Leveraging Temporal Information to Improve Machine Learning-Based Calibration Techniques for Low-Cost Air Quality Sensors
<p>Box plots of the target pollutant concentrations as recorded by the reference sensors for Dataset 1, 2 and 3 in (<b>a</b>–<b>c</b>), respectively. The median and standard deviation of the CO readings are (1.66, 1.26), (0.49, 0.40) and (0.67, 0.25) in ppm, respectively, for the three datasets. The median and standard deviation of the NO<sub>2</sub> readings for the three datasets are (109, 47.23), (18.16, 12.68) and (20.33, 15.65) in ppb, respectively.</p> "> Figure 1 Cont.
<p>Box plots of the target pollutant concentrations as recorded by the reference sensors for Dataset 1, 2 and 3 in (<b>a</b>–<b>c</b>), respectively. The median and standard deviation of the CO readings are (1.66, 1.26), (0.49, 0.40) and (0.67, 0.25) in ppm, respectively, for the three datasets. The median and standard deviation of the NO<sub>2</sub> readings for the three datasets are (109, 47.23), (18.16, 12.68) and (20.33, 15.65) in ppb, respectively.</p> "> Figure 2
<p>Process diagram of the dataset training, validation and testing. A <span class="html-italic">k</span>-fold (<span class="html-italic">k</span> = 10) cross-validation has been utilized to ensure that the parameters are more generalized.</p> "> Figure 3
<p>Empirical CDF plots of calibration error for CO.</p> "> Figure 3 Cont.
<p>Empirical CDF plots of calibration error for CO.</p> "> Figure 4
<p>Empirical CDF plots of calibration error for NO<sub>2</sub>.</p> "> Figure 4 Cont.
<p>Empirical CDF plots of calibration error for NO<sub>2</sub>.</p> "> Figure 5
<p>Target diagrams of (<b>a</b>) RFR and (<b>b</b>) LSTM for CO.</p> "> Figure 5 Cont.
<p>Target diagrams of (<b>a</b>) RFR and (<b>b</b>) LSTM for CO.</p> "> Figure 6
<p>Target diagrams of (<b>a</b>) RFR and (<b>b</b>) LSTM for NO<sub>2</sub>.</p> "> Figure 7
<p>E-CDFs of CO for all three datasets for different algorithms between scenarios S0 (raw LCS + Temp + Hum), S0T (raw LCS + Temp + Hum+ <span class="html-italic">N<sub>days</sub></span> + <span class="html-italic">Hour</span>), S1 (same as S1—raw LCS + Temp + Hum + other gases) and train test splits (TTS1—90:10, TTS2—20:80).</p> "> Figure 8
<p>E-CDFs of NO<sub>2</sub> for all three datasets for different algorithms between scenarios S0 (raw LCS + Temp + Hum), S0T (raw LCS + Temp + Hum+ <span class="html-italic">N<sub>days</sub></span> + <span class="html-italic">Hour</span>) and S1 (same as S1—raw LCS + Temp + Hum + other gases) and train test splits (TTS1—90:10, TTS2—20:80).</p> ">
Abstract
:1. Introduction
2. Dataset Description
3. Methodology
3.1. Calibration Models
3.1.1. Scenario 1 (S1)
3.1.2. Scenario 2 (S2)
3.1.3. Scenario 3 (S3)
3.1.4. Scenario 4 (S4)
3.2. Algorithm Training and Validation
3.3. Performance Metrics
4. Results and Discussion
4.1. Model Evaluation for Different Scenarios
- Overall, the use of and has improved the calibration accuracy noticeably for both pollutants throughout all three datasets. The lowest RMSE (Table 3) is achieved for S4 in all cases.
- For CO, the gain is quite noticeable in S2 and S4 compared to S3 for both algorithms in Datasets 2 and 3. Dataset 3 in particular showed a large improvement (around 20% or more) when was introduced as an input. For both algorithms with CO as the target pollutant, RMSE improved slightly in S3 from that of S2 in Dataset 1, while they were significantly lower (around 3% or less) in Datasets 2 and 3.
- Overall, the improvements for NO2 are more modest compared to the RMSE improvements in CO. For NO2, these improvements were mostly below 10% in all scenarios, with the exception being RFR in S2 and S4 (more than 15%) for Dataset 1.
- In all cases, both S2 and S4 have outperformed S3 noticeably (the only exception being CO in Dataset 1). Thus, the impact of as an input co-variate seems to be more prominent than adding . However, the opposite can be seen for CO in Dataset 1.
