Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants
<p>Bacterial nanocellulose production from <span class="html-italic">Glucanoacetobacter xylinus</span> in HS medium and subsequent purification with basic (KOH) and acidic (HCl) washes. Pellicles were separated and air dried to achieve the final films for electrode fabrication.</p> "> Figure 2
<p>(<b>A</b>,<b>B</b>) The construction diagram of the BNC electrodes with attached wires for electrical connection. (<b>C</b>,<b>D</b>) Representative scanning electron micrographs of the carbon ink printed electrodes on nanocellulose films. (<b>E</b>,<b>F</b>) Photographs of as-applied electrodes on maize and cassava leaves, respectively.</p> "> Figure 3
<p>A representative cyclic voltammogram plot used to evaluate the electrochemically active surface area where the increased scan rates yield higher-magnitude patterns.</p> "> Figure 4
<p>(<b>A</b>) The electrochemically active surface area and (<b>B</b>) the electrical impedance of electrodes as a function of the annealing temperature from 50 to 90 °C and annealing time from 10 to 60 min.</p> "> Figure 5
<p>Sobol and total Sobol indices relating BNC electrode manufacturing parameters to (<b>A</b>) ECSA and (<b>B</b>) impedance. High indices indicate a strong relationship between the manufacturing parameter and electrode property. The curing temperature was a strong indicator of ECSA and thickness was strongly related to impedance in the linear regression model.</p> "> Figure 6
<p>Water vapor permeation rate through bare bacterial nanocellulose and through bacterial nanocellulose soaked in a 5% pullulan solution.</p> "> Figure 7
<p>(<b>A</b>) Reduction in chlorophyll content caused by electrodes on the leaf surface with reference to an adjacent, uncovered leaf surface. (<b>B</b>) Relative reduction in transpiration over time due to the electrode substrate and adhesion method. (<b>C</b>) Representative photographs of plant tissue damage three days after the application of a standard wet gel electrode and the reported nanocellulose interface.</p> "> Figure 8
<p>Solar transmission spectrum for (<b>A</b>) dry and (<b>B</b>) wet nanocellulose films. Dry samples exhibit a reduction in transmission with increasing film thickness. All spectra are an average of <span class="html-italic">n</span> ≥ 3 measurements. Reference profiles are for full sun exposure.</p> "> Figure 9
<p>(<b>A</b>) Representative maize action potentials caused by acute stressors and measured with BNC and needle electrodes. (<b>B</b>) Representative electrical signaling from cassava and <span class="html-italic">Arabidopsis thaliana</span> plants acquired with BNC electrodes for proof-of-concept.</p> "> Figure 10
<p>Comparison of signals acquired by BNC electrodes and needle electrodes as measured from V8 and V9 when acute stress was applied to V11: (<b>A</b>) correlation coefficient between BNC and needle electrodes and (<b>B</b>) percentage difference in amplitudes with extreme outliers not shown.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of Bacterial Nanocellulose
2.2. Fabrication of Bacterial Nanocellulose Electrodes
2.3. Characterization of Bacterial Nanocellulose Electrodes
2.4. Recording of Plant Biopotentials and Electrophysiological Responses to Stressors
3. Results and Discussion
3.1. Electrochemically Active Surface Area and Electrical Impedance
3.2. Water Vapor Permeation Rate and Plant Health Effects
3.3. Solar Light Transmission
3.4. Biopotential Recordings and Functional Assessment
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BNC | Bacterial Nanocellulose |
DI | Deionized |
SPAD | Soil Plant Analysis Development |
ECSA | Electrochemically Active Surface Area |
EIS | Electrochemical Impedance Spectroscopy |
CV | Cyclic Voltammetry |
PCB | Printed Circuit Board |
References
- Williams, S.E. Comparative sensory physiology of the Droseraceae-the evolution of a plant sensory system. Proc. Am. Philos. Soc. 1976, 120, 187–204. [Google Scholar]
- Burdon-Sanderson, J.S.I. Note on the electrical phenomena which accompany irritation of the leaf of Dionæa muscipula. Proc. R. Soc. Lond. 1873, 21, 495–496. [Google Scholar]
