A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications
<p>Scheme utilized to develop the theoretical model of the backscattering process.</p> "> Figure 2
<p>“Long pulse” time (<b>a</b>) and frequency (<b>b</b>) behaviors, and “Short pulse” time (<b>c</b>) and frequency (<b>d</b>) behaviors.</p> "> Figure 3
<p>Behaviors of (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>A</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> for the case of the “Short pulse” and of the differences (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>δ</mi> <msub> <mrow> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>δ</mi> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>A</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> for the case of “Long pulse”.</p> "> Figure 3 Cont.
<p>Behaviors of (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>A</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> for the case of the “Short pulse” and of the differences (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>δ</mi> <msub> <mrow> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>δ</mi> <mover accent="true"> <mrow> <mi>p</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>A</mi> <mi>S</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>t</mi> </mrow> </mfenced> </mrow> </semantics></math> for the case of “Long pulse”.</p> "> Figure 4
<p>Schematic representation of the experimental setup.</p> "> Figure 5
<p>Time and longitudinal coordinate behaviors of (<b>a</b>): “Short pulse” applied to the laser (<b>b</b>): Stokes and Anti-Stokes components <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> <mtext> </mtext> <mfenced separators="|"> <mrow> <mi>z</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>A</mi> <mi>S</mi> </mrow> </msub> <mtext> </mtext> <mfenced separators="|"> <mrow> <mi>z</mi> </mrow> </mfenced> </mrow> </semantics></math> of the Raman backscattered signal obtained for different values of temperature of fiber Section 1.</p> "> Figure 6
<p>Time and longitudinal coordinate behaviors of (<b>a</b>): “Long pulse” applied to the laser (<b>b</b>): Stokes and Anti-Stokes components <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> <mtext> </mtext> <mfenced separators="|"> <mrow> <mi mathvariant="normal">z</mi> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>A</mi> <mi>S</mi> </mrow> </msub> <mtext> </mtext> <mfenced separators="|"> <mrow> <mi>z</mi> </mrow> </mfenced> </mrow> </semantics></math> of the Raman backscattered signal obtained for different values of temperature of fiber Section 1.</p> "> Figure 7
<p>Behavior, as a function of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">z</mi> </mrow> </semantics></math>, and for different temperature values of fiber Section 1, of the difference <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="sans-serif">δ</mi> <mover accent="true"> <mrow> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">S</mi> </mrow> </msub> </mrow> </semantics></math> between the values of the received Anti-Stokes backscattered signals correspondent to fiber sections <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>z</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">z</mi> </mrow> <mrow> <mi mathvariant="normal">i</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> separated by a distance <math display="inline"><semantics> <mrow> <mo>∆</mo> <mi mathvariant="normal">z</mi> <mo>=</mo> <mn>1</mn> <mtext> </mtext> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>, with <math display="inline"><semantics> <mrow> <mi mathvariant="normal">i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…</mo> <mi mathvariant="normal">N</mi> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Comparison between experimental results in the “Short” and “Long pulse” operating procedures, normalized to 25 °C.</p> "> Figure 9
<p>Temperature relationship of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>A</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> normalized to <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mrow> <mtext> </mtext> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> for “Short pulse” (red line) and <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">δ</mi> <msub> <mrow> <mover accent="true"> <mrow> <mi mathvariant="normal">v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi mathvariant="normal">b</mi> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">S</mi> </mrow> </msub> </mrow> </semantics></math> normalized to <math display="inline"><semantics> <mrow> <mi>δ</mi> <msub> <mrow> <mover accent="true"> <mrow> <mtext> </mtext> <mi>v</mi> </mrow> <mo>^</mo> </mover> </mrow> <mrow> <mi>b</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math> for “Long pulse” (black line).</p> ">
Abstract
:1. Introduction
2. Mathematical Model and Proposed Approach
- Test 1: All of the fiber at 25 °C;
- Test 2: First 100 m at 60 °C and the remaining 50 m at 25 °C;
- Test 3: First 100 m at 3 °C and the remaining 50 m at 25 °C.