- The target diagrams for the calibration are presented in Figure 5 and Figure 6. All the points lie inside the unit circle, i.e., radius = 1, and therefore the variance of the residuals is smaller than that of the reference measurements. Thus, the variability of the calibrated output (dependent variable) is explained by the reference data (independent variable) and not the residues. The distance of these points from the origin represents the normalized RMSE (RMSE/), which shows that calibrations achieved are more accurate than the same for S1. This once again underlines the importance of adding temporal data as input features. It is also observed that the standard deviation of the calibrated data is mostly smaller than the standard deviation of the ground truth, as the majority of the points lie on the left plane.
Pollutant | Algorithm | Dataset | Parameter | Scenario | |||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | ||||
CO | RFR | 1 | RMSE | 0.346 | 0.332 | 0.326 | 0.314 |
Improvement | 0 | 4.094 | 5.606 | 9.182 | |||
2 | RMSE | 0.129 | 0.110 | 0.125 | 0.104 | ||
Improvement | 0 | 15.037 | 3.753 | 19.772 | |||
3 | RMSE | 0.043 | 0.034 | 0.042 | 0.034 | ||
Improvement | 0 | 19.581 | 1.137 | 20.337 | |||
LSTM | 1 | RMSE | 0.344 | 0.335 | 0.326 | 0.322 | |
Improvement | 0 | 2.63 | 5.17 | 6.44 | |||
2 | RMSE | 0.119 | 0.110 | 0.117 | 0.109 | ||
Improvement | 0 | 7.54 | 1.58 | 8.66 | |||
3 | RMSE | 0.039 | 0.029 | 0.038 | 0.027 | ||
Improvement | 0 | 24.91 | 2.97 | 30.89 | |||
NO2 | RFR | 1 | RMSE | 8.886 | 7.497 | 8.456 | 7.236 |
Improvement | 0 | 15.64 | 4.84 | 18.58 | |||
2 | RMSE | 6.193 | 5.930 | 6.088 | 5.836 | ||
Improvement | 0 | 4.25 | 1.70 | 5.77 | |||
3 | RMSE | 4.549 | 4.305 | 4.474 | 4.277 | ||
Improvement | 0 | 5.36 | 1.65 | 5.98 | |||
LSTM | 1 | RMSE | 8.968 | 8.560 | 8.836 | 8.476 | |
Improvement | 0 | 4.55 | 1.47 | 5.49 | |||
2 | RMSE | 5.896 | 5.603 | 5.736 | 5.342 | ||
Improvement | 0 | 4.97 | 2.71 | 9.39 | |||
3 | RMSE | 8.886 | 7.497 | 8.456 | 7.236 | ||
Improvement | 0 | 15.64 | 4.84 | 18.58 |
4.2. Impact of Train-Test Split
4.3. Significance of Temporal Information
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Alshamsi, A.; Anwar, Y.; Almulla, M.; Aldohoori, M.; Hamad, N.; Awad, M. Monitoring pollution: Applying IoT to create a smart environment. In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 21–23 November 2017; pp. 1–4. [Google Scholar]
- Tsujita, W.; Yoshino, A.; Ishida, H.; Moriizumi, T. Gas sensor network for air-pollution monitoring. Sens. Actuators B Chem. 2005, 110, 304–311. [Google Scholar] [CrossRef]
- Ali, S.; Glass, T.; Parr, B.; Potgieter, J.; Alam, F. Low Cost Sensor with IoT LoRaWAN Connectivity and Machine Learning-Based Calibration for Air Pollution Monitoring. IEEE Trans. Instrum. Meas. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, C.; Jiang, S.; Li, Y.J.; Wu, D.; Li, M.; Cheng, P.; Yang, W.; Cheng, C.; Li, L.; et al. Field comparison of electrochemical gas sensor data correction algorithms for ambient air measurements. Sens. Actuators B Chem. 2021, 327, 128897. [Google Scholar] [CrossRef]
- Topalović, D.B.; Davidović, M.D.; Jovanović, M.; Bartonova, A.; Ristovski, Z.; Jovašević-Stojanović, M. In search of an optimal in-field calibration method of low-cost gas sensors for ambient air pollutants: Comparison of linear, multilinear and artificial neural network approaches. Atmos. Environ. 2019, 213, 640–658. [Google Scholar] [CrossRef]
- De Vito, S.; Esposito, E.; Massera, E.; Formisano, F.; Fattoruso, G.; Ferlito, S.; Del Giudice, A.; D’Elia, G.; Salvato, M.; Polichetti, T. Crowdsensing IoT Architecture for Pervasive Air Quality and Exposome Monitoring: Design, Development, Calibration, and Long-Term Validation. Sensors 2021, 21, 5219. [Google Scholar] [CrossRef] [PubMed]
