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Abstract: As the importance of hygiene and safety management in food manufacturing has been
increasingly emphasized, research on non-destructive and non-contact inspection technologies has
become more active. This study proposes a real-time and non-destructive food inspection system
with sub-terahertz waves which penetrates non-conducting materials by using a frequency of 0.1 THz.
The proposed system detects not only the presence of foreign matter, but also the degree of depth to
which it is mixed in foods. In addition, the system estimates water activity levels, which serves as
the basis for assessing the freshness of seaweed by analyzing the transmittance of signals within the
sub-terahertz image. The system employs YOLOv8n, which is one of the newest lightweight object
detection models. This lightweight model utilizes the feature pyramid network (FPN) to effectively
detect objects of various sizes while maintaining a fast processing speed and high performance. In
particular, to validate the performance in real manufacturing facilities, we implemented a hardware
platform, which accurately inspects seaweed products while cooperating with a conveyor device
moving at a speed of 45 cm/s. For the validation of the estimation performance against various water
activities and the degree of depth of foreign matter, we gathered and annotated a total of 9659 sub-
terahertz images and optimized the learning model. The final results show that the precision rate is
0.91, recall rate is 0.95, F1-score is 0.93, and mAP is 0.97, respectively. Overall, the proposed system
demonstrates an excellent performance in the detection of foreign matter and in freshness estimation,
and can be applied in several applications regarding food safety.

Keywords: terahertz; non-destructive inspection; food quality test; signal processing; object detection

1. Introduction

In the modern food manufacturing industry, the importance of hygiene and quality
control is being emphasized more than ever. As global food supply chains grow more
complex and consumer demands diversify, food manufacturers need to manage quality
and safety more rigorously. Consumers are also becoming more focused on food safety
and hygiene for their own health, which is putting additional demands on companies. In
particular, foreign matters and microbial contamination, which provide significant negative
effects on the human body, increase the need for non-destructive and non-contact inspection
systems to proactively mitigate these threats. Non-destructive inspection technology allows
the assessment of food quality without causing physical damage to the product [1–3]. It
helps promptly identify and resolve issues that may arise during the manufacturing process.
This means that it provides real-time monitoring of food safety without interrupting
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other manufacturing processes, thereby enhancing operational efficiency and reducing the
occurrence of unsafe or defective products.

In food manufacturing processes, one of the representative conventional methods of
non-destructive inspection is the vision (image) inspection system [4–8]. Vision inspection
systems obtain images of food products using optical devices, such as machine vison
cameras, and apply various algorithms to the acquired images in order to detect and sort
out defective products or foreign matters. Recently, due to advancements in deep learning,
vision inspection systems have demonstrated fast and accurate inspection capabilities.
Although this method efficiently uses a color contrast between the product and the foreign
matter, it has two significant limitations. First, the vision-based system has difficulty in
distinguishing between objects with similar colors and shapes (e.g., black seaweed and
black flies). The second problem is that it cannot inspect the internal parts of products.
To address these issues, non-destructive inspection methods utilizing various sensors are
being actively researched.

To tackle the first problem, hyperspectral imaging inspection [9–13], which performs
surface inspections similarly to vision inspection, is an advanced image processing tech-
nology that simultaneously collects spectral and spatial information of objects. Since
hyperspectral imaging can obtain dozens to hundreds of spectral data across a wide range
of wavelengths (e.g., visible and near-infrared (VNIR) [14]), it allows for identification
of the chemical composition and physical state of materials. Thus, it is advantageous
for distinguishing foreign matters with similar colors to food or detecting changes in the
freshness of food. However, it does not solve the second problem by the fact that it still
uses light, which cannot penetrate into the food.

To tackle the second problem, the representative methods for inspecting the internal
part of products include X-ray inspection and using a metal detector. The X-ray inspec-
tion [15–17], by using its strong penetrative capability, can be highly effective in detecting
hard-typed foreign matters such as metal, bone, stone, etc. However, it struggles to detect
soft-typed (low density) foreign matters such as insects, silicone, rubber, etc. Another
limitation is that radiation may invoke potential health risks, and it makes it difficult for
engineers to work near the equipment. The metal detector [18] is also highly efficient at
identifying metallic foreign matters, and it is considered safe by the fact that there is no
radiation exposure. However, it can only detect metal objects and cannot detect other
hard-typed foreign matters such as plastic and stones. In addition, both devices do not
have the function to evaluate the freshness or quality inside the food.

