Validity of Linear and Nonlinear Measures of Gait Variability to Characterize Aging Gait with a Single Lower Back Accelerometer
<p>Experimental protocol for normal and metronome walking assessment: two-lap corridor test.</p> "> Figure 2
<p>Descriptive statistics of basic gait parameters, movement intensity, and RMS ratio. Sixty older and 42 young adults performed 4 × 200 m indoor walking tests with and without synchronizing their steps to an isochronous metronome at their preferred cadence and walking speed. Box plots show median, quartiles, range of data, and outliers (red crosses) representing values exceeding 1.5 times the interquartile range beyond Q1 and Q3. Individual data are shown as black dots. Average walking speed was measured by displacement timing. Step frequency was assessed by spectral analysis of the acceleration signal. Movement intensity is the RMS of the norm of the 3D acceleration. RMS ratio is the ratio between the mediolateral and the norm of acceleration, which is indicative of the lateral gait stability.</p> "> Figure 3
<p>Descriptive statistics of the gait regularity and stability. Sixty older and 42 young adults performed 4 × 200 m indoor walking tests with and without synchronizing their steps to an isochronous metronome at their preferred cadence and walking speed. Box plots show median, quartiles, range of data, and outliers (red crosses) representing values exceeding 1.5 times the interquartile range beyond Q1 and Q3. Individual data are shown as black dots. The autocorrelation function (ACF) method was used to assess the step regularity and the stride regularity. Short-term logarithmic divergence exponents (maximal Lyapunov exponents) of the mediolateral (ML) acceleration, representative of the local dynamic stability (LDS), were assessed using Rosenstein’s algorithm.</p> "> Figure 4
<p>Descriptive statistics of the attractor complexity index (ACI) and the gait complexity (DFA). Sixty older and 42 young adults performed 4 × 200 m indoor walking tests with and without synchronizing their steps to an isochronous metronome at their preferred cadence and walking speed. Box plots show median, quartiles, range of data, and outliers (red crosses) representing values exceeding 1.5 times the interquartile range beyond Q1 and Q3. Individual data are shown as black dots. Long-term logarithmic divergence exponents (maximal Lyapunov exponents) of the vector norm (N), the anteroposterior (AP), and the vertical (V) accelerations, representative of ACI, were assessed using Rosenstein’s algorithm. Scaling exponents (α, correlation structure) were computed based on the stride intervals measured by the foot-mounted accelerometer. The detrended fluctuation analysis (DFA) was applied.</p> "> Figure 5
<p>Inferential statistics: mixed-effect linear models. Sixty older and 42 young adults performed 4 × 200 m indoor walking tests with and without synchronizing their steps to an isochronous metronome at their preferred cadence and walking speed. Ten multiple regression models were fitted to the gait metrics obtained from the walking tests with the lower back accelerometer and the foot accelerometer (scaling exponent only). Two independent categorical variables were introduced: group membership (older or young) and walking conditions (normal or metronome walking). In addition, the preferred walking speed was introduced as a continuous covariate. The data were standardized. The absolute values of the regression coefficients (fixed effects) and their 99% confidence intervals are presented graphically, with negative coefficients drawn in red and with dashed lines. The values of the coefficients are added on the top of each line. ACI: attractor complexity index; ACF: autocorrelation function; LDS: local dynamic stability; DFA: detrended fluctuation analysis; RMS: root mean square; N: norm; AP: anteroposterior; V: vertical; ML: mediolateral.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Rationale and Design