- De Vito, S.; Di Francia, G.; Esposito, E.; Ferlito, S.; Formisano, F.; Massera, E. Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices. Pattern Recognit. Lett. 2020, 136, 264–271. [Google Scholar] [CrossRef]
- Shaban, K.B.; Kadri, A.; Rezk, E. Urban Air Pollution Monitoring System with Forecasting Models. IEEE Sens. J. 2016, 16, 2598–2606. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Maag, B.; Zhou, Z.; Thiele, L. A Survey on Sensor Calibration in Air Pollution Monitoring Deployments. IEEE Internet Things J. 2018, 5, 4857–4870. [Google Scholar] [CrossRef]
- Yi, W.; Lo, K.; Mak, T.; Leung, K.; Leung, Y.; Meng, M. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems. Sensors 2015, 15, 29859. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. [Google Scholar] [CrossRef] [PubMed]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Low- and Medium-Cost Sensors for Tropospheric Ozone Monitoring—Results of an Evaluation Study in Wroclaw, Poland. Atmosphere 2022, 13, 542. [Google Scholar] [CrossRef]
- Hofman, J.; Nikolaou, M.; Shantharam, S.P.; Stroobants, C.; Weijs, S.; La Manna, V.P. Distant calibration of low-cost PM and NO2 sensors; evidence from multiple sensor testbeds. Atmos. Pollut. Res. 2022, 13, 101246. [Google Scholar] [CrossRef]
- Rogulski, M.; Badyda, A.; Gayer, A.; Reis, J. Improving the Quality of Measurements Made by Alphasense NO2 Non-Reference Sensors Using the Mathematical Methods. Sensors 2022, 22, 3619. [Google Scholar] [CrossRef] [PubMed]
- Zuidema, C.; Schumacher, C.S.; Austin, E.; Carvlin, G.; Larson, T.V.; Spalt, E.W.; Zusman, M.; Gassett, A.J.; Seto, E.; Kaufman, J.D.; et al. Deployment, Calibration, and Cross-Validation of Low-Cost Electrochemical Sensors for Carbon Monoxide, Nitrogen Oxides, and Ozone for an Epidemiological Study. Sensors 2021, 21, 4214. [Google Scholar] [CrossRef] [PubMed]
- Cordero, J.M.; Borge, R.; Narros, A. Using statistical methods to carry out in field calibrations of low cost air quality sensors. Sens. Actuators B Chem. 2018, 267, 245–254. [Google Scholar] [CrossRef]
- Djedidi, O.; Djeziri, M.A.; Morati, N.; Seguin, J.-L.; Bendahan, M.; Contaret, T. Accurate detection and discrimination of pollutant gases using a temperature modulated MOX sensor combined with feature extraction and support vector classification. Sens. Actuators B Chem. 2021, 339, 129817. [Google Scholar] [CrossRef]
- Bigi, A.; Mueller, M.; Grange, S.K.; Ghermandi, G.; Hueglin, C. Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application. Atmos. Meas. Tech. 2018, 11, 3717–3735. [Google Scholar] [CrossRef]
- De Vito, S.; Esposito, E.; Salvato, M.; Popoola, O.; Formisano, F.; Jones, R.; Di Francia, G. Calibrating chemical multisensory devices for real world applications: An in-depth comparison of quantitative machine learning approaches. Sens. Actuators B Chem. 2018, 255, 1191–1210. [Google Scholar] [CrossRef]
- Esposito, E.; De Vito, S.; Salvato, M.; Fattoruso, G.; Bright, V.; Jones, R.L.; Popoola, O. Stochastic Comparison of Machine Learning Approaches to Calibration of Mobile Air Quality Monitors; Springer International Publishing: Cham, Switzerland, 2018; pp. 294–302. [Google Scholar]
- Esposito, E.; De Vito, S.; Salvato, M.; Fattoruso, G.; Di Francia, G. Computational Intelligence for Smart Air Quality Monitors Calibration; Springer International Publishing: Cham, Switzerland, 2017; pp. 443–454. [Google Scholar]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef]
- Bagkis, E.; Kassandros, T.; Karatzas, K. Learning Calibration Functions on the Fly: Hybrid Batch Online Stacking Ensembles for the Calibration of Low-Cost Air Quality Sensor Networks in the Presence of Concept Drift. Atmosphere 2022, 13, 416. [Google Scholar] [CrossRef]