- Wildon, D.; Thain, J.; Minchin, P.; Gubb, I.; Reilly, A.; Skipper, Y.; Doherty, H.; O’donnell, P.; Bowles, D. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 1992, 360, 62–65. [Google Scholar] [CrossRef]
- Fromm, J.; Spanswick, R. Characteristics of action potentials in willow (Salix viminalis L.). J. Exp. Bot. 1993, 44, 1119–1125. [Google Scholar] [CrossRef]
- Oyarce, P.; Gurovich, L. Evidence for the transmission of information through electric potentials in injured avocado trees. J. Plant Physiol. 2011, 168, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Rojas, L.; Tapia, F.; Gurovich, L.A. Electrophysiological assessment of water stress in fruit-bearing woody plants. J. Plant Physiol. 2014, 171, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.K.; Das, S.; Maharatna, K.; Masi, E.; Santopolo, L.; Mancuso, S.; Vitaletti, A. Exploring strategies for classification of external stimuli using statistical features of the plant electrical response. J. R. Soc. Interface 2015, 12, 20141225. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.G.; Miller, G.; Wallace, I.; Harper, J.; Mittler, R.; Gilroy, S. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant J. 2017, 90, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Volkov, A.G. Plant Electrophysiology: Signaling and Responses; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Souza, G.M.; Ferreira, A.S.; Saraiva, G.F.; Toledo, G.R. Plant “electrome” can be pushed toward a self-organized critical state by external cues: Evidences from a study with soybean seedlings subject to different environmental conditions. Plant Signal. Behav. 2017, 12, e1290040. [Google Scholar] [CrossRef]
- Volkov, A.G. Signaling in electrical networks of the Venus flytrap (Dionaea muscipula Ellis). Bioelectrochemistry 2019, 125, 25–32. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, T.; Li, D.; Ji, S.; Chen, Z.; Shao, W.; Liu, H.; Ren, T.L. Breathable electronic skins for daily physiological signal monitoring. Nano-Micro Lett. 2022, 14, 161. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and Responses of Plants under Salt Stress; Springer: Berlin/Heidelberg, Germany, 2013; pp. 25–87. [Google Scholar]
- Acosta-Motos, J.R.; Ortuno, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Senavirathna, M.D.H.J.; Muhetaer, G. Electrode insertion generates slow propagating electric potentials in Myriophyllum aquaticum plants. Plant Signal. Behav. 2020, 15, 1734332. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.A.; Nguyen, C.T.; Farmer, E.E.; Kellenberger, S. Measuring surface potential changes on leaves. Nat. Protoc. 2014, 9, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Recatalà, V.; Tjallingii, W.F.; Farmer, E.E. Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol. 2014, 203, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Foresti, M.; Cerrutti, P.; Vazquez, A. Bacterial nanocellulose: Synthesis, properties and applications. In Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials; Wiley: Hoboken, NJ, USA, 2015; pp. 39–61. [Google Scholar]
- Reshmy, R.; Philip, E.; Thomas, D.; Madhavan, A.; Sindhu, R.; Binod, P.; Varjani, S.; Awasthi, M.K.; Pandey, A. Bacterial nanocellulose: Engineering, production, and applications. Bioengineered 2021, 12, 11463. [Google Scholar]
- Dai, Z.; Ottesen, V.; Deng, J.; Helberg, R.M.L.; Deng, L. A brief review of nanocellulose based hybrid membranes for CO2 separation. Fibers 2019, 7, 40. [Google Scholar] [CrossRef]
- Cazón, P.; Velázquez, G.; Vázquez, M. Bacterial cellulose films: Evaluation of the water interaction. Food Packag. Shelf Life 2020, 25, 100526. [Google Scholar] [CrossRef]
- Hosakun, Y.; Halász, K.; Horváth, M.; Csóka, L.; Djoković, V. ATR-FTIR study of the interaction of CO2 with bacterial cellulose-based membranes. Chem. Eng. J. 2017, 324, 83–92. [Google Scholar] [CrossRef]
- Wilkins, M.D.; Rivera, K.R.; Martin, D.; Bozkurt, A.Y.; Lobaton, E.J.; Daniele, M.A. Characterization of Screen-Printed Bioimpedance Electrodes on Nanocellulose Substrate. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Saravitz, C.; Chiera, J. NCSU Phytotron Procedural Manual. 2019. Available online: https://phytotron.ncsu.edu/procedural-manual/ (accessed on 13 March 2024).