2.2. Participant Recruitment and Eligibility
2.3. Experimental Procedures
2.4. Data Analysis
2.5. Statistics
3. Results
3.1. Participants
3.2. Data Visualization and Cleaning
3.3. Descriptive Statistics
3.3.1. Age Effects
3.3.2. Metronome Effects
3.3.3. Correlations
3.4. Inferential Statistics
4. Discussion
4.1. ACI and Metronome Walking
4.2. Other Gait Metrics and Metronome Walking
4.3. Preferred Walking Speed and Age Effects
4.4. Movement Intensity and Age Effects
4.5. Step Frequency and Age Effects
4.6. RMS Ratio and Age Effects
4.7. Gait Regularity and Age Effects
4.8. Local Dynamic Stability and Age Effects
4.9. Attractor Complexity Index and Age Effects
4.10. Scaling Exponent and Age Effects
4.11. Gait Metrics and Age-Related Decline in Walking Abilities
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prince, F.; Corriveau, H.; Hébert, R.; Winter, D.A. Gait in the Elderly. Gait Posture 1997, 5, 128–135. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Frank, J.S.; Walt, S.E. Biomechanical Walking Pattern Changes in the Fit and Healthy Elderly. Phys. Ther. 1990, 70, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Herssens, N.; Verbecque, E.; Hallemans, A.; Vereeck, L.; Van Rompaey, V.; Saeys, W. Do Spatiotemporal Parameters and Gait Variability Differ across the Lifespan of Healthy Adults? A Systematic Review. Gait Posture 2018, 64, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.J. Automaticity of Walking: Functional Significance, Mechanisms, Measurement and Rehabilitation Strategies. Front. Hum. Neurosci. 2015, 9, 246. [Google Scholar] [CrossRef] [PubMed]
- Caliandro, P.; Masciullo, M.; Padua, L.; Simbolotti, C.; Di Sante, G.; Russo, G.; Garattini, C.; Silvestri, G.; Rossini, P.M. Prefrontal Cortex Controls Human Balance during Overground Ataxic Gait. Restor. Neurol. Neurosci. 2012, 30, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Miyai, I.; Suzuki, M.; Kubota, K. Gait Capacity Affects Cortical Activation Patterns Related to Speed Control in the Elderly. Exp. Brain Res. 2009, 193, 445–454. [Google Scholar] [CrossRef]
- Smith, E.; Cusack, T.; Cunningham, C.; Blake, C. The Influence of a Cognitive Dual Task on the Gait Parameters of Healthy Older Adults: A Systematic Review and Meta-Analysis. J. Aging Phys. Act. 2017, 25, 671–686. [Google Scholar] [CrossRef]
- Bridenbaugh, S.A.; Kressig, R.W. Motor Cognitive Dual Tasking: Early Detection of Gait Impairment, Fall Risk and Cognitive Decline. Z. Gerontol. Geriatr. 2015, 48, 15–21. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The Role of Executive Function and Attention in Gait. Mov. Disord. 2008, 23, 329–342; quiz 472. [Google Scholar] [CrossRef]
- Corbo, I.; Casagrande, M. Higher-Level Executive Functions in Healthy Elderly and Mild Cognitive Impairment: A Systematic Review. J. Clin. Med. 2022, 11, 1204. [Google Scholar] [CrossRef]
- Holtzer, R.; Mahoney, J.; Verghese, J. Intraindividual Variability in Executive Functions but Not Speed of Processing or Conflict Resolution Predicts Performance Differences in Gait Speed in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 69, 980. [Google Scholar] [CrossRef] [PubMed]
- Lundin-Olsson, L.; Nyberg, L.; Gustafson, Y. “Stops Walking When Talking” as a Predictor of Falls in Elderly People. Lancet 1997, 349, 617. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Blizzard, L.; Schmidt, M.D.; McGinley, J.L.; Srikanth, V.K. Ageing and Gait Variability—A Population-Based Study of Older People. Age Ageing 2010, 39, 191–197. [Google Scholar] [CrossRef]
- Hausdorff, J.M. Gait Variability: Methods, Modeling and Meaning. J. Neuroeng. Rehabil. 2005, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: New York, NY, USA, 2003; ISBN 978-0-387-00177-7. [Google Scholar]
