Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing
<p>Single-molecule epi-fluorescence sensing by metalens on the chip. (<b>a</b>) Scheme of the epi-fluorescence sensing of diffusing single molecules. The metalens dimensions are designated as follows: metalens size (D<sub>metalens</sub>), taper length (L<sub>taper</sub>), narrow single-mode waveguide width (w<sub>1</sub>), wide waveguide width (w<sub>2</sub>), waveguide height (w<sub>h</sub>), thickness of the upper cladding layer of SOG (h<sub>SOG</sub>). The metalens focal length is approximately 7 µm, while the height and diameter of the cylindrical meta-atoms amount to 500 nm and 200 nm, respectively. The taper shape follows a relation: <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mi>α</mi> <mo>⋅</mo> <msup> <mrow> <mfenced separators="|"> <mrow> <mstyle scriptlevel="0" displaystyle="true"> <mfrac bevelled="true"> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>t</mi> <mi>a</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> </mstyle> <mo>−</mo> <mi>x</mi> </mrow> </mfenced> </mrow> <mrow> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac bevelled="true"> <mrow> <msub> <mrow> <mi>w</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>2</mn> </mrow> </mfrac> </mstyle> <mo>,</mo> </mrow> </semantics></math> where <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="true"> <mfrac bevelled="true"> <mrow> <msub> <mrow> <mi>w</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>−</mo> <msub> <mrow> <mi>w</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msubsup> <mrow> <mi>L</mi> </mrow> <mrow> <mi>t</mi> <mi>a</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> </mrow> <mrow> <mi>m</mi> </mrow> </msubsup> </mrow> </mfrac> </mstyle> </mrow> </semantics></math>, with <span class="html-italic">m</span> being 1.15 and <span class="html-italic">x</span> belonging to the range from −<span class="html-italic">L<sub>taper</sub></span>/2 to <span class="html-italic">L<sub>taper</sub></span>/2. (<b>b</b>) The meta-atom position produces a phase map focusing on two wavelengths. The phase profiles of the metalenses are represented along the propagation direction of light in the waveguide. (<b>c</b>) Segmentation of the metalens into two zones to generate foci at two wavelengths. (<b>d</b>) Coupling strength of modes of meta-atom and waveguide in a broad wavelength range. (<b>e</b>) Near-field transmission of the meta-atoms. The white line corresponds to the meta-atom height selected for designing integrated metalenses.</p> "> Figure 2
<p>Focal point overlap comparison of the dual-wavelength and chromatic metalenses on the waveguide. (<b>a</b>) Point spread function (PSF) of segmented metalens for ATTO 490LS fluorescence detection at 500 and 660 nm. (<b>b</b>) PSF of single-wavelength metalens at 500 and 660 nm. (<b>c</b>) PSF of segmented metalens for Alexa 555 fluorescence detection at 520 and 570 nm. (<b>d</b>) PSF of single-wavelength metalens at 520 and 570 nm. (<b>e</b>) PSF of segmented metalens for APC-Cy7 fluorescence detection at 650 and 780 nm. (<b>f</b>) PSF of single-wavelength metalens at 650 and 780 nm. The color bars depict optical field intensity.</p> "> Figure 3
<p>Lateral PSF and linear intensity profiles of dual-wavelength metalenses on the chip. (<b>a</b>) Lateral PSF of metalens for ATTO 490LS fluorescence detection at 500 and 660 nm. (<b>b</b>) Horizontal cut of the images in (<b>a</b>). (<b>c</b>) Axial intensity profiles of the metalens for ATTO 490LS fluorescence detection at 500 and 660 nm. (<b>d</b>) Lateral PSF of metalens for Alexa 555 fluorescence detection at 520 and 570 nm. (<b>e</b>) Horizontal cut of the images in (<b>d</b>). (<b>f</b>) Axial intensity profiles of the metalens for Alexa 555 fluorescence detection at 520 and 570 nm. (<b>g</b>) Lateral PSF of metalens for APC-Cy7 fluorescence detection at 650 and 780 nm. (<b>h</b>) Horizontal cutoff of the images in (<b>g</b>). (<b>i</b>) Axial intensity profiles of the metalens for APC-Cy7 fluorescence detection at 650 and 780 nm.</p> "> Figure 4