In this study, in order to simultaneously detect foreign matters inside foods and
analyze their freshness, we propose a novel sub-terahertz-based inspection system with
deep learning algorithms. Terahertz waves occupy a frequency band in the electromagnetic
spectrum between microwaves and infrared waves, typically ranging from 0.1 THz to
10 THz. Frequencies below 1 THz are referred to as sub-terahertz waves. These waves
have the ability to penetrate and non-destructively analyze the internal structure of food
products. Thus, compared to conventional methods, the proposed system has the capability
to detect both hard and soft foreign matters inside foods. Additionally, our sub-terahertz-
based system [19–24] is considered harmless to the human body [25,26], making this
method a safer alternative.

In addition to detecting foreign matters, we also propose a method to estimate the
depth of foreign matters in food by utilizing the signal variation that occurs with the pene-
tration degree of the foreign matter. In general, terahertz waves do not have penetration
capabilities as strong as X-rays. As the material becomes thicker or the distance from the
sensor increases, the acquired signals change slightly. Due to this limitation, thick materials
cannot be penetrated. However, if the thickness of the food is appropriate, the location and
depth of the foreign matter can be inferred by analyzing the signal characteristics of the
food and foreign matter.

Regarding the estimation of food freshness, we explored another unique limitation of
terahertz waves. Due to the frequency characteristics of terahertz waves, they are highly
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sensitive to polar substances, particularly water. Consequently, it is challenging to penetrate
materials with a high moisture content. Nonetheless, this study used this limitation to its
advantage. By analyzing the difference in signal penetration depending on the moisture
concentration, we propose a real-time estimation method for water activity levels in dried
food. Water activity is an indicator that represents the amount of free water in food and
is closely related to the potential for microbial growth and food freshness [27]. When
the water activity exceeds the threshold, it can accelerate microbial growth, leading to
food spoilage or deterioration. Conventionally, water activity measurement is conducted
through destructive methods, where materials are extracted for measurement. This ap-
proach is time-consuming and not suitable for application in manufacturing processes.
In contrast, the proposed method is non-destructive and provides automatic and rapid
estimation of water activity levels. To the best of our knowledge, it is the first attempt
to simultaneously explore the real-time inspection for foreign matters with locations and
freshness (water activities) in foods. This non-destructive testing system we propose can
play an unprecedented and innovative role in food screening based on the characteristics
of terahertz waves.

The rest of this paper is organized as follows. Section 2 describes the equipment and
materials used in this study. In Section 3, a method for compensating for unstable signals is
presented. Section 4 explains the inspection method using sub-terahertz imaging [28,29].
In Section 5, the performance of the inspection model is evaluated and analyzed. Section 6
introduces the inspection platform developed with practical usability in mind and discusses
the results of real-site experiments. Finally, Section 7 provides a brief summary and
concludes the paper with directions for future research.

2. Equipment and Materials
2.1. Equipment

In this study, a non-destructive inspection system using sub-terahertz waves at a
frequency of 0.1 THz was developed. This system is optimized for the real-time inspection
of food products moving rapidly on a conveyor belt. It consists of sub-terahertz equipment
(source, scanner), accessories (conical horn antenna, cylindrical concave mirror), a PC, con-
veyor belt, and mounting frame. The sub-terahertz equipment utilized an impact ionization
avalanche transit-time (IMPATT) diode from Terasense Inc., San Jose, CA, USA [30,31]. The
detailed configuration of the system is shown in Figure 1 and the specifications of each
piece of equipment are presented in Table 1.
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Table 1. Specifications of equipment.