- Stergiou, N.; Decker, L.M. Human Movement Variability, Nonlinear Dynamics, and Pathology: Is There a Connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Raffalt, P.C.; Yentes, J.M. Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait. Ann. Biomed. Eng. 2018, 46, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait Variability and Fall Risk in Community-Living Older Adults: A 1-Year Prospective Study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieen, J.H. Local Dynamic Stability and Variability of Gait Are Associated with Fall History in Elderly Subjects. Gait Posture 2012, 36, 527–531. [Google Scholar] [CrossRef]
- Ravi, D.K.; Marmelat, V.; Taylor, W.R.; Newell, K.M.; Stergiou, N.; Singh, N.B. Assessing the Temporal Organization of Walking Variability: A Systematic Review and Consensus Guidelines on Detrended Fluctuation Analysis. Front. Physiol. 2020, 11, 562. [Google Scholar] [CrossRef]
- Mehdizadeh, S. The Largest Lyapunov Exponent of Gait in Young and Elderly Individuals: A Systematic Review. Gait Posture 2018, 60, 241–250. [Google Scholar] [CrossRef]
- Lockhart, T.E.; Liu, J. Differentiating Fall-Prone and Healthy Adults Using Local Dynamic Stability. Ergonomics 2008, 51, 1860–1872. [Google Scholar] [CrossRef] [PubMed]
- Boyé, N.D.A.; Mattace-Raso, F.U.S.; Van der Velde, N.; Van Lieshout, E.M.M.; De Vries, O.J.; Hartholt, K.A.; Kerver, A.J.H.; Bruijninckx, M.M.M.; Van der Cammen, T.J.M.; Patka, P.; et al. Circumstances Leading to Injurious Falls in Older Men and Women in the Netherlands. Injury 2014, 45, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Sherrington, C.; Fairhall, N.J.; Wallbank, G.K.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S.E. Exercise for Preventing Falls in Older People Living in the Community. Cochrane Database Syst. Rev. 2019, 1, CD012424. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Bussmann, J.; Janssen, W.; Horemans, H.; Chastin, S.; Heijenbrok, M.; Stam, H. Accelerometric Assessment of Different Dimensions of Natural Walking during the First Year after Stroke: Recovery of Amount, Distribution, Quality and Speed of Walking. J. Rehabil. Med. 2015, 47, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Ferrarello, F.; Bianchi, V.A.M.; Baccini, M.; Rubbieri, G.; Mossello, E.; Cavallini, M.C.; Marchionni, N.; Di Bari, M. Tools for Observational Gait Analysis in Patients with Stroke: A Systematic Review. Phys. Ther. 2013, 93, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Marin, J.; Marin, J.J.; Blanco, T.; de la Torre, J.; Salcedo, I.; Martitegui, E. Is My Patient Improving? Individualized Gait Analysis in Rehabilitation. Appl. Sci. 2020, 10, 8558. [Google Scholar] [CrossRef]
- Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.W.; Keller, A.; et al. Long-Term Unsupervised Mobility Assessment in Movement Disorders. Lancet Neurol. 2020, 19, 462–470. [Google Scholar] [CrossRef]
- Del Din, S.; Galna, B.; Godfrey, A.; Bekkers, E.M.J.; Pelosin, E.; Nieuwhof, F.; Mirelman, A.; Hausdorff, J.M.; Rochester, L. Analysis of Free-Living Gait in Older Adults With and Without Parkinson’s Disease and With and Without a History of Falls: Identifying Generic and Disease-Specific Characteristics. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 500–506. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and Reliability of Wearable Inertial Sensors in Healthy Adult Walking: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef]
- van Schooten, K.S.; Pijnappels, M.; Rispens, S.M.; Elders, P.J.M.; Lips, P.; Daffertshofer, A.; Beek, P.J.; van Dieën, J.H. Daily-Life Gait Quality as Predictor of Falls in Older People: A 1-Year Prospective Cohort Study. PLoS ONE 2016, 11, e0158623. [Google Scholar] [CrossRef]
- van Schooten, K.S.; Pijnappels, M.; Rispens, S.M.; Elders, P.J.M.; Lips, P.; van Dieën, J.H. Ambulatory Fall-Risk Assessment: Amount and Quality of Daily-Life Gait Predict Falls in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 608–615. [Google Scholar] [CrossRef]