3. Experimental Setup
4. Measurement, Post-Processing, and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Yin, S.; Ruffin, P.B.; Yu, F.T.S. (Eds.) Fiber Optic Sensors; Taylor & Francis: Abingdon, UK, 2008. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Izumita, H.; Furukawa, S.; Koyamada, Y. Brillouin optical-fiber time domain reflectometry. IEICE Trans. Commun. 1993, 76, 382–390. [Google Scholar]
- Horiguchi, T.; Tateda, M. BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory. J. Light. Technol. 1989, 7, 1170–1176. [Google Scholar] [CrossRef]
- Kishida, K.; Li, C.H.; Nishiguchi, K.I. Pulse pre-pump method for cm-order spatial resolution of BOTDA. In Proceedings of the SPIE 5855, 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23 May 2005. [Google Scholar] [CrossRef]
- Kouroussis, G.; Caucheteur, C.; Kinet, D.; Alexandrou, G.; Verlinden, O.; Moeyaert, V. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors. Sensors 2015, 15, 20115–20139. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, T.; Zhang, Q.; Ge, X.; Zhu, Y.; Zhang, Y.; Zhang, J.; Li, J.; Zhang, M. High Spatial Resolution BOTDA Based on Deconvolution and All Phase Digital Filtering. IEEE Sens. J. 2024, 24, 10024–10030. [Google Scholar] [CrossRef]
- Bolognini, G.; Hartog, A. Raman-based fibre sensors: Trends and applications. Opt. Fiber Technol. 2013, 19, 678–688. [Google Scholar] [CrossRef]
- Liang, C.; Bai, Q.; Yan, M.; Wang, Y.; Zhang, H.; Jin, B. A Comprehensive Study of Optical Frequency Domain Reflectometry. IEEE Access 2021, 9, 41647–41668. [Google Scholar] [CrossRef]
- Qu, S.; Xu, Y.; Huang, S.; Sun, M.; Wang, C.; Shang, Y. Recent Advancements in Optical Frequency-Domain Reflectometry: A Review. IEEE Sens. J. 2023, 23, 1707–1723. [Google Scholar] [CrossRef]
- Belokrylov, M.E.; Kambur, D.A.; Konstantinov, Y.A.; Claude, D.; Barkov, F.L. An Optical Frequency Domain Reflectometer’s (OFDR) Performance Improvement via Empirical Mode Decomposition (EMD) and Frequency Filtration for Smart Sensing. Sensors 2024, 24, 1253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clement, J.; Maestre, H.; Torregrosa, G.; Fernández-Pousa, C.R. Incoherent Optical Frequency-Domain Reflectometry Based on Homodyne Electro-Optic Downconversion for Fiber-Optic Sensor Interrogation. Sensors 2019, 19, 2075. [Google Scholar] [CrossRef]
- Geng, J.; Jin, R.; Xu, J.; Li, X.; Li, Y.; Guo, C.; Wei, G.; Zhang, H. An improved model for the fully distributed temperature single-mode fibre optic sensor based on Raman optical frequency-domain reflectometry. J. Opt. A Pure Appl. Opt. 2004, 6, 932. [Google Scholar] [CrossRef]
- Karamehmedovića, E.; Glombitza, U. Fiber-Optic Distributed Temperature Sensor Using Incoherent Optical Frequency Domain Reflectometry. Proc. SPIE 2004, 5363, 107–115. [Google Scholar]
- Aoyama, K.; Nakagawa, K.; Itoh, T. Optical time domain reflectometry in a single-mode fiber. IEEE J. Quantum Electron. 1981, 17, 862–868. [Google Scholar] [CrossRef]
- Hartog, A. A distributed temperature sensor based on liquid-core optical fibers. J. Light. Technol. 1983, 1, 498–509. [Google Scholar] [CrossRef]
- Dakin, J.P.; Pratt, D.J.; Bibby, G.W.; Ross, J.N. Distributed anti-Stokes ratio thermometry. In Proceedings of the Conference on Optical Fiber Communication and 3rd International Conference on Optical Fiber Sensors, San Diego, CA, USA, 11–13 February 1985; Optical Society of America: Washington, DC, USA, 1985. [Google Scholar]
- Ukil, A.; Braendle, H.; Krippner, P. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sens. J. 2012, 12, 885–892. [Google Scholar] [CrossRef]
- Ashry, I.; Mao, Y.; Wang, B.; Hveding, F.; Bukhamsin, A.Y.; Ng, T.K.; Ooi, B.S. A Review of Distributed Fiber–Optic Sensing in the Oil and Gas Industry. J. Light. Technol. 2022, 40, 1407–1431. [Google Scholar] [CrossRef]
- Selker, J.S.; Thevenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; Van De Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B. Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour. Res. 2006, 42, W12202. [Google Scholar] [CrossRef]
- Somma, R.; Troise, C.; Zeni, L.; Minardo, A.; Fedele, A.; Mirabile, M.; De Natale, G. Long-Term Monitoring with Fiber Optics Distributed Temperature Sensing at Campi Flegrei: The Campi Flegrei Deep Drilling Project. Sensors 2019, 19, 1009. [Google Scholar] [CrossRef]
- McDaniel, A.; Frattab, D.; Tinjumc, J.M.; Hartd, D.J. Long-term district-scale geothermal exchange borefield monitoring with fiber optic distributed temperature sensing. Geothermics 2018, 72, 193–204. [Google Scholar] [CrossRef]
- Acuña, J.; Palm, B. Distributed thermal response tests on pipe-in-pipe borehole heat exchangers. Appl. Energy 2013, 109, 312–320. [Google Scholar] [CrossRef]
- Farahani, M.A.; Gogolla, T. Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. J. Light. Technol. 1999, 17, 1379–1391. [Google Scholar] [CrossRef]
- Gagnon, J. Fundamentals of an OTDR. EXFO Application Note 194. 2017. Available online: https://www.exfo.com/contentassets/7e4d240b6717415283238de7dcec35ba/exfo_anote194_otdr-fundamentals_en.pdf (accessed on 20 March 2024).
Pulse | (ns) | (ns) | (ns) | (W) | (ms) |
---|---|---|---|---|---|
Long | 1550 | 80 | 42 | 1.70 | 1 |
Short | 82 | 50 | 32 | 0.98 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieracci, A.; Nanni, J.; Tartarini, G.; Lanzoni, M. A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications. Sensors 2024, 24, 2669. https://doi.org/10.3390/s24092669
Pieracci A, Nanni J, Tartarini G, Lanzoni M. A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications. Sensors. 2024; 24(9):2669. https://doi.org/10.3390/s24092669
Chicago/Turabian StylePieracci, Augusto, Jacopo Nanni, Giovanni Tartarini, and Massimo Lanzoni. 2024. "A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications" Sensors 24, no. 9: 2669. https://doi.org/10.3390/s24092669
APA StylePieracci, A., Nanni, J., Tartarini, G., & Lanzoni, M. (2024). A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications. Sensors, 24(9), 2669. https://doi.org/10.3390/s24092669