<p>Molecule detection efficiency under epi-fluorescence configuration. Absorbance and fluorescence spectra of (<b>a</b>) ATTO 490 LS, (<b>b</b>) Alexa 555, and (<b>c</b>) APC-Cy7. The spectral data are adopted from [<a href="#B40-sensors-24-07781" class="html-bibr">40</a>]. The solid line spectra denote absorbance, whereas the dashed line spectra refer to emission. In addition, the solid lines denote the design excitation wavelength, and the shading indicates the simulated collection band by the metalens. The spectra-computed molecule detection efficiency with dual-wavelength metalenses designed for (<b>d</b>) ATTO 490 LS, (<b>e</b>) Alexa 555, and (<b>f</b>) APC-Cy7.</p> "> Figure 5
<p>Metalens-based diffusion autocorrelation functions for molecules of interest. Simulated FCS data with fitting curves are represented for (<b>a</b>) ATTO 490 LS, (<b>b</b>) Alexa 555, and (<b>c</b>) APC-Cy7. The fit functions correspond to a 3D diffusion FCS model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barkai, E.; Jung, Y.; Silbey, R. THEORY of Single-Molecule Spectroscopy: Beyond the Ensemble Average. Annu. Rev. Phys. Chem. 2004, 55, 457–507. [Google Scholar] [CrossRef] [PubMed]
- Macchia, E.; Torricelli, F.; Caputo, M.; Sarcina, L.; Scandurra, C.; Bollella, P.; Catacchio, M.; Piscitelli, M.; Di Franco, C.; Scamarcio, G.; et al. Point-Of-Care Ultra-Portable Single-Molecule Bioassays for One-Health. Adv. Mater. 2024, 36, 2309705. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, Z.; Shang, Y.; Kang, S.H.; Lin, J.-M. Single-Molecule Detection-Based Super-Resolution Imaging in Single-Cell Analysis: Inspiring Progress and Future Prospects. TrAC Trends Anal. Chem. 2023, 167, 117255. [Google Scholar] [CrossRef]
- Olson, E.; Torres, R.; Levene, M.J. Integrated Fluorescence Correlation Spectroscopy Device for Point-of-Care Clinical Applications. Biomed. Opt. Express 2013, 4, 1074–1082. [Google Scholar] [CrossRef]
- Brown, J.W.; Bauer, A.; Polinkovsky, M.E.; Bhumkar, A.; Hunter, D.J.; Gaus, K.; Sierecki, E.; Gambin, Y. Single-Molecule Detection on a Portable 3D-Printed Microscope. Nat. Commun. 2019, 10, 5662. [Google Scholar] [CrossRef]
- Trofymchuk, K.; Glembockyte, V.; Grabenhorst, L.; Steiner, F.; Vietz, C.; Close, C.; Pfeiffer, M.; Richter, L.; Schütte, M.L.; Selbach, F.; et al. Addressable Nanoantennas with Cleared Hotspots for Single-Molecule Detection on a Portable Smartphone Microscope. Nat. Commun. 2021, 12, 950. [Google Scholar] [CrossRef]
- Dey, S.; Dolci, M.; Zijlstra, P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS Phys. Chem. Au 2023, 3, 143–156. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-Dielectric Metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent Advances in Planar Optics: From Plasmonic to Dielectric Metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile Multifunctional Photonic Components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.Y.; Chen, W.-T.; Khorasaninejad, M.; Oh, J.; Zaidi, A.; Mishra, I.; Devlin, R.C.; Capasso, F. Ultra-Compact Visible Chiral Spectrometer with Meta-Lenses. Apl Photonics 2017, 2, 036103. [Google Scholar] [CrossRef]
- Zhang, C.; Divitt, S.; Fan, Q.; Zhu, W.; Agrawal, A.; Lu, Y.; Xu, T.; Lezec, H.J. Low-Loss Metasurface Optics down to the Deep Ultraviolet Region. Light Sci. Appl. 2020, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Ossiander, M.; Meretska, M.L.; Hampel, H.K.; Lim, S.W.D.; Knefz, N.; Jauk, T.; Capasso, F.; Schultze, M. Extreme Ultraviolet Metalens by Vacuum Guiding. Science 2023, 380, 59–63. [Google Scholar] [CrossRef]
- Zhou, Y.; Kravchenko, I.I.; Wang, H.; Nolen, J.R.; Gu, G.; Valentine, J. Multilayer Noninteracting Dielectric Metasurfaces for Multiwavelength Metaoptics. Nano Lett. 2018, 18, 7529–7537. [Google Scholar] [CrossRef]
- Jia, D.; Tian, Y.; Ma, W.; Gong, X.; Yu, J.; Zhao, G.; Yu, X. Transmissive Terahertz Metalens with Full Phase Control Based on a Dielectric Metasurface. Opt. Lett. 2017, 42, 4494–4497. [Google Scholar] [CrossRef]
- Tang, F.; Ye, X.; Li, Q.; Wang, Y.; Yu, H.; Wu, W.; Li, B.; Zheng, W. Dielectric Metalenses at Long-Wave Infrared Wavelengths: Multiplexing and Spectroscope. Results Phys. 2020, 18, 103215. [Google Scholar] [CrossRef]
- Jo, Y.; Park, H.; Yoon, H.; Kim, I. Advanced Biological Imaging Techniques Based on Metasurfaces. Opto-Electron. Adv. 2024, 7, 240122. [Google Scholar] [CrossRef]
