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Abstract: The degradation of road pavements due to environmental factors is a pressing issue in
infrastructure maintenance, necessitating precise identification of pavement distresses. The pavement
condition index (PCI) serves as a critical metric for evaluating pavement conditions, essential for
effective budget allocation and performance tracking. Traditional manual PCI assessment methods
are limited by labor intensity, subjectivity, and susceptibility to human error. Addressing these
challenges, this paper presents a novel, end-to-end automated method for PCI calculation, integrating
deep learning and image processing technologies. The first stage employs a deep learning algorithm
for accurate detection of pavement cracks, followed by the application of a segmentation-based
skeleton algorithm in image processing to estimate crack width precisely. This integrated approach
enhances the assessment process, providing a more comprehensive evaluation of pavement integrity.
The validation results demonstrate a 95% accuracy in crack detection and 90% accuracy in crack width
estimation. Leveraging these results, the automated PCI rating is achieved, aligned with standards,
showcasing significant improvements in the efficiency and reliability of PCI evaluations. This method
offers advancements in pavement maintenance strategies and potential applications in broader road
infrastructure management.

Keywords: pavement condition index; crack detection; deep learning; image processing; crack width
estimation; pavements; crack segmentations; skeleton algorithm

1. Introduction

The vast network of roads plays a critical role in modern society, supporting essential
activities from commerce to critical emergency services [1,2]. The economic and social
stability of communities heavily relies on the robustness and reliability of these transporta-
tion infrastructures. Yet, the integrity of road networks is frequently compromised by
deteriorating pavement conditions, leading to increased road accidents and substantial
economic repercussions [3]. The degradation of pavements over time, due to environmental
and operational stresses, necessitates a vigilant approach to their maintenance for the safety
and efficiency of transportation systems.

Within the domain of road maintenance, the systematic assessment of pavement con-
ditions is indispensable. Traditional pavement inspection methods, although historically
effective, are marred by their subjective nature, labor intensity, and inherent risks, partic-
ularly in high-traffic environments. Technological advances have led to the adoption of
sensor-equipped vehicles, offering a leap in the safety and efficiency of data collection.
However, these methods often do not translate into standardized measures of pavement
condition assessment—such as the pavement condition index (PCI)—which are essential
for maintenance planning and economic allocation.
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The focus of this study is to address the gap in the application of standardized and
practical PCI evaluation methods. Although the current approaches have made progress
in assessing the extent and density of pavement cracks, they often fall short of integrating
these measurements into a standardized PCI framework recognized for infrastructure
management and decision making. There is a clear need for a methodology, which not only
enhances crack detection through advanced imaging techniques but also consolidates these
data into a standardized PCI evaluation.

To this end, a novel automated method is proposed for evaluating pavement condi-
tions, which employs a novel application of images captured by road inspection vehicles [4].
This method is predicated on a hybrid approach, which combines the precision of deep
learning with the robustness of image processing techniques to detect cracks efficiently and
accurately. This research advances the field by applying a comprehensive assessment frame-
work, which aligns with real-world imaging conditions, thereby ensuring the practical
relevance of the data collected.

The primary goal is to automate the calculation of the PCI, employing a wide array
of pavement distress indicators to achieve a detailed and accurate portrayal of pavement
conditions. This approach is crucial for informed decision making in road maintenance
and infrastructure management. The method introduces a three-stage image-based process
for PCI calculation, which begins with the detection of pavement cracks using the latest
iteration of the “You Only Look Once” (YOLO) algorithm, YOLOv8. This is followed by
the estimation of crack widths and culminates in the PCI calculation, demonstrating a level
of robustness and adaptability superior to traditional methods. The study adheres to the
AASHTO R 85-18 [5] and ASTM D6433-18 [6] standards, ensuring that the methodology is
both consistent with industry norms and cost-effective.

The remainder of this paper is structured as follows. Section 2 reviews the related
work, focusing on current deep-learning-based methods for pavement condition assess-
ment and highlighting significant contributions and gaps in the field. Section 3 details
the methodology of the proposed framework for automated pavement condition index
evaluation, including data collection, crack detection algorithms, and the processes for
width estimation and PCI calculation. Section 4 presents the experimental verification of
the proposed method, illustrating the dataset preparation, processing, and results of crack
detection and PCI calculation. Section 5, which encompasses the discussion and conclu-
sions, assesses the implications of the automated approach and outlines future research
directions in image-based pavement condition assessment.