- Bittner, A.S.; Cross, E.S.; Hagan, D.H.; Malings, C.; Lipsky, E.; Grieshop, A.P. Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi. Atmos. Meas. Tech. 2022, 15, 3353–3376. [Google Scholar] [CrossRef]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Kumar, S.P.; Zimmerman, N.; Kara, L.B.; Presto, A.A.; Subramanian, R. Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos. Meas. Tech. 2019, 12, 903–920. [Google Scholar] [CrossRef]
- Borrego, C.; Ginja, J.; Coutinho, M.; Ribeiro, C.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E. Assessment of air quality microsensors versus reference methods: The EuNetAir Joint Exercise—Part II. Atmos. Environ. 2018, 193, 127–142. [Google Scholar] [CrossRef]
- Fonollosa, J.; Sheik, S.; Huerta, R.; Marco, S. Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sens. Actuators B Chem. 2015, 215, 618–629. [Google Scholar] [CrossRef]
- Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1712. [Google Scholar] [CrossRef] [PubMed]
- Sheik, S.; Marco, S.; Huerta, R.; Fonollosa, J. Continuous prediction in chemoresistive gas sensors using reservoir computing. Procedia Eng. 2014, 87, 843–846. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Burgués, J.; Marco, S.; Liu, S.-C. Prediction of gas concentration using gated recurrent neural networks. In Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy, 31 August–2 September 2020; pp. 178–182. [Google Scholar]
- Han, P.; Mei, H.; Liu, D.; Zeng, N.; Tang, X.; Wang, Y.; Pan, Y. Calibrations of low-cost air pollution monitoring sensors for CO, NO2, O3, and SO2. Sensors 2021, 21, 256. [Google Scholar] [CrossRef]
- Wei, P.; Sun, L.; Anand, A.; Zhang, Q.; Huixin, Z.; Deng, Z.; Wang, Y.; Ning, Z. Development and evaluation of a robust temperature sensitive algorithm for long term NO2 gas sensor network data correction. Atmos. Environ. 2020, 230, 117509. [Google Scholar] [CrossRef]
- Esposito, E.; De Vito, S.; Salvato, M.; Bright, V.; Jones, R.L.; Popoola, O. Dynamic neural network architectures for on field stochastic calibration of indicative low cost air quality sensing systems. Sens. Actuators B Chem. 2016, 231, 701–713. [Google Scholar] [CrossRef]
- Hu, K.; Sivaraman, V.; Luxan, B.G.; Rahman, A. Design and Evaluation of a Metropolitan Air Pollution Sensing System. IEEE Sens. J. 2016, 16, 1448–1459. [Google Scholar] [CrossRef]
- Idrees, Z.; Zou, Z.; Zheng, L. Edge Computing Based IoT Architecture for Low Cost Air Pollution Monitoring Systems: A Comprehensive System Analysis, Design Considerations & Development. Sensors 2018, 18, 3021. [Google Scholar] [PubMed]
- Ali, S.; Alam, F.; Arif, K.M.; Potgieter, J. Low-Cost CO Sensor Calibration Using One Dimensional Convolutional Neural Network. Sensors 2023, 23, 854. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Lian, X.; Liu, H.; Hu, J.; Wang, Y.; Che, J. Daily air quality index forecasting with hybrid models: A case in China. Environ. Pollut. 2017, 231, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, P.; Chen, H.; Zhou, L.; Tao, Z. A Hybrid Forecasting Approach to Air Quality Time Series Based on Endpoint Condition and Combined Forecasting Model. Int. J. Environ. Res. Public Health 2018, 15, 1941. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, Y.; Qin, Z.; Zhang, G. A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci. Total Environ. 2015, 505, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Li, C.; Li, R.; Yang, H. An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation. Knowl.-Based Syst. 2019, 164, 174–192. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [Google Scholar] [CrossRef]