- Yesilkoy, F. Optical Interrogation Techniques for Nanophotonic Biochemical Sensors. Sensors 2019, 19, 4287. [Google Scholar] [CrossRef]
- Kim, S.-J.; Kim, C.; Kim, Y.; Jeong, J.; Choi, S.; Han, W.; Kim, J.; Lee, B. Dielectric Metalens: Properties and Three-Dimensional Imaging Applications. Sensors 2021, 21, 4584. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-Y.; Fang, S.-L.; Lin, Y.-S.; Huang, W.-H.; Shieh, J.-M.; Yu, P.; Chang, Y.-C. Integrated Metasurfaces on Silicon Photonics for Emission Shaping and Holographic Projection. Nanophotonics 2022, 11, 4687–4695. [Google Scholar] [CrossRef]
- Huang, H.; Overvig, A.C.; Xu, Y.; Malek, S.C.; Tsai, C.-C.; Alù, A.; Yu, N. Leaky-Wave Metasurfaces for Integrated Photonics. Nat. Nanotechnol. 2023, 18, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ding, Y.; Chen, X.; Duan, Y.; Ni, X. Molding Free-Space Light with Guided Wave–Driven Metasurfaces. Sci. Adv. 2020, 6, eabb4142. [Google Scholar] [CrossRef]
- Yang, R.; Wan, S.; Shi, Y.; Wang, Z.; Tang, J.; Li, Z. Immersive Tuning the Guided Waves for Multifunctional On-Chip Metaoptics. Laser Photonics Rev. 2022, 16, 2200127. [Google Scholar] [CrossRef]
- Fang, B.; Wang, Z.; Gao, S.; Zhu, S.; Li, T. Manipulating Guided Wave Radiation with Integrated Geometric Metasurface. Nanophotonics 2022, 11, 1923–1930. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, X.; Duan, Y.; Huang, H.; Zhang, L.; Chang, S.; Guo, X.; Ni, X. Metasurface-Dressed Two-Dimensional on-Chip Waveguide for Free-Space Light Field Manipulation. ACS Photonics 2022, 9, 398–404. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, C.; Qiao, Y.; Deng, R.; Shi, Y.; Li, Z. On-Chip Direction-Multiplexed Meta-Optics for High-Capacity 3D Holography. Adv. Funct. Mater. 2024, 34, 2312705. [Google Scholar] [CrossRef]
- Mehta, K.K.; Bruzewicz, C.D.; McConnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated Optical Addressing of an Ion Qubit. Nat. Nanotechnol. 2016, 11, 1066–1070. [Google Scholar] [CrossRef]
- Sauer, S.; Sorokina, A.; Grimpe, C.-F.; Du, G.; Gehrmann, P.; Jordan, E.; Mehlstäubler, T.; Kroker, S. Chip Integrated Photonics for Ion Based Quantum Computing. In Proceedings of the EPJ Web of Conferences, EDP Sciences, Porto, Portugal, 12–16 September 2022; Volume 266, p. 13032. [Google Scholar]
- Sonehara, T.; Anazawa, T.; Uchida, K. Improvement of Biomolecule Quantification Precision and Use of a Single-Element Aspheric Objective Lens in Fluorescence Correlation Spectroscopy. Anal. Chem. 2006, 78, 8395–8405. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A Broadband Achromatic Metalens for Focusing and Imaging in the Visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.J.; Su, V.-C.; Wang, S.; Chen, M.K.; Chung, T.L.; Chen, Y.H.; Kuo, H.Y.; Chen, J.-W.; Chen, J.; Huang, Y.-T.; et al. Achromatic Metalens Array for Full-Colour Light-Field Imaging. Nat. Nanotechnol. 2019, 14, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zhang, J.; Wu, Q.; Martins, A.; Sun, Q.; Liu, Z.; Long, Y.; Martins, E.R.; Li, J.; Liang, H. RGB Achromatic Metalens Doublet for Digital Imaging. Nano Lett. 2022, 22, 3969–3975. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hao, C.; Lin, H.; Wang, Y.; Lan, T.; Qiu, C.-W.; Jia, B. Generation of Super-Resolved Optical Needle and Multifocal Array Using Graphene Oxide Metalenses. Opto-Electron. Adv. 2021, 4, 200031. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Z.; Zhou, K.; Sun, Y.; Shen, F.; Li, Y.; Qu, S.; Liu, S. Polarization-Independent Longitudinal Multi-Focusing Metalens. Opt. Express 2015, 23, 29855–29866. [Google Scholar] [CrossRef]
- Shi, R.; Hu, S.; Sun, C.; Wang, B.; Cai, Q. Broadband Achromatic Metalens in the Visible Light Spectrum Based on Fresnel Zone Spatial Multiplexing. Nanomaterials 2022, 12, 4298. [Google Scholar] [CrossRef]
- Barulin, A.; Kim, Y.; Oh, D.K.; Jang, J.; Park, H.; Rho, J.; Kim, I. Dual-Wavelength Metalens Enables Epi-Fluorescence Detection from Single Molecules. Nat. Commun. 2024, 15, 26. [Google Scholar] [CrossRef]
- Philipp, H.R. Optical Properties of Silicon Nitride. J. Electrochem. Soc. 1973, 120, 295. [Google Scholar] [CrossRef]
- AAT Bioquest Inc. Fluorescence Spectrum Viewer. Available online: https://www.aatbio.com/fluorescence-excitation-emission-spectrum-graph-viewer/ (accessed on 25 November 2024).