- Weiss, A.; Brozgol, M.; Dorfman, M.; Herman, T.; Shema, S.; Giladi, N.; Hausdorff, J.M. Does the Evaluation of Gait Quality during Daily Life Provide Insight into Fall Risk? A Novel Approach Using 3-Day Accelerometer Recordings. Neurorehabilit. Neural Repair. 2013, 27, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Terrier, P.; Reynard, F. Maximum Lyapunov Exponent Revisited: Long-Term Attractor Divergence of Gait Dynamics Is Highly Sensitive to the Noise Structure of Stride Intervals. Gait Posture 2018, 66, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Ashkenazy, Y.; Peng, C.K.; Ivanov, P.C.; Stanley, H.E.; Goldberger, A.L. When Human Walking Becomes Random Walking: Fractal Analysis and Modeling of Gait Rhythm Fluctuations. Physica A 2001, 302, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal Dynamics in Physiology: Alterations with Disease and Aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [Google Scholar] [CrossRef] [PubMed]
- Vaz, J.R.; Cortes, N.; Gomes, J.S.; Jordão, S.; Stergiou, N. Stride-to-Stride Fluctuations and Temporal Patterns of Muscle Activity Exhibit Similar Responses during Walking to Variable Visual Cues. J. Biomech. 2024, 164, 111972. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, C.J.; van Deudekom, F.J.; van Campen, J.P.; Appels, B.A.; de Vries, O.J.; Pijnappels, M. Gait Stability and Variability Measures Show Effects of Impaired Cognition and Dual Tasking in Frail People. J. Neuroeng. Rehabil. 2011, 8, 2. [Google Scholar] [CrossRef]
- Warlop, T.; Detrembleur, C.; Stoquart, G.; Lejeune, T.; Jeanjean, A. Gait Complexity and Regularity Are Differently Modulated by Treadmill Walking in Parkinson’s Disease and Healthy Population. Front. Physiol. 2018, 9, 68. [Google Scholar] [CrossRef]
- Franz, J.R.; Francis, C.A.; Allen, M.S.; O’Connor, S.M.; Thelen, D.G. Advanced Age Brings a Greater Reliance on Visual Feedback to Maintain Balance during Walking. Hum. Mov. Sci. 2015, 40, 381–392. [Google Scholar] [CrossRef]
- Homs, A.F.; Dupeyron, A.; Torre, K. Relationship between Gait Complexity and Pain Attention in Chronic Low Back Pain. Pain 2022, 163, e31–e39. [Google Scholar] [CrossRef]
- Yano, S.; Nakamura, A.; Suzuki, Y.; Smith, C.E.; Nomura, T. Smartphone Usage during Walking Decreases the Positive Persistency in Gait Cycle Variability. Sci. Rep. 2024, 14, 16410. [Google Scholar] [CrossRef] [PubMed]
- Repp, B.H. Sensorimotor Synchronization: A Review of the Tapping Literature. Psychon. Bull. Rev. 2005, 12, 969–992. [Google Scholar] [CrossRef]
- Repp, B.H.; Su, Y.-H. Sensorimotor Synchronization: A Review of Recent Research (2006–2012). Psychon. Bull. Rev. 2013, 20, 403–452. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, R.S. Auditory Rhythmic Cueing in Movement Rehabilitation: Findings and Possible Mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130402. [Google Scholar] [CrossRef]
- Terrier, P.; Turner, V.; Schutz, Y. GPS Analysis of Human Locomotion: Further Evidence for Long-Range Correlations in Stride-to-Stride Fluctuations of Gait Parameters. Hum. Mov. Sci. 2005, 24, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Terrier, P. Fractal Fluctuations in Human Walking: Comparison Between Auditory and Visually Guided Stepping. Ann. Biomed. Eng. 2016, 44, 2785–2793. [Google Scholar] [CrossRef]
- Roerdink, M.; de Jonge, C.P.; Smid, L.M.; Daffertshofer, A. Tightening Up the Control of Treadmill Walking: Effects of Maneuverability Range and Acoustic Pacing on Stride-to-Stride Fluctuations. Front. Physiol. 2019, 10, 257. [Google Scholar] [CrossRef] [PubMed]
- Decker, L.M.; Cignetti, F.; Stergiou, N. Executive Function Orchestrates Regulation of Task-Relevant Gait Fluctuations. Gait Posture 2013, 38, 537–540. [Google Scholar] [CrossRef]
- Terrier, P.; Dériaz, O. Persistent and Anti-Persistent Pattern in Stride-to-Stride Variability of Treadmill Walking: Influence of Rhythmic Auditory Cueing. Hum. Mov. Sci. 2012, 31, 1585–1597. [Google Scholar] [CrossRef]
- Dingwell, J.B.; John, J.; Cusumano, J.P. Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking? PLoS Comput. Biol. 2010, 6, e1000856. [Google Scholar] [CrossRef]