- Li, J.H.; Fan, L.F.; Zhao, D.J.; Zhou, Q.; Yao, J.P.; Wang, Z.Y.; Huang, L. Plant electrical signals: A multidisciplinary challenge. J. Plant Physiol. 2021, 261, 153418. [Google Scholar] [CrossRef]
- Roblin, G. Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol. 1985, 26, 455–461. [Google Scholar] [CrossRef]
- Geddes, L.A.; Roeder, R. Criteria for the selection of materials for implanted electrodes. Ann. Biomed. Eng. 2003, 31, 879–890. [Google Scholar] [CrossRef]
- Farmer, E.; Mousavi, S.; Lenglet, A. Leaf numbering for experiments on long distance signalling in Arabidopsis. Res. Sq. 2013. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, A.; Teramoto, Y. Recent advances in nanocellulose composites with polymers: A guide for choosing partners and how to incorporate them. Polymers 2018, 10, 517. [Google Scholar] [CrossRef]
- Sharip, N.; Yasim-Anuar, T.; Norrrahim, M.; Shazleen, S.; Nurazzi, N.M.; Sapuan, S.; Ilyas, R. A review on nanocellulose composites in biomedical application. In Composites in Biomedical Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 161–190. [Google Scholar]
- Ng, H.M.; Sin, L.T.; Bee, S.T.; Tee, T.T.; Rahmat, A. Review of nanocellulose polymer composite characteristics and challenges. Polym. Plast. Technol. Eng. 2017, 56, 687–731. [Google Scholar] [CrossRef]
- de Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Fletcher, S. Screen-printed carbon electrodes. In Electrochemistry of Carbon Electrodes; Wiley-VCH: Weinheim, Germany, 2015; pp. 425–444. [Google Scholar]
- Acar, G.; Ozturk, O.; Golparvar, A.J.; Elboshra, T.A.; Böhringer, K.; Yapici, M.K. Wearable and flexible textile electrodes for biopotential signal monitoring: A review. Electronics 2019, 8, 479. [Google Scholar] [CrossRef]
- Niu, X.; Gao, X.; Liu, Y.; Liu, H. Surface bioelectric dry Electrodes: A review. Measurement 2021, 183, 109774. [Google Scholar] [CrossRef]
- Smith, R.C. Uncertainty Quantification: Theory, Implementation, and Applications; SIAM: Philadelphia, PA, USA, 2013; Volume 12. [Google Scholar]
- Pammo, A.; Christophliemk, H.; Keskinen, J.; Björkqvist, T.; Siljander, S.; Mäntysalo, M.; Tuukkanen, S. Nanocellulose films as substrates for printed electronics. In Proceedings of the 2019 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), Helsinki, Finland, 1–5 July 2019; pp. 1–6. [Google Scholar]
- Fernandes, M.; Gama, M.; Dourado, F.; Souto, A.P. Development of novel bacterial cellulose composites for the textile and shoe industry. Microb. Biotechnol. 2019, 12, 650–661. [Google Scholar] [CrossRef]
- Wei, S.; You, Y.; Ma, Y.; Huang, W.; Liang, X.; Zhang, A.; Lin, Y. Bi-layer supramolecular polydimethylsiloxane elastomer film: Synthesis, characterization, and application in wound dressing on normal and diabetic rat. React. Funct. Polym. 2019, 141, 21–32. [Google Scholar] [CrossRef]
- Mao, Y.; Liu, K.; Zhan, C.; Geng, L.; Chu, B.; Hsiao, B.S. Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J. Phys. Chem. B 2017, 121, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Brett, C.J.; Mittal, N.; Ohm, W.; Gensch, M.; Kreuzer, L.P.; Koorstgens, V.; Maansson, M.; Frielinghaus, H.; Muller-Buschbaum, P.; Soderberg, L.D.; et al. Water-induced structural rearrangements on the nanoscale in ultrathin nanocellulose films. Macromolecules 2019, 52, 4721–4728. [Google Scholar] [CrossRef]
- Favre, P.; Greppin, H.; Degli Agosti, R. Repetitive action potentials induced in Arabidopsis thaliana leaves by wounding and potassium chloride application. Plant Physiol. Biochem. 2001, 39, 961–969. [Google Scholar] [CrossRef]
- Favre, P.; Agosti, R.D. Voltage-dependent action potentials in Arabidopsis thaliana. Physiol. Plant. 2007, 131, 263–272. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, J.; Wilkins, M.; Martin, D.; Taggart, M.; Rivera, K.R.; Tunc-Ozdemir, M.; Rufty, T.; Lobaton, E.; Bozkurt, A.; Daniele, M.A. Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants. Sensors 2024, 24, 2335. https://doi.org/10.3390/s24072335
Reynolds J, Wilkins M, Martin D, Taggart M, Rivera KR, Tunc-Ozdemir M, Rufty T, Lobaton E, Bozkurt A, Daniele MA. Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants. Sensors. 2024; 24(7):2335. https://doi.org/10.3390/s24072335
Chicago/Turabian StyleReynolds, James, Michael Wilkins, Devon Martin, Matthew Taggart, Kristina R. Rivera, Meral Tunc-Ozdemir, Thomas Rufty, Edgar Lobaton, Alper Bozkurt, and Michael A. Daniele. 2024. "Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants" Sensors 24, no. 7: 2335. https://doi.org/10.3390/s24072335
APA StyleReynolds, J., Wilkins, M., Martin, D., Taggart, M., Rivera, K. R., Tunc-Ozdemir, M., Rufty, T., Lobaton, E., Bozkurt, A., & Daniele, M. A. (2024). Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants. Sensors, 24(7), 2335. https://doi.org/10.3390/s24072335