Equipment Index Specification

Source
Frequency 0.1 THz

Power 800 mW

Scanner
Number of pixels 256

Pixel size 1.5 × 3 mm2

Imaging area 384 × 3 mm2

Conveyor Maximum speed 45 cm/s
Belt Transparent PU belt

Cylindrical concave mirror Curvature radius 0.5 m

Conical horn antenna Aperture size 25 × 6 mm2

PC

OS Windows 10
CPU Intel Core i7-10700K 3.80 GHz
RAM 32 GB
GPU GeForce RTX 3060

For the sub-terahertz source, higher frequencies enhance resolution, and higher power
improves penetration capability. We used a high-power source with an output of 800 mW. This
sub-terahertz source is equipped with a digital attenuator, allowing the power intensity to be
adjusted as needed. For instance, when materials are too thin or have a low density, leading to
complete penetration and making them indistinguishable, the digital attenuator can be used
to physically reduce the source power to address this issue. When the sub-terahertz source
generates waves, the generated waves are focused onto the line-scan-type scanner through
a cylindrical concave mirror. For the line-scan-type scanner, there are a total of 256 sensors.
Each sensor represents the intensity of signal obtained from the THz source as a 0–1 value.
The higher the penetration of the sub-THz signal, the closer the obtained value is to 1. The
obtained values are imaged by the inspection platform. The principle of imaging is that
the value obtained from each sensor form a pixel, and the pixels obtained from 256 sensors
constitute a line. The line-scan-type scanner continuously scans lines to create 2D images. The
resulting image has a resolution of 512 × 256 (width × height), and the spatial resolution of
each pixel is shown in Table 1. This setup is suitable for monitoring foods on conveyor belts
moving at high speed.

The conveyor belt used in this system was constructed from transparent polyurethane
(PU). While typical conveyor belts include additives such as fiber or nylon to improve
durability and strength, the high-purity transparent PU belt offers superior penetrability
for sub-terahertz waves [32,33]. To validate this observation, an experiment was conducted
using the same system, where the sub-terahertz signals of seaweed were analyzed under
different belts. Sub-terahertz images of seaweed obtained from different belts within
the same system are presented in Figure 2. Figure 2a shows the image acquired using a
transparent belt, while Figure 2b shows the image acquired using an opaque belt. It can be
observed that the sub-terahertz wave penetration in the opaque belt is significantly lower
compared to the transparent belt. Transparent PU belts are less strong than belts containing
additives, but provide sufficient durability for transporting lightweight materials such as
dried seaweed. To further enhance performance, a support structure was added to maintain
belt tension and minimize vibrations. This adjustment effectively reduces the potential of
signal distortions caused by sagging or belt movement.

The mounting frame serves to securely maintain the distance between the source,
mirror, and scanner. Through the repeated calibration and experiments, the optimal
distance between core devices was carefully designed: 250 mm from the source to the
mirror and 650 mm from the mirror to the scanner, and precisely maintained to enhance the
system’s accuracy. This frame allows adjustments to XYZ axes as needed. Such flexibility
in distance adjustment ensures optimal signal reception in various environments, thereby
maximizing the system’s efficiency.
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2.2. Materials
2.2.1. Food Selection

In general, sub-terahertz waves are highly sensitive to polar substances, particularly
water, due to their frequency band characteristics. This means that terahertz waves are
easily absorbed or scattered in materials with a high moisture content, making signal
penetration difficult. In addition, even if the moisture content of the sample is sufficiently
low, if the thickness exceeds a certain level, it can affect the transmission of sub-terahertz
waves, potentially disturbing penetration. Considering these physical limitations, to
effectively utilize sub-terahertz waves, it is important to select samples with a low moisture
content and an appropriate thickness.

In this study, dried seaweed was selected as a suitable food in terms of moisture
content and thickness, considering the physical limitations of sub-terahertz waves. Dried
seaweed is a representative export product of Republic of Korea and is consumed world-
wide [34]. In particular, a bundle of 100 sheets of dried seaweed is called a “tot” in Korean
and is commonly used as a raw material before processing. Dried seaweed contains approx-
imately 5% to 10% moisture, which provides appropriate conditions for sub-terahertz wave
penetration. Additionally, the thickness of a tot of seaweed is about 5 cm, making it suitable
for sub-terahertz wave penetration. The thickness that sub-THz waves can penetrate varies
depending on the system specifications and the material properties. In general, THz pene-
trates most non-conductive objects, but cannot penetrate metals or dense materials (e.g.,
stones and bone fragments). In our system, we confirmed that it can penetrate and perform
the proposed functions for seaweed up to approximately 7 cm thick. For these reasons,
dried seaweed was selected as the target food. Figure 3 shows a tot of dried seaweed.
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2.2.2. Foreign Matter Selection

To train the inspection model using an object detection algorithm, sub-terahertz images
of foreign matter inside the dried seaweed are required. For this purpose, five represen-
tative soft foreign matters were selected for the experiment. The selected foreign matters
were silicone, ethylene propylene diene monomer (EPDM), polyvinyl chloride (PVC),
polyurethane (PU), and a housefly. These are likely to occur during food manufacturing
and processing. The sizes of the foreign matter range from the scanner’s minimum de-
tectable size of 3 mm to 5 mm. Except for the housefly, the shapes of the foreign matter
were standardized to a cube. In particular, the reason why the foreign substance sample
was made in a cube shape was to normalize the size (width, length, and height) of the
foreign matters. This makes it easy to observe how detection performance varies with
size. Another reason is that it enhances the performance of the deep neural network by
clearly providing ground truth about the size and type of foreign objects during the training
procedure. Table 2 shows the foreign matters used in the experiment.