2. Related Works

The assessment of pavement condition is a critical area in civil engineering, which has
experienced substantial advancements in recent decades. Traditionally reliant on manual
inspection, this field has increasingly adopted automated methods, enhancing accuracy and
objectivity. This section reviews the literature on automated pavement condition assessment
methods, emphasizing deep learning algorithms and image processing techniques.

Early studies in the automated detection of pavement distresses primarily focused
on crack detection, employing image-based techniques, such as intensity thresholding
and edge detection. Tang and Gu [7] demonstrated the use of intensity thresholding for
crack identification, while Ayenu-Prah et al. [8] and Attoh-Okine et al. [9] highlighted
edge detection’s utility in delineating crack boundaries. Further advancements were made
with wavelet transforms (Chambon et al. [10]) and texture analysis (Hu and Zhao [11],
Ojala et al. [12]), which refined crack detection and analysis. These foundational methods
evolved into sophisticated machine-learning techniques for enhanced crack detection, as
shown by Hoang and Nguyen [13].

To address the potential computational demands of complex crack detection algo-
rithms, particularly in deep learning models, traditional image processing techniques offer
the advantages of simplicity and lower resource requirements. While deep learning models
can often achieve higher accuracy, image processing techniques still hold value due to their
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efficiency and accuracy in specific applications. This makes them particularly well-suited
for scenarios where computational resources are constrained.

The expansion of data availability and computational power steered the focus toward
deep learning methods. Deep learning approaches have been applied successfully in
various tasks, including object detection, classification, and segmentation [14]. Notably,
Mandal et al. [15] and Liu et al. [16] showcased deep-learning-based distress detection
within pavement images. The field then progressed to employing specific one-stage de-
tection networks, as demonstrated by Nie et al. [17] and Tran et al. [18]. Recent work on
transformer-based networks [19] has also made substantial progress in crack detection, pre-
senting an alternative to CNNs. These networks, leveraging self-attention mechanisms, im-
proved general performance. Chen et al. [20] adopted a ViT approach for asphalt pavement
image classification, designing a LeViT-based network architecture, which integrated convo-
lution layers, an MLP-based pyramid-shaped transformer stage, multi-head self-attention
blocks, and dual classifier heads. Hybrid solutions combining CNN and transformer-
based methods have also emerged, with Luo et al. [21] and Zheng et al. [22] proposing a
combination of YOLO and transformer networks for pavement damage detection.

The accurate detection and localization offered by deep learning methods led to the
development of camera-based pavement condition assessment systems, focusing on quan-
tifying pavement surface distresses and evaluating pavement conditions [23]. However,
most research has concentrated on accurate distress recognition rather than direct pave-
ment condition evaluation. Majidifard’s work [24] represents one of the first attempts to
evaluate pavement condition using a condition rating system, employing a YOLO-based
algorithm and U-Net for distress detection and segmentation with a dataset of 7237 Google
Street images.

To balance the computational demands of complex crack detection algorithms with the
need for detailed analysis, we employ a hybrid approach. Deep learning models are utilized
for accurate crack detection, while image processing techniques offer a computationally
efficient solution for segmentation. This approach leverages the strengths of both methods,
making it well-suited for scenarios where computational resources may be limited.

Other researchers have proposed low-cost solutions using smartphones and cus-
tomized camera setups. For instance, Roberts et al. [25] developed a deep-learning-based
methodology for pavement condition monitoring using a smartphone mounted on a vehi-
cle. This methodology was applied to a road network in Sicily, Italy, to identify different
pavement distress types and their severities. Similarly, Mei et al. [26] employed a new
camera system installed at the rear of a vehicle, focusing on crack segmentation for pave-
ment inspection. Qureshi et al. [27] presented a comprehensive approach, which outputs
pavement condition ratings on a scale from 0 to 100 using a dashboard-mounted camera
system and incorporating image segmentation, data cleaning, resizing, cropping, and
machine-learning-based classification.

Despite the advancements in automated pavement condition assessment, key limita-
tions remain:

• Image quality: The necessity for high-resolution images is paramount due to the
complex nature of crack patterns in pavement surfaces. Existing methods often fall
short in capturing the requisite detail, leading to inaccuracies.

• Standardization: There is a notable lack of alignment with established standards, such
as AASHTO or ASTM, in many current studies. This gap leads to inconsistencies and
limits the comparability of assessment results across different systems.