Dataset | Time Span | Location | Number of Samples | LCS Array | Pollutant Measured | Reference Sensor |
---|---|---|---|---|---|---|
1 [23] | 10/03/2004–04/04/2005 | Lombardy Region, Italy | 6941 (CO) 6743 (NO2) | MOX | CO, NO2, O3, NMHC, NOX | Air pollution analyzer, operated by the Regional Environmental Protection Agency (ARPA) |
2 [10] | 04/05/2018–24/11/2020 | Naples, Italy | 13,595 (CO) 12,123 (NO2) | EC | CO, NO2, O3 | Teledyne 300 CO analyzer and Teledyne T200 NO2 chemiluminescence analyzer |
3 [7] | 01/10/2018–01/03/2019 | Guangzhou, China | 3639 (CO) 3412 (NO2) | EC | CO, NO2, O3 | CO data were collected by a gas analyzer based on infrared absorption (Model 48i-TLE, Thermo Scientific, Waltham, MA, USA). NO2 was measured by a chemiluminescence analyzer (Model 42i-TL, Thermo Scientific, Waltham, MA, USA) |
Algorithm | List of Hyperparameters |
---|---|
RFR | Maximum depth of tree, maximum number of leaf nodes, number of trees in the forest. |
LSTM | Number of LSTM layers, time steps, number of units in the LSTM layers, activation function, dropout rate in dropout layers, learning rate of the optimizer, batch size. |
Pollutant | Algorithm | Improvement of RMSE in S4 from S1 (in %) | ||
---|---|---|---|---|
Dataset 1 | Dataset 2 | Dataset 3 | ||
CO | RFR | 4.49 | 11.95 | 8.92 |
LSTM | 6.34 | 4.13 | 19.24 | |
NO2 | RFR | 13.19 | 3.93 | 2.73 |
LSTM | 4.49 | 3.55 | 2.36 |
Pollutant | Algorithm | Improvement of RMSE in S0T from S0 (in %) | ||
---|---|---|---|---|
Dataset 1 | Dataset 2 | Dataset 3 | ||
CO | RFR | 15.75 | 0.76 | 10.86 |
LSTM | 15.57 | 2.31 | 11.11 | |
NO2 | RFR | 3.12 | 5.36 | 10.09 |
LSTM | 1.85 | 5.21 | 20.91 |
Algorithm | Scenario | Improvement of CO RMSE in S1 and S0T from S0 (in %) | ||
---|---|---|---|---|
Dataset 1 | Dataset 2 | Dataset 3 | ||
RFR | S1 | 31.89 | 1.83 | 6.78 |
S0T | 15.75 | 0.76 | 10.86 | |
LSTM | S1 | 31.41 | 8.58 | 14.48 |
S0T | 15.57 | 2.31 | 11.11 |
Algorithm | Scenario | Improvement of NO2 RMSE in S1 and S0T from S0 (in %) | ||
---|---|---|---|---|
Dataset 1 | Dataset 2 | Dataset 3 | ||
RFR | S1 | 15.38 | 12.63 | 6.18 |
S0T | 3.12 | 5.36 | 10.09 | |
LSTM | S1 | 13.49 | 16.73 | 29.59 |
S0T | 1.85 | 5.21 | 20.91 |
Algorithm | Scenario | Improvement of CO RMSE in S1 and S0T from S0 (in %) | ||
---|---|---|---|---|
Dataset 1 | Dataset 2 | Dataset 3 | ||
RFR | S1 | 31.99 | 2.72 | 6.25 |
S0T | 17.34 | 0.38 | 21.88 | |
LSTM | S1 | 29.19 | 8.84 | 14.52 |
S0T | 16.26 | −0.78 | 20.97 |
Algorithm | Scenario | Improvement of NO2 RMSE in S1 and S0T from S0 (in %) | ||
---|---|---|---|---|
Dataset 1 | Dataset 2 | Dataset 3 | ||
RFR | S1 | 12.13 | 15.04 | 4.92 |
S0T | 3.30 | 4.52 | 7.53 | |
LSTM | S1 | 7.52 | 13.93 | 18.51 |
S0T | −0.46 | 4.72 | 15.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Alam, F.; Potgieter, J.; Arif, K.M. Leveraging Temporal Information to Improve Machine Learning-Based Calibration Techniques for Low-Cost Air Quality Sensors. Sensors 2024, 24, 2930. https://doi.org/10.3390/s24092930
Ali S, Alam F, Potgieter J, Arif KM. Leveraging Temporal Information to Improve Machine Learning-Based Calibration Techniques for Low-Cost Air Quality Sensors. Sensors. 2024; 24(9):2930. https://doi.org/10.3390/s24092930
Chicago/Turabian StyleAli, Sharafat, Fakhrul Alam, Johan Potgieter, and Khalid Mahmood Arif. 2024. "Leveraging Temporal Information to Improve Machine Learning-Based Calibration Techniques for Low-Cost Air Quality Sensors" Sensors 24, no. 9: 2930. https://doi.org/10.3390/s24092930
APA StyleAli, S., Alam, F., Potgieter, J., & Arif, K. M. (2024). Leveraging Temporal Information to Improve Machine Learning-Based Calibration Techniques for Low-Cost Air Quality Sensors. Sensors, 24(9), 2930. https://doi.org/10.3390/s24092930