Table 2. Foreign matters used in the experiment.

Type Silicone EPDM PVC PU House Fly

Image
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3. Signal Compensation

Even when sub-terahertz waves are focused through a mirror, it is difficult to transmit
stable signals to all of the scanner’s sensors. This is because various physical factors,
such as the imbalance in energy distribution during the focusing process, diffraction,
reflection, and scattering of the waves, cause the strength of the signals to be different.
To address this non-stability, the signal stability can be improved by applying a signal
compensation algorithm.

To compensate for the signal, it is necessary to accurately observe the imbalance in
the signal. However, due to the high power of the sub-terahertz source used, all sensors
become saturated in the background signal, making it impossible to observe the unstable
signal. To address this issue, a digital attenuator can be used to physically reduce the power
output. The method for calculating the output when the power is attenuated by x dB can
be expressed as follows [35]:

Pout = 10−
x

10 × Pin

where Pin is maximum output power of source (800 mW);

and Pout is xdB attenuated power

(1)

The saturated background signal at maximum output is displayed entirely in white,
indicating full saturation (the black lines represent dead pixels). In contrast, when the
power was attenuated by 8 dB using the attenuator, the background signal did not result in
saturation in all sensors, allowing the observation of signal imbalance. At this time, the
attenuated power output was approximately 127 mW.

Signal compensation was applied to resolve the issue of sub-terahertz signals not
propagating uniformly across the sensor. This process begins by analyzing the received
signal strength for each sensor using the attenuated signal. Then, compensation factors are
calculated to adjust the signals to a uniform intensity. Finally, the signal from each sensor
is multiplied by a compensation factor. This ensures that the signal intensity received by
each sensor is uniformly adjusted to match the level of the sensor with the strongest signal.
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The compensation factor for each sensor is calculated by dividing each sensor’s intensity
value by the maximum value. The method for calculating the compensation factor for each
sensor is shown in Equation (2) and the method of applying the compensation factor to the
raw signal is shown in Equation (3). By multiplying this pre-obtained compensation factor
with the raw signal without power attenuation, the signal can be compensated in real-time.

Ci =
xmax

xi

where Ci is compensation factor of ith sensor;

xi is ith attenuated signal and xmax is maximum value of attenuated signal

(2)

Si = Ri × Ci

where Ri is raw signal of ith sensor; Si is ith compensated signal
(3)

The changes in signal intensity for each sensor before and after compensation can be
seen in Figure 4. The results show that, except for the dead pixel at sensor 225, the signal
intensity was equalized across all sensors. This method minimized data distortion and
improved the reliability and accuracy of the signals.
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At the maximum power output, we tested whether the compensation factors pre-
obtained through attenuated power remain effective. This can be confirmed through the
sub-terahertz images acquired when dried seaweed passes the sensor. Figure 5 presents
the dried seaweed sub-terahertz images after compensation. The pre-compensation signals
were unstable and exhibited significant noise, shown in Figure 2a. In contrast, the post-
compensation signals were stable, with a marked reduction in noise, shown in Figure 5. The
surface of dried seaweed is actually not flat, so non-reflective scattering may occur. As seen
in Figure 2a, irregular noise patterns caused by non-specular scattering can be observed
in areas with weak signals. This noise presents a critical issue by the fact that it could be
misidentified as foreign matter (e.g., false positive). This issue was mitigated through the
application of signal compensation. This process involves a simple operation of multiplying
pre-obtained compensation factors, allowing real-time operation without latency.