• Subjectivity: Variability in expert interpretations of complex pavement conditions
often results in subjective assessments, compromising the objectivity of evaluations.

The proposed end-to-end method addresses these limitations effectively. By employ-
ing high-resolution imaging, it captures detailed and complex crack patterns, enhancing
detection accuracy. The system adheres to recognized industry standards, ensuring reliable
and comparable assessment results. Furthermore, by automating the pavement condition
index (PCI) calculation process, it significantly reduces the subjectivity associated with
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human expert assessments. This integration of advanced image processing and deep
learning not only overcomes current challenges but also establishes a new benchmark for
accuracy and standardization in pavement condition assessment, leading to more reliable
infrastructure maintenance and management.

3. Methodology: Proposed Framework for Automated Pavement Condition Index
Evaluation

The objective of this work was the development of an automatic distress PCI calcu-
lation method and system, which uses information extracted from acquired pavement
images. As shown in Figure 1, the operation of the proposed system consists of three
stages: (1) crack detection, (2) width estimation, and (3) PCI calculation. As a main part
of the system for the extraction of useful information (crack type and severity) from the
acquired pavement images, two main modules are developed for crack detection and width
calculation. For a given pavement image, the crack of interest is first detected, and its
width is then evaluated. The detection module utilizes a YOLOv8 (see Section 3.1), which
affords flexibility in terms of image size and state-of-the-art computer vision performance,
especially for object detection. The crack width is then calculated to assess the severity
level of road distress. For the width calculation, an image-processing-based algorithm
is developed, which utilizes low-level image processing methods, such as segmentation
and skeleton (see Section 3.2). The system then outputs critical information in the form
of a bounding box, which defines the location of the crack in the image, the distress type
(four types will be particularly defined in this paper), its extent (length and area), and its
width. These details are fed into the automatic PCI calculator. The following is a detailed
description of each stage of the proposed PCI calculation framework.
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3.1. Crack Detection Using YOLOv8

YOLOv8 is the latest version of the YOLO series [28–30]. It is a state-of-the-art object
detection system, which is fast and accurate compared to its predecessors. It consists of
four main components: input, backbone, neck, and output (see Figure 2).
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The proposed method was developed in Python 3.11 using the PyTorch 2.1 deep
learning framework, providing a flexible environment for pavement crack detection. The
configuration of YOLOv8 from pre-processing to post-processing was meticulously adapted
to meet the demands of pavement condition assessment. Details regarding the specific
model configuration are discussed in Section 4.

The input component applies some pre-processing techniques to the input image
to enhance the quality and diversity of the data. These techniques include mosaic data
augmentation, which randomly crops and stitches four images together to form a new
image, and adaptive anchor calculation, which adjusts the anchor boxes according to the
distribution of ground truth boxes. Adaptive grayscale padding is applied, filling the
padded areas with the image’s mean pixel value, to ensure consistency in the input data
for subsequent processing steps.

The backbone component is the core of the network, which extracts features from
different levels of the image. The backbone component uses a modified version of the C3
module, called C2f, which reduces the computational cost and enhances gradient flow. The
C2f module incorporates the benefits of the efficient layer aggregation network (ELAN)
structure in YOLOv7 [31], reducing one standard convolutional layer and making full use
of the bottleneck module to enhance the gradient branch. The backbone component also
uses a spatial attention module (SAM) to enhance the feature maps by assigning different
weights to different regions based on their importance.

The neck component acts as an intermediary processing step, following the backbone
network, which fuses features from different scales of the image. The neck component
employs a feature pyramid network (FPN) [32] and a path aggregation network (PAN) [33]
to fuse features from different levels of the network. This enables the model to capture both
semantic and localization information and handle objects of varying sizes and shapes. FPN
uses a top-down path to propagate high-level features to low-level features, and PAN uses
a bottom-up path to propagate low-level features to high-level features. Both paths use
adaptive feature fusion, which is a weighted sum of the features from the previous and
the next levels. The neck component also adopts a spatial pyramid pooling fusion (SPPF)
module to aggregate context information from different regions of the feature maps.
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The head component is the part, which predicts the class and location of each object
using decoupled heads, which separate the classification and regression tasks. The head
component uses distribution focal loss (DFL) and CIoU loss, which are loss functions that
aim to improve the performance of object detection. DFL is a variant of focal loss, which
assigns different weights to different samples based on their difficulty. CIoU loss is a variant
of IoU loss, which measures the similarity between the prediction box and the ground
truth box. The head component also uses a task alignment metric, which combines the
classification score and the IoU value, to select the best prediction boxes.