- Benzaouia, M.; Joannopoulos, J.D.; Johnson, S.G.; Karalis, A. Quasi-Normal Mode Theory of the Scattering Matrix, Enforcing Fundamental Constraints for Truncated Expansions. Phys. Rev. Res. 2021, 3, 033228. [Google Scholar] [CrossRef]
- Hsieh, P.-Y.; Fang, S.-L.; Lin, Y.-S.; Huang, W.-H.; Shieh, J.-M.; Yu, P.; Chang, Y.-C. Metasurfaces on Silicon Photonic Waveguides for Simultaneous Emission Phase and Amplitude Control. Opt. Express 2023, 31, 12487–12496. [Google Scholar] [CrossRef]
- Potton, R.J. Reciprocity in Optics. Rep. Prog. Phys. 2004, 67, 717. [Google Scholar] [CrossRef]
- Ramachandra, R. Fluorescence Correlation Spectroscopy: Simulations and Bio-Chemical Applications Based on Solid Immersion Lens Concept. Ph.D. Thesis, École Polytechnique Fédérale De Lausanne, Lausanne, Switzerland, 2006. [Google Scholar]
- Rigler, R.; Elson, E.S. Fluorescence Correlation Spectroscopy: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 65, ISBN 3-642-59542-1. [Google Scholar]
- Moerner, W.E. High-Resolution Optical Spectroscopy of Single Molecules in Solids. Acc. Chem. Res. 1996, 29, 563–571. [Google Scholar] [CrossRef]
- Eggeling, C.; Volkmer, A.; Seidel, C.A.M. Molecular Photobleaching Kinetics of Rhodamine 6G by One- and Two-Photon Induced Confocal Fluorescence Microscopy. ChemPhysChem 2005, 6, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Wüstner, D.; Christensen, T.; Solanko, L.M.; Sage, D. Photobleaching Kinetics and Time-Integrated Emission of Fluorescent Probes in Cellular Membranes. Molecules 2014, 19, 11096–11130. [Google Scholar] [CrossRef]
- Qian, H. On the Statistics of Fluorescence Correlation Spectroscopy. Biophys. Chem. 1990, 38, 49–57. [Google Scholar] [CrossRef]
- Barulin, A.; Nguyen, D.D.; Kim, Y.; Ko, C.; Kim, I. Metasurfaces for Quantitative Biosciences of Molecules, Cells, and Tissues: Sensing and Diagnostics. ACS Photonics 2024, 11, 904–916. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Lee, S.; Kim, I. Recent Advances in Metaphotonic Biosensors. Biosensors 2023, 13, 631. [Google Scholar] [CrossRef]
- Kim, I.; Kim, H.; Han, S.; Kim, J.; Kim, Y.; Eom, S.; Barulin, A.; Choi, I.; Rho, J.; Lee, L.P. Metasurfaces-Driven Hyperspectral Imaging via Multiplexed Plasmonic Resonance Energy Transfer. Adv. Mater. 2023, 35, 2300229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barulina, E.; Nguyen, D.D.; Shuklin, F.; Podobrii, M.; Novikov, S.; Chernov, A.; Kim, I.; Barulin, A. Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing. Sensors 2024, 24, 7781. https://doi.org/10.3390/s24237781
Barulina E, Nguyen DD, Shuklin F, Podobrii M, Novikov S, Chernov A, Kim I, Barulin A. Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing. Sensors. 2024; 24(23):7781. https://doi.org/10.3390/s24237781
Chicago/Turabian StyleBarulina, Elena, Dang Du Nguyen, Fedor Shuklin, Mikhail Podobrii, Sergey Novikov, Alexander Chernov, Inki Kim, and Aleksandr Barulin. 2024. "Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing" Sensors 24, no. 23: 7781. https://doi.org/10.3390/s24237781
APA StyleBarulina, E., Nguyen, D. D., Shuklin, F., Podobrii, M., Novikov, S., Chernov, A., Kim, I., & Barulin, A. (2024). Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing. Sensors, 24(23), 7781. https://doi.org/10.3390/s24237781