Sensors 2024, 24, 7599 8 of 19

Sensors 2024, 24, x FOR PEER REVIEW 8 of 19 
 

 

At the maximum power output, we tested whether the compensation factors pre-ob-
tained through attenuated power remain effective. This can be confirmed through the sub-
terahertz images acquired when dried seaweed passes the sensor. Figure 5 presents the 
dried seaweed sub-terahertz images after compensation. The pre-compensation signals 
were unstable and exhibited significant noise, shown in Figure 2a. In contrast, the post-
compensation signals were stable, with a marked reduction in noise, shown in Figure 5. 
The surface of dried seaweed is actually not flat, so non-reflective scattering may occur. 
As seen in Figure 2a, irregular noise patterns caused by non-specular scattering can be 
observed in areas with weak signals. This noise presents a critical issue by the fact that it 
could be misidentified as foreign matter (e.g., false positive). This issue was mitigated 
through the application of signal compensation. This process involves a simple operation 
of multiplying pre-obtained compensation factors, allowing real-time operation without 
latency. 

  
(a) (b) 

Figure 5. Post-compensated sub-terahertz images: (a) seaweed and (b) seaweed with foreign matter. 

4. Sub-Terahertz Image-Based Inspection Method 
4.1. Foreign Matter Depth Estimation 

The signals acquired from foreign matters inside the seaweed vary slightly depend-
ing on their depth. This is due to differences in refraction and signal attenuation as the 
distance between the scanner and the foreign matter increases. The experiment was con-
ducted in two cases. In the first case, the samples were classified into three classes: top, 
middle, and bottom (TMB). The top and bottom classes have a depth of the top 30 sheets 
and the bottom 30 sheets, respectively, and the middle class has a depth of 30 to 70 sheets. 
For the second case, the samples were classified into two classes: top and bottom (TB), 
with each class having a depth of 50 sheets. The thickness of the seaweed and depth range 
of each class are shown in Figure 6. 

   
(a) (b) (c) 

Figure 6. Depth range of each class: (a) TB (b), TMB, and (c) thickness of seaweed. 

We analyzed the data after placing five types of foreign matters at varying depths. 
The dataset contains foreign matters at different depths within the same class. The results 
of the analysis show that as the foreign matter is positioned deeper, it moves closer to the 
scanner, providing clearer shape information. In contrast, when the foreign matter is po-
sitioned at shallower depths, it moves farther from the scanner, causing a loss of edge 
definition and a blurred appearance. Furthermore, it was noted that the color of the for-
eign matter becomes darker as its depth increases. This trend was observed consistently, 

Figure 5. Post-compensated sub-terahertz images: (a) seaweed and (b) seaweed with foreign matter.

4. Sub-Terahertz Image-Based Inspection Method
4.1. Foreign Matter Depth Estimation

The signals acquired from foreign matters inside the seaweed vary slightly depending
on their depth. This is due to differences in refraction and signal attenuation as the distance
between the scanner and the foreign matter increases. The experiment was conducted in
two cases. In the first case, the samples were classified into three classes: top, middle, and
bottom (TMB). The top and bottom classes have a depth of the top 30 sheets and the bottom
30 sheets, respectively, and the middle class has a depth of 30 to 70 sheets. For the second
case, the samples were classified into two classes: top and bottom (TB), with each class
having a depth of 50 sheets. The thickness of the seaweed and depth range of each class are
shown in Figure 6.
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We analyzed the data after placing five types of foreign matters at varying depths. The
dataset contains foreign matters at different depths within the same class. The results of the
analysis show that as the foreign matter is positioned deeper, it moves closer to the scanner,
providing clearer shape information. In contrast, when the foreign matter is positioned at
shallower depths, it moves farther from the scanner, causing a loss of edge definition and a
blurred appearance. Furthermore, it was noted that the color of the foreign matter becomes
darker as its depth increases. This trend was observed consistently, regardless of the type
or size of the foreign matter. Table 3 shows the signal variations according to the depth at
which foreign matters of different types and sizes were positioned.

The estimation of foreign matter depth was performed through the training of an
object detection algorithm. The result and performance of this process will be discussed in
detail in Section 5.

Estimating the approximate penetration depth of foreign matters provides several
benefits. First, areas without foreign matter can be identified, enabling the reuse of intact
portions. Second, it shortens the time required to locate the penetrating foreign matter.
Lastly, it helps trace the main entry paths of foreign matter, aiding in the implementation of
preventive measures.



Sensors 2024, 24, 7599 9 of 19

Table 3. Foreign matter signal changes according to depth.