The output component is the part, which selects the best prediction boxes based on
a task-aligned assigner, which assigns positive and negative samples based on a com-
bination of classification and regression scores. The output component also uses some
post-processing steps, such as non-maximum suppression (NMS) and soft-NMS, which
eliminate duplicate detections and suppress low-confidence ones.

3.2. Width Calculation

To calculate the PCI, crack widths are estimated in the second module of the proposed
system. The crack width estimation algorithm employs the Sato Tubeness filter, imple-
mented using the Python-based skimage [34] image processing library, to effectively isolate
crack edges against noisy background textures. This is followed by skeletonization using an
OpenCV algorithm [35]. The process involves crack segmentation followed by application
of the skeletonization algorithm (see Figure 3 for a detailed workflow).
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3.2.1. Crack Segmentation Process

The crack segmentation process is initiated via application of the Sato Tubeness filter.
This filter is applied due to its effectiveness in identifying linear patterns indicative of
pavement cracks. The specifics of the filter’s operation and its combination with subse-
quent morphological operations, which are crucial for achieving precise segmentation, are
discussed in order to facilitate accurate width calculation.

1. Sato Tubeness filter

The crack segmentation process is performed using the Sato Tubeness filter, a method
tailored for 2D image analysis. It is particularly effective for delineating linear structures,
such as pavement cracks, offering flexibility to accommodate varying crack widths. This
adaptability is crucial for accurately segmenting different types of pavement cracks in
the images.

Before computing the Hessian matrix H at each pixel over a range of scales σ, scales are
chosen to match the expected variety in crack sizes. These scales are critical for capturing
the full breadth of crack dimensions present in the pavement.

At scale σ, the Hessian matrix is defined as

H(i, j, σ) =

(
Lxx(i, j, σ) Lxy(i, j, σ)
Lyx(i, j, σ) Lyy(i, j, σ)

)
(1)

In this matrix, Lxx, Lxy, Lyx, and Lyy represent the second-order partial derivatives of
image intensity, providing key information on the curvature and orientation of structures
within the image.
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The eigenvalues l1 and l2 are derived from H, where a pronouncedly greater l1 in
comparison to l2 is emblematic of a ridge structure/characteristic crack formation. The
filter’s response at each pixel is given by

R(i, j, σ) = σ2 · (max(λ1(i, j, σ), 0)) (2)

This response, R, is a measure of the likelihood that a pixel at location and scale
σ belongs to a ridge-like structure. The multiplication by σ2 serves as a scaling factor,
enhancing the detection of larger features at larger scales.

The final segmentation result, F(i, j), is obtained by selecting the maximum filter
response across the scales:

F(i, j) = maxsS R(i, j, σ) (3)

By selecting the maximum response, F(i, j) ensures that the most prominent ridge-
like feature at each pixel is captured, accurately representing the crack structures in the
pavement image.

2. Morphological operations

Morphological operations are subsequently applied to the filtered image to refine the
segmentation. These operations include dilation to connect fragmented cracks, erosion to
reduce noise, and opening to smooth the crack paths, thereby enhancing the segmenta-
tion’s precision.

Following the application of the Sato Tubeness filter, the isolated noises and small
holes within the crack structures are addressed. Morphological operations are applied
to the binary image resulting from the Sato filter to improve the segmentation of the
crack structures.

The process involves three steps using a binary image, denoted by A, and structural
elements, denoted by B:

1. Dilation is used to enhance the size of the cracks, aiding in bridging gaps within the
crack regions. It is defined as

A ⊕ B =
{

z |
[(

B̂
)

z ∩ A
)]

̸= ∅
}

(4)

2. Erosion serves to refine the crack paths by eliminating small noises. It is described by

A ◦ B = (A ⊖ B)⊕ B (5)

3. Opening combines erosion and dilation to smooth the crack contours further and is
represented as

A ⊖ B = {z | (B)z ⊆ A} (6)

These steps, when applied in sequence, enhance the segmentation by cleaning up
the noise and defining the cracks more clearly, which is crucial for accurate pavement
condition assessment.

