2017, 30, 970–980. [Google Scholar] [CrossRef]
- Zeng, L.; Bone, G.M. Mobile robot collision avoidance in human environments. Int. J. Adv. Robot. Syst. 2013, 10, 41. [Google Scholar] [CrossRef]
- Almasri, M.M.; Alajlan, A.M.; Elleithy, K.M. Trajectory planning and collision avoidance algorithm for mobile robotics systems. IEEE Sens. J. 2016, 16, 5021–5028. [Google Scholar] [CrossRef]
- Onnasch, L.; Roesler, E. A taxonomy to structure and analyze human–robot interaction. Int. J. Soc. Robot. 2021, 13, 833–849. [Google Scholar] [CrossRef]
- Coronado, E.; Kiyokawa, T.; Ricardez, G.A.G.; Ramirez-Alpizar, I.G.; Venture, G.; Yamanobe, N. Evaluating quality in human-robot interaction: A systematic search and classification of performance and human-centered factors, measures, and metrics towards an Industry 5.0. J. Manuf. Syst. 2022, 63, 392–410. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-Coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5135–5142. [Google Scholar]
- Yang, B.; Liang, M.; Urtasun, R. HDNET: Exploiting HD Maps for 3D Object Detection. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020. [Google Scholar]
- Patle, B.K.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A.J.D.T. A review: On path planning strategies for navigation of mobile robots. Def. Technol. 2019, 15, 582–606. [Google Scholar] [CrossRef]
- Pandey, A.; Pandey, S.; Parhi, D.R. Mobile robot navigation and obstacle avoidance techniques: A review. Int. Robot. Autom. J. 2017, 2, 22. [Google Scholar] [CrossRef]
- Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning. Sensors 2020, 20, 5493. [Google Scholar] [CrossRef]
- Li, Z.; Deng, J.; Lu, R.; Xu, Y.; Bai, J.; Su, C.Y. Trajectory-Tracking Control of Mobile Robot Systems Incorporating Neural-Dynamic Optimized Model Predictive Approach. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 740–749. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, B.; Warnell, G.; Stone, P. Motion Planning and Control for Mobile Robot Navigation Using Machine Learning: A Survey. Auton. Robot. 2022, 46, 569–597. [Google Scholar] [CrossRef]
- Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches. IEEE Access 2020, 8, 105139–105155. [Google Scholar] [CrossRef]
- Sato, M.; Mikawa, M.; Fujisawa, M.; Hiiragi, W. Social Norm-Based Collision Avoidance in Human-Robot Coexistence Environment. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 3801–3806. [Google Scholar]
- Polack, P.; Altché, F.; d’Andrea Novel, B.; de La Fortelle, A. The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 812–818. [Google Scholar]
- Gfrerrer, A. Geometry and kinematics of the Mecanum wheel. Comput. Aided Geom. Des. 2008, 25, 784–791. [Google Scholar] [CrossRef]
- Chakraborty, N.; Ghosal, A. Kinematics of wheeled mobile robots on uneven terrain. Mech. Mach. Theory 2004, 39, 1273–1287. [Google Scholar] [CrossRef]
- Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast Encoders for Object Detection from Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 12689–12697. [Google Scholar] [CrossRef]
- Li, J.; Luo, C.; Yang, X. PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 17567–17572. [Google Scholar] [CrossRef]
- Akai, N.; Morales, L.Y.; Takeuchi, E.; Yoshihara, Y.; Ninomiya, Y. Robust Localization Using 3D NDT Scan Matching with Experimentally Determined Uncertainty and Road Marker Matching. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1356–1363. [Google Scholar]
- Lemardelé, C.; Estrada, M.; Pagès, L.; Bachofner, M. Potentialities of Drones and Ground Autonomous Delivery Devices for Last-Mile Logistics. Transp. Res. Part E 2021, 149, 102289. [Google Scholar] [CrossRef]
Linear.x | Linear.y | Quadrant | Direction | Steering Angle (q) |
---|---|---|---|---|
+ | + | 1 | Front | + |
+ | − | 2 | Front | − |
− | + | 3 | Rear | + |
− | − | 4 | Rear | − |
Size | 738 mm × 500 mm × 338 mm |
Wheelbase | 494 mm |
Tread | 364 mm |
Ground Clearance | 107 mm |
Wheel Hub Radius | 100 mm |
Brake Type | Electronic brake |
Suspension Type | Swing arm suspension |
LiDAR channel/sampling rate | 16 ch, 10 hz |
Human walking speed | 2 km/h |
Robot velocity | 0∼3 km/h |
HD map resolution | 50 mm/pixel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Jang, H.; Ha, J.; Lee, D.; Ha, Y.; Song, Y. Time-Interval-Based Collision Detection for 4WIS Mobile Robots in Human-Shared Indoor Environments. Sensors 2025, 25, 890. https://doi.org/10.3390/s25030890
Kim S, Jang H, Ha J, Lee D, Ha Y, Song Y. Time-Interval-Based Collision Detection for 4WIS Mobile Robots in Human-Shared Indoor Environments. Sensors. 2025; 25(3):890. https://doi.org/10.3390/s25030890
Chicago/Turabian StyleKim, Seungmin, Hyunseo Jang, Jiseung Ha, Daekug Lee, Yeongho Ha, and Youngeun Song. 2025. "Time-Interval-Based Collision Detection for 4WIS Mobile Robots in Human-Shared Indoor Environments" Sensors 25, no. 3: 890. https://doi.org/10.3390/s25030890
APA StyleKim, S., Jang, H., Ha, J., Lee, D., Ha, Y., & Song, Y. (2025). Time-Interval-Based Collision Detection for 4WIS Mobile Robots in Human-Shared Indoor Environments. Sensors, 25(3), 890. https://doi.org/10.3390/s25030890