Foreign Matter Size Top Middle Bottom
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3 mm
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Lastly, it helps trace the main entry paths of foreign matter, aiding in the implementation 

of preventive measures. 
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4.2. Water Activity Estimation

Water activity represents the amount of free water in food and plays a crucial role in
the freshness and quality of food. When food is not properly dried or external moisture
is absorbed during storage and distribution, there is a potential increase in water activity.
In particular, high water activity content promotes microbial growth, chemical reactions,
and enzyme activity, which leads to food spoilage and deterioration of quality. In general,
water activity is measured on a scale from 0 aw to 1 aw, with higher values indicating a
greater proportion of free water. For example, microbial growth generally occurs at water
activity levels above 0.6 aw, so controlling aw is essential for food preservation and safety.
The measurement of aw is achieved using a non-conductive humidity sensor, which uses
the equilibrium relative humidity between the material and the air through changes in
capacitance, then finally calculates the water activity accordingly.

Currently, there is no method for real-time and non-destructive water activity mea-
surement. Most water activity measurement techniques require the extraction of samples,
and take several minutes for each measurement [36]. In this study, a method for real-time
estimation of water activity is proposed, utilizing the sensitivity of sub-terahertz waves
to moisture.

The optimal dried seaweed has a water activity ranging from approximately 0.5 aw to
0.56 aw, indicating it is safe from microbial growth and can be preserved for an extended
period. However, if outside air is absorbed into the seaweed during the drying process
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or the packaging is damaged during distribution, moisture activity may increase. The
sub-terahertz signals observed change incrementally according to the water activity of the
dried seaweed. To observe these variations, the water activity was classified into three
stages, and the corresponding signal changes were monitored at each level. The water
activity was measured using the equipment outlined in Table 4.

Table 4. Water activity measurement equipment image and detailed specifications.

Image Index Specification
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Resolution 0.01 aw 
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Measuring range 0–1.0 aw

Resolution 0.01 aw

Accuracy ±0.03 aw

Sensor type Non-conductive
humidity sensor

Sampling time 5 min.

Size 135 × 70 × 44 mm

Water activity levels were categorized into three stages based on their values: Safe
(0.5–0.59 aw), Warning (0.6–0.69 aw), and Danger (0.7 aw and above). The sub-terahertz
images of the dried seaweed at different water activity levels indicate that as the water
activity increases, the signal intensity decreases, resulting in darker images as shown in
Table 5. This characteristic allows for an approximate estimation of the water activity level.

Table 5. Sub-terahertz images for each level of water activity.
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Datasets with different water activity levels were obtained by exposing seaweed to
approximately 65% humidity and a temperature of 22 ◦C for different periods of time. The
Safe class includes datasets with water activity levels of 0.5 aw, 0.54 aw, and 0.57 aw; the
Caution class includes datasets with water activity levels of 0.62 aw, 0.64 aw, and 0.66 aw;
and the Danger class includes datasets with water activity levels of 0.72 aw, 0.8 aw, and
0.85 aw.
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4.3. Data Collection and Annotation

Training an object detection algorithm requires a large amount of data that includes
various cases. The collected data play a crucial role in improving the performance of the
trained model. One of the key factors when collecting data is ensuring the balance between
classes. If data are excessively skewed toward a particular class, this may negatively affect
the training process. In this study, the classes were divided into two cases based on the
penetration depth of the foreign matter. The first case is where the foreign matter penetrates
the top and bottom, and the second case is where it penetrates the top, middle, and bottom.
The dataset was appropriately distributed while considering the balance between classes.

A total of 9659 images were acquired, and the number of objects per class is shown
in Figure 7. As a special case, the Safe class contains a relatively larger amount of data
due to its frequent occurrence. This helps the model learn enough images of safe states to
accurately recognize them. For the remaining classes, an appropriate amount of data was
collected to prevent data imbalance, ensuring that the dataset was properly distributed
according to the roles (water activity level estimation and foreign matter depth estimation)
of each class. The foreign matter classes were abbreviated due to their lengthy names.
For example, the “Foreign matter bottom” class was named “FM_Bot”. Although cases
of foreign matter contamination or exceeding the threshold for water activity are rare,
sufficient data were secured to ensure the model can detect these situations. In order to
train the acquired datasets using the object detection algorithm, an annotation process
is required. For water activity estimation, bounding boxes are drawn around the entire
seaweed area for annotation, while for foreign matters, bounding boxes are placed around
the foreign matter area. An example of the annotation process is shown in Figure 8.
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Figure 7. Proportion of acquired data: (a) TB Type and (b) TMB Type.