3.2.2. The Skeleton Algorithm and Width Estimation

The skeleton method is mainly used to determine the topological properties of the
crack, such as the length, direction, and width. The skeleton algorithm is employed [36] for
width calculation using the parallel iterative thinning method [37]. A skeleton algorithm
can be used to process binary segmented images by iteration through the image pixels to
decrease the pixel width based on its direction, as much as down to one pixel. This made it
particularly suitable for the proposed method. Furthermore, the shapes of the segmented
cracks resembled a single linear line, and this made the shape extraction easier. The
skeleton algorithm was successfully used to extract the skeletons of the binary segmented
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crack images. The average width of a crack was subsequently calculated by using the
following equation:

W =
A
B

(7)

where W is the average width of the crack; A is the number of pixels in the crack; and B is
the number of pixels in the skeleton of the crack.

3.3. PCI Calculation

In this section, the process of PCI evaluation is outlined. Initially, the criteria for assess-
ing pavement condition are presented. This is followed by a brief overview of the standards,
which inform the methodology. Finally, the section details the step-by-step process of PCI
calculation, providing a clear and methodical approach to the evaluation method.

There are four different criteria for evaluating pavement condition: (1) the PCI; (2) sur-
face characteristics, such as roughness, texture, and friction; (3) sub-surface characteristics;
and (4) structural characteristics. This study focuses on the PCI, which indicates pavement
surface distress. While the PCI does not encompass conditions such as roughness and
structural capacity, it serves as a primary basis for determining the necessary maintenance
or restoration work, including the assessment of the extent of pavement distress.

PCI evaluation primarily relies on three main criteria: (1) distress type, (2) severity,
and (3) extent.

• Distress type: The identification of surface cracks and their types is crucial for pave-
ment condition assessment. Different distress types are defined for PCI calculation
based on their location and pattern. This study predominantly follows the AASHTO R
85-18 standard, which classifies distress into four types: (1) alligator pattern, (2) patch-
ing pattern, (3) longitudinal, and (4) transverse cracks.

• Severity level: As previously mentioned, there are four distress types under considera-
tion. Longitudinal and transverse cracks are typically observed in the early stages of
pavement deterioration. Detecting them in a timely manner allows for the application
of minor restorative treatments, such as thin overlay and sealing. However, accurately
measuring the severity level is crucial at this stage. Fortunately, this can often be
achieved by measuring the crack width. Table 1 provides different severity levels
based on crack width for longitudinal and transverse cracks. In the case of alligator
and patching damage, their evaluation directly considers the urgency of restoration
needs. Furthermore, for these distress types, there are limited viable restorative strate-
gies, including costly pavement surface reconstruction. As discussed later in this study,
a crack width calculation method is proposed for longitudinal and transverse cracks.

• Extent: The extent of pavement distress, particularly pattern cracks, such as alligator
and patching damage, is evaluated based on its structural appearance on the pavement
surface. This study thoroughly investigates the extent of deterioration through PCI
calculations for these distress types.

Table 1. Severity levels of longitudinal and transverse cracks.

Severity Level Crack Width (mm)

Low <5

Medium 5–20

High >20

There are established standards for collecting and analyzing pavement surface data,
offering two primary benefits: ensuring data collection consistency and accurate reporting
of pavement data. Transportation organizations have widely adopted standards, with the
American Society for Testing and Materials (ASTM) standards being commonly applied.
These standards encompass data collection, distress classification, and PCI evaluation.
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However, some agencies may develop their measurement methods based on unique his-
torical conditions or combine standards with other protocols. Nevertheless, two main
standards are frequently applied to pavement condition data, as discussed below.

• AASHTO Standard: The American Association of State Highway and Transporta-
tion Officials (AASHTO) standards are invaluable for organized distress information
collection from images, covering aspects such as type, severity, and extent. In this
work, AASHTO R85-18 is employed, which serves as the standard for quantifying
cracks in asphalt pavement surfaces using automatically captured pavement images.
Additionally, AASHTO PP68 [38] is used for collecting pavement surface images for
distress detection. These standards enable detailed identification and rating of various
pavement distress types.

• ASTM Standard: Numerous ASTM standards are widely employed in pavement
assessment. Given the focus on PCI, ASTM D6433-18 is adopted: Standard Prac-
tice for Roads and Parking Lots Pavement Condition Index Surveys. This standard
guides the collection of pavement condition data to determine the PCI value and
its corresponding rating (please refer to Table 2). Overall, the proposed approach
partially follows AASHTO R85-18 and ASTM D6433-18 for distress classification and
PCI calculation, respectively.

Table 2. PCI rating.

PCI Rating

86–100 Good
71–85 Satisfactory
56–70 Fair
41–55 Poor
26–40 Very Poor
11–25 Serious
0–10 Failed

After the inspection of each pavement image using the detection and width estimation
algorithm, the PCI was calculated. The calculation involved four main steps:

1. The distress type, severity level, and extent were determined for the sampled section.
Density was then calculated using the following equation:

Density =
Total distress amount

section area
× 100 (8)

2. Deduct value (DV) calculation: The DVs are calculated using deduction value curves
provided in the ASTM D6433-18 standard. A higher deduct value indicates greater
deterioration of the pavement structure. The deduct value is evaluated based on the
distress type, severity, and density of the pavement. Because the present work was
fully automatic, all the deduct values were digitized and fitted using a polynomial
regression model.

3. Calculation of total DV (TDV): The TVD is calculated by summing the deduct values
for each sampled unit. Every individual deduct value is determined by first classifying
the density or extent of a distress according to its severity level (with q1 representing
the lowest severity and q7 representing the highest). The appropriate deduct value
curve in ASTM D6433 is then used to obtain the corresponding deduct value. The
corrected deduct value (CDV) for the sample unit can then be determined from the
curve shown in Figure 4. This process considers the severity levels determined by the
q1–q7 classification, ensuring that the most severe distresses have the greatest impact
on the final PCI.

4. PCI value: The PCI is determined by subtracting the CDV from the perfect score of 100.
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4. Experimental Verification of the Proposed Method

This section encompasses a comprehensive description of the dataset preparation and
processing for training the proposed model. It also presents the implementation details,
evaluation metrics, detection experiments with both quantitative and qualitative results, as
well as reporting the speed of the proposed method. Additionally, the width calculation is
discussed, followed by PCI calculation for actual pavement images using the results of the
crack detection and width calculation.

4.1. Dataset and Settings

The experiments were conducted in Seoul, South Korea, utilizing a specialized truck
equipped with a camera designed to capture images of the pavement surface. This system
operates at vehicle speeds up to 100 km/h with a sampling frequency ranging from 5600 Hz
to a maximum of 11,500 Hz, ensuring high-resolution data capture. The image resolution
is 3730 × 10,000 pixels. Images covering standard lane widths of 3–3.5 m and lengths of
10–10.5 m were selected to facilitate precise PCI calculations in alignment with established
standards. The data extracted from the images included information regarding the distress
type, such as longitudinal, transverse, alligator cracks, or patching. Due to the exceptionally
high resolution of the images, each image was divided into 10 equal parts, each measuring
1865 × 2000 pixels. This not only eliminated small cracks but also reduced the memory
footprint. In total, 3600 images were obtained from this process. Among these, 2600 images
were allocated for training, 600 for validation, and 400 for testing purposes. Manual
annotation of the acquired data was carried out using the LabelImg annotation tool [39].
The organization of annotations and data folders followed the structure of the popular
Pascal VOC dataset [40], with folders created in the following order: (1) [JPEGImages],
(2) [Annotations], and (3) [ImageSets] for training, validation, and testing, respectively.

In order to train the YOLOv8 model for crack detection, a transfer learning approach
was employed, utilizing a pre-trained model [41]. This approach facilitated faster training
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with improved convergence, given that the dataset was relatively small in comparison to
existing datasets comprising millions of images. Through this approach, the crack features
were effectively extracted.

Hyperparameters were configured with a learning rate of 0.001, a weight decay of
0.0005, a total of 100 epochs, and utilization of an Adam optimizer [42].

4.2. Crack Detection Results

Four typical pavement images (shown in Figure 5) were used for the performance
estimation of the proposed method. Here, the images include different distress types (e.g.,
patching, longitudinal, transverse, and alligator cracks). The columns from left to right
correspond to the pavement sections, including different crack densities. (Section 1 (low
density), Section 2 (low density), Section 3 (high density), Section 4 (high density)).
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Figure 5. Sample pavement surface images.

The performance of the detection model was examined in this work based on two com-
mon evaluation metrics: (1) pixel accuracy and (2) mean intersection union (IU). For both
evaluation metrics, the true positive (TP) is the correct prediction of pixels with correct
ground truth pixels; the true negative (TN) is the correct prediction of pixels with non-
ground-truth pixels; the false positive (FP) is the incorrect prediction of pixels with correct
ground truth pixels; and the false negative (FN) is the incorrect prediction of pixels with
incorrect ground truth pixels.