For the training of deep learning algorithms, the dataset should be divided into
training, validation, and test sets. The training dataset is utilized to optimize the model’s
parameters, while the validation dataset is employed to adjust hyperparameters and
monitor the model’s performance during training. The test dataset is utilized to evaluate
the model’s generalization ability based on untrained data. It is also important to allocate
the dataset appropriately into training, validation, and test datasets, considering the total
amount of data available. The acquired dataset is relatively small compared to the vast
amount typically used for deep learning training, so it was divided into a 60:20:20 ratio,
ensuring that sufficient data were allocated to both the validation and test datasets. The
proportions of the divided dataset are shown in Figure 9.
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4.4. Object Detection Algorithm

In this study, YOLOv8 [37] was used as the deep learning algorithm for object detection.
YOLOv8 is one of the latest releases in the YOLO series and offers several advantages.
First, the model is efficiently designed to maintain high accuracy while achieving very fast
processing speeds. Additionally, it utilizes an enhanced feature pyramid network (FPN)
structure to extract features at different resolutions. The high-resolution feature maps allow
the model to capture fine details, making it highly effective at detecting small objects and
handling challenging classification tasks, such as differentiating subtle color contrasts. This
capability is advantageous for detecting small foreign matters in food or distinguishing
water activity levels based on subtle differences in color contrast. The architecture of
YOLOv8 is shown in Figure 10.

YOLOv8 is divided into several sub-models based on complexity, and we utilized
the most lightweight version, YOLOv8n. This model reduces computational complexity,
allowing for fast processing times even in limited environments, such as without GPU. Since
sub-terahertz images are less complex compared to standard RGB images, a high accuracy
can still be achieved using the YOLOv8n model. This approach ensures that during system
mass production, real-time operation with high accuracy can be maintained while being
less dependent on PC performance, resulting in cost savings and other potential benefits.
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5. Inspection Performance Evaluation
5.1. Evaluation Indicators

Precision refers to the ratio of correctly detected objects among the objects detected by
the model. In other words, it evaluates how many of the model’s predictions labeled as
correct are actually correct. A high precision value indicates that the model has few false
detections when identifying objects. The equation is as follows:

Precision =
True Positive (TP)

True Positive (TP) + False Positive(FP)
(4)

Recall refers to the ratio of objects correctly detected by the model out of the total
number of actual objects. In other words, it evaluates how successfully the model detects
objects from the entire set. A high recall value indicates that the model successfully
detects objects without missing any, meaning there are few false negatives. The equation is
as follows:

Recall =
True Positive (TP)

True Positive (TP) + False Negative (FN)
(5)

The F1-score is the harmonic mean of precision and recall, and it is used to assess the
balance between both performance metrics. Since there can be a trade-off between precision
and recall, the F1-score provides a single metric that evaluates the overall performance of
the model. It helps determine whether precision and recall are well balanced. The F1-score
increases when both values are similar, and if one is high while the other is low, the F1-score
will be relatively lower. The equation is as follows:

F1 − score = 2 × Precision × Recall
Precision + Recall

(6)

Mean average precision (mAP) is a metric used to evaluate the overall performance of
object detection across multiple classes. It is calculated by averaging the average precision
(AP) for all classes. AP is obtained by calculating the area under the precision–recall
curve. The mAP assesses how well the model detects objects across different classes in a
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balanced manner. A high mAP value indicates that the model consistently detects objects
accurately across multiple classes. It is commonly regarded as the most important metric
when evaluating a model’s performance. The equation is as follows:

mAP = 1
n

n
∑

i=1
APi

where n is number of classes and APi is Average Precision of ith class
(7)

5.2. Performance Evaluation Result

To evaluate the performance of the model, datasets from two cases were trained under
the same conditions. By training different type datasets under identical conditions and
comparing the results, it is possible to assess which type of model performs better. The
input data and hyper parameters used in training, and the specifications of the PC used for
training are shown in Table 6.

Table 6. Training information and PC specifications used for YOLOv8n training.