• Pixel accuracy: This is a simple metric mainly based on the comparison of each pixel
with the ground truth and detection result images. In this case, the overall pixel values
are calculated by considering all the pixels to be of the same type.

pixelaccuracy =
TP + TN

TP + TN + FP + FN
(9)

• Mean IU (mean IU): The mean IU is calculated for each distress type, and then, the
average is taken across all distress types.
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mean IU =
1
N

(
TP + TN

TP + FP + FN

)
(10)

where N is the number of distress types in the evaluation data.
The crack detection results are shown in Figure 6 and Table 3. In the figure, the top

and bottom rows, respectively, correspond to the ground truths of the original images and
the present results. The columns from left to right correspond to the pavement sections
(Section 1 (low density), Section 2 (low density), Section 3 (high density), Section 4 (high
density)). The different colors indicate different distress types (i.e., red: longitudinal,
green: transverse, yellow: patching, blue: alligator). The crack detection performance was
evaluated quantitatively and qualitatively.
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Table 3. The detection results.

Image Section Pixel Accuracy (%) Mean IU (%)

Section 1 98.30 70.67
Section 2 96.48 71.15
Section 3 93.07 67.62
Section 4 91.69 54.67

Average 95% 66%

• Qualitative results: Qualitative results obtained using the proposed method for an
image with a size of 3730 × 10,000 pixels are shown in Figure 6. For better visualization,
the bounding boxes of the cracks are colored. Note that the proposed method performs
well on these images as well, showing the applicability of the proposed method.

• Quantitative results: Table 3 gives the results for the images in Figure 6. The average
pixel accuracy for the data was 95%, while the mean IU was 66%.

• Processing speed: A further examination of the speed of the proposed crack de-
tection method was conducted based on a single image. An image with a size of
3730 × 10,000 pixels was found to require approximately 2 s for the detection process.
This shows that the method is practical.

4.3. Results for Width Calculation and Crack Segmentation

This section details the methodology employed for calculating crack widths from
pavement images, which forms a key part of the crack detection process developed in
this study. A set of 300 images, specifically selected for their inclusion of transverse and
longitudinal cracks, were analyzed. Ground truth data, essential for validating the detection
method’s performance, were meticulously gathered through manual visual inspection of the
pavement. These data underwent a labeling process in two distinct stages: the initial binary
segmentation of cracks followed by the measurement of their widths from the segmented
results. The camera used for capturing the pavement images was calibrated such that one
pixel equated to a length of one millimeter, ensuring that the segmentation and subsequent
width measurements could be precisely correlated with real-world dimensions.

The effectiveness of the crack width calculation method is highly dependent on the
binary segmentation’s ability to distinguish cracks within the images. The developed
algorithm is specifically designed to identify cracked regions, which are depicted in Figure 6.
The experimental data affirm the method’s robust performance across a range of pavement
conditions, including scenarios with noisy textures and low contrast between the cracks
and the pavement background.

The method was determined to have an average accuracy of 95%. After segmentation,
the width calculation method was applied, which utilized the skeleton algorithm. The
skeleton information and segmentation output were used to estimate the width using
Equation (7). The previously generated ground truth data were used to examine the
performance of this method, which was found to have a width estimation accuracy of
90%. To calculate the PCI, which was the actual interest of this study, the width calculation
results were sorted out by severity levels using Table 1.

4.4. PCI Calculation and Analysis

Utilizing the results from the automatic detection and width calculation algorithm,
the PCI for each pavement section was computed following the ASTM D6433-18 standards.
Each section was represented by high-resolution images, with the dimensions of captured
road pavement sections ranging from 3.5 to 3.7 m in width and 10 m in length, as illustrated
in Figure 5.

The calculation of PCI was conducted as per the methodology detailed in Section 3.3,
which outlined the necessary steps and equations for assessing pavement condition. The
process included sorting crack information by type, extent, and severity, determining
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deduct values, applying a polynomial regression model to the DVs to ascertain the best fit,
and calculating the corrected deduct values (CDVs). The final PCI was then computed by
subtracting the CDV from a perfect score of 100.