Type Index Information

Input
Image size 640 × 640

Amount 9659

Hyper parameters

Epochs 100

Batch size 32

Learning rate 0.01

PC

CPU Intel i9 13900K

GPU Geforce RTX 4090 D6X 24 GB × 2

RAM 128 GB

The training results indicate that the TB dataset achieved a higher performance across
all evaluation metrics. This is likely due to the FM_Mid class having a higher tendency to be
confused with other classes, which may have negatively impacted the overall performance.
The performance of the model for each dataset is shown in Table 7.

Table 7. Model performance for each dataset.

Dataset Type Precision Recall F1-Score mAP

TB 0.91 0.95 0.93 0.97

TMB 0.87 0.92 0.89 0.92

When evaluating the average precision (AP) for each class, both models exhibited a
high performance in the estimation of water activity. In the TMB model, the performance
of foreign matter depth estimation for the FM_Bot class was relatively low. This result is
attributed to confusion with the FM_Mid class. In contrast, the TB model demonstrated a
high performance for both the FM_Top and FM_Bot classes. As a result, the TB model was
selected as the model for use. Figure 11 shows the Precision-Recall (PR) curve, and each
class’s AP and mAP for both models.
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6. Sub-Terahertz-Based Real-Time Inspection Platform

To apply the trained model to the real-site processing environment of dried seaweed,
a real-time inspection platform was developed. The platform was implemented using the
PyQT framework to create a user-friendly graphical user interface (GUI) with an intuitive
design. Additionally, the trained YOLOv8n TB model was converted into the Open Neural
Network Exchange (ONNX) format [38]. ONNX is a standardized format that enhances
model compatibility across various deep learning frameworks, allowing the system to
operate seamlessly in different hardware environments. Specifically, ONNX enables stable
real-time inspections in CPU environments and on various edge devices. For example, it
supports various runtimes and hardware acceleration tools such as TensorRT [39], Open-
VINO [40], and ONNX Runtime. This allows our system to run deep learning models with
optimized performance on various CPUs, GPUs, and FPGAs.

The platform supports sub-terahertz image monitoring and real-time inspection of
dried seaweed moving at high speed on a conveyor belt. The maximum conveyor speed
for real-time inspection capability is 45 cm/s. If a foreign matter is detected or the water
activity level exceeds the threshold, a buzzer will sound immediately, a red warning screen
will flash, and the belt will stop. At this point, the worker can easily identify the issue
and remove the defective product. In the future, this system can be upgraded with a
rejector function to automatically remove defective products. Examples of the platform’s
operation when normal products pass and when defective products are detected are shown
in Figure 12.
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Figure 12. Inspection platform operation example: (a) safe product and (b) defective product.

The platform is operated through a touch screen mounted on the front of the mounting
frame. Large buttons and an intuitive control panel were used to enhance the opera-
tor convenience, minimizing the risk of operational errors. The platform includes basic
functions such as adjusting the scanner settings and emergency stopping of the conveyor
belt, as well as additional functions like automatic logging of detected defective prod-
ucts. A usability test conducted in an actual dried seaweed manufacturing facility con-
firmed that the real-time monitoring and defect detection functions operated smoothly.
Figure 13 shows a scene where workers used the platform in an actual dried seaweed
manufacturing facility.
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7. Conclusions

This study proposes a real-time and non-destructive food inspection system using
sub-terahertz waves. The system introduces an innovative approach for estimating water
activity and the penetration depth of foreign matters in food non-destructively. In general,
the terahertz signal can basically penetrate non-conductors, but its penetration performance
varies for specific objects according to their density and moisture. The proposed system
utilizes the above facts and analyzes the signal intensity of various foreign matters such
as insects, silicon, PVC, EPDM, etc. In particular, in order to validate the performance
and availability in real manufacturing facilities, we implemented an application platform
that cooperates with a 45 cm/s conveyor belt system. For the performance validation of
real-time sub-terahertz image analysis, the system utilizes the YOLOv8n model, achieving
a high performance in terms of precision, recall, F1-score, and mAP. We believe that the
proposed system significantly contributes to enhancing food quality control and safety.
This technology is not limited to dried food products, but can also be applied to non-food
fields where sub-terahertz wavelengths can penetrate.

In future studies, we plan to analyze the correlation between various biological quality
indicators such as mold, microbes, and sub-terahertz images. Additionally, we will also in-
vestigate a visual analysis model to predict food quality using deep learning. Furthermore,
we plan to explore methods to enhance the low resolution of the terahertz scanner through
signal/image processing-based approaches for the detection of smaller foreign matters.
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