The collected data, illustrated in Figure 7, present a sequence of images outlining our
crack analysis workflow, from the original cropped image to binary segmentation and
final skeletonization, with a table summarizing the crack’s type, dimensions, severity, and
location. Table 4 demonstrates varied pavement conditions across the sampled sections.
Sections 1 and 2, with lower crack densities, exhibited “good” and “satisfactory” condi-
tions, respectively. Interestingly, Section 3, despite being categorized as high density, also
displayed “satisfactory” conditions due to the predominance of low-severity cracks. In con-
trast, Section 4 was rated as “very poor” due to extensive alligator cracking, emphasizing
the critical nature of such distress in the PCI assessment.
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Table 4. Overall results of PCI evaluation.

Section No. Distress Type Severity Length
and Area Density DV TDV q CDV PCI Pavement

Condition

Section 1 Long. and Trans. Low 75.56 2.04 4.77
19.35 2 13.65 86.35 GoodMedium 81.48 2.2 14.58

Section 2
Long. and Trans. Low 91.26 2.47 5.76

34.99 3 20.28 79.72 SatisfactoryMedium 133.64 3.61 18.87
Patching Medium 0.47 1.26 10.36

Section 3 Long. and Trans. Low 191.75 5.18 10.52
27.13 2 19.37 80.63 Satisfactory

Medium 102.93 2.78 16.61

Section 4
Long. and Trans. Low 133.64 3.61 18.87

104.73 3 65.23 34.77 Very PoorMedium 143.13 3.87 19.47
Alligator High 10.76 29.11 73.67

By implementing the steps outlined earlier, this section presents the practical appli-
cation and results of the PCI calculation, reinforcing the effectiveness of the automated
system in providing accurate and reliable pavement condition assessments.

5. Discussion and Conclusions

The research presents a significant leap in the domain of civil infrastructure analysis
through the development of an automated approach for evaluating the pavement condition
index (PCI). Applied in Seoul City, South Korea, this method, adhering to AASHTO R85-18
and ASTM D6433 standards, represents a breakthrough in combining high-resolution imag-
ing with advanced image processing techniques. Despite its effectiveness, it is important to
note that the current data acquisition system is relatively costly. The methodology, primarily
focused on major pavement distress types, demonstrated accuracy in classifying crack types
and severity levels, as well as superior processing speeds compared to traditional methods.

The use of high-resolution images, while crucial for precision in pavement condition
assessments, contributes to the higher cost of the current system. This aspect is particularly
vital in real-world scenarios for accurate detection of pavement distresses. This method,
with its current focus on major distress types, addresses the most frequently encountered
issues in urban settings. However, we recognize the potential for future enhancements, in-
cluding the possibility of transitioning to a more cost-effective, customized line-scan-based
camera system. This future development could offer a more economically feasible solution
while maintaining, or even improving, the accuracy and efficiency of the assessments.

As the field of deep learning continues to evolve and demonstrate robustness, replac-
ing traditional image processing techniques with a fully deep-learning-based approach
seems inevitable. This transition is expected to not only refine the robustness and effi-
ciency of the PCI assessment process but also potentially reduce costs associated with
data acquisition.

The deliberate focus on commonly observed pavement distresses, while strategic in
maximizing practical relevance, is complemented by the adaptability of the methodology.
Future research will expand this focus to include a broader range of pavement distress types
and explore the integration of deep learning techniques, which will open new avenues for
research and application. This evolution promises significant contributions to the efficiency
and effectiveness of infrastructure maintenance and management strategies.

The implications of the study for pavement maintenance and infrastructure manage-
ment are considerable. By automating the PCI calculation process and potentially shifting
to a more cost-effective data acquisition system in the future, the proposed method stands
to significantly reduce both the time and costs associated with manual inspections. The
anticipated integration of deep learning techniques is poised to advance this technology
further, suggesting a new benchmark in the field of infrastructure assessment.
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In summary, this study not only addresses the current challenges in automated pave-
ment condition assessment but also lays a solid foundation for future technological inte-
gration and expansion. The successful application of the proposed method in Seoul City
underscores its efficacy in producing robust, accurate, and efficient evaluations of pavement
conditions. Looking ahead, the expansion of distress types analyzed and the integration of
emerging deep learning techniques, coupled with a potential shift to a more cost-effective
data acquisition system, will significantly contribute to the efficiency and effectiveness of
infrastructure maintenance and management. The contributions thus provide a promis-
ing direction for future innovations in pavement condition assessment, highlighting the
potential for a fully automated, intelligent pavement evaluation system.
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