- Piergiovanni, S.; Terrier, P. Effects of Metronome Walking on Long-Term Attractor Divergence and Correlation Structure of Gait: A Validation Study in Older People. Sci. Rep. 2024, 14, 15784. [Google Scholar] [CrossRef]
- Terrier, P. Complexity of Human Walking: The Attractor Complexity Index Is Sensitive to Gait Synchronization with Visual and Auditory Cues. PeerJ 2019, 7, e7417. [Google Scholar] [CrossRef]
- Talbot, L.A.; Musiol, R.J.; Witham, E.K.; Metter, E.J. Falls in Young, Middle-Aged and Older Community Dwelling Adults: Perceived Cause, Environmental Factors and Injury. BMC Public Health 2005, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, J.D.; Deriaz, O.; Hund-Georgiadis, M.; Meier, S.; Scheel-Sailer, A.; Schubert, M.; Stucki, G.; Brinkhof, M.W. Epidemiology and Contemporary Risk Profile of Traumatic Spinal Cord Injury in Switzerland. Inj. Epidemiol. 2015, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Terrier, P.; Reynard, F. Effect of Age on the Variability and Stability of Gait: A Cross-Sectional Treadmill Study in Healthy Individuals between 20 and 69 Years of Age. Gait Posture 2015, 41, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Reynard, F.; Christe, D.; Terrier, P. Postural Control in Healthy Adults: Determinants of Trunk Sway Assessed with a Chest-Worn Accelerometer in 12 Quiet Standing Tasks. PLoS ONE 2019, 14, e0211051. [Google Scholar] [CrossRef] [PubMed]
- Terrier, P. Triaxial Accelerometer Gait Dataset: Foot and Lower Back Motion During Normal and Metronome Walking; HES-SO: Delémont, Switzerland, 2023. [Google Scholar] [CrossRef]
- Terrier, P.; Ladetto, Q.; Merminod, B.; Schutz, Y. High-Precision Satellite Positioning System as a New Tool to Study the Biomechanics of Human Locomotion. J. Biomech. 2000, 33, 1717–1722. [Google Scholar] [CrossRef]
- Terrier, P.; Le Carre, J.; Connaissa, M.-L.; Leger, B.; Luthi, F. Monitoring of Gait Quality in Patients With Chronic Pain of Lower Limbs. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1843–1852. [Google Scholar] [CrossRef]
- Moe-Nilssen, R. A New Method for Evaluating Motor Control in Gait under Real-Life Environmental Conditions. Part 2: Gait Analysis. Clin. Biomech. 1998, 13, 328. [Google Scholar] [CrossRef]
- Sekine, M.; Tamura, T.; Yoshida, M.; Suda, Y.; Kimura, Y.; Miyoshi, H.; Kijima, Y.; Higashi, Y.; Fujimoto, T. A Gait Abnormality Measure Based on Root Mean Square of Trunk Acceleration. J. Neuro Eng. Rehabil. 2013, 10, 118. [Google Scholar] [CrossRef]
- Pizzamiglio, S.; Abdalla, H.; Naeem, U.; Turner, D.L. Neural Predictors of Gait Stability When Walking Freely in the Real-World. J. Neuro Eng. Rehabil. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Moe-Nilssen, R.; Helbostad, J.L. Estimation of Gait Cycle Characteristics by Trunk Accelerometry. J. Biomech. 2004, 37, 121–126. [Google Scholar] [CrossRef]
- Dingwell, J.B.; Cusumano, J.P.; Cavanagh, P.R.; Sternad, D. Local Dynamic Stability versus Kinematic Variability of Continuous Overground and Treadmill Walking. J. Biomech. Eng. Trans. Asme 2001, 123, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, J.B. Lyapunov Exponents. In Wiley Encyclopedia of Biomedical Engineering; John Wiley & Sons: Oxford, UK, 2006; ISBN 978-0-471-74036-0. [Google Scholar]
- Terrier, P.; Dériaz, O. Non-Linear Dynamics of Human Locomotion: Effects of Rhythmic Auditory Cueing on Local Dynamic Stability. Front. Physiol. 2013, 4, 230. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Purdon, P.L.; Peng, C.K.; Ladin, Z.; Wei, J.Y.; Goldberger, A.L. Fractal Dynamics of Human Gait: Stability of Long-Range Correlations in Stride Interval Fluctuations. J. Appl. Physiol. 1996, 80, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Moe-Nilssen, R. A New Method for Evaluating Motor Control in Gait under Real-Life Environmental Conditions. Part 1: The Instrument. Clin. Biomech. 1998, 13, 320–327. [Google Scholar] [CrossRef]
- Henriksen, M.; Lund, H.; Moe-Nilssen, R.; Bliddal, H.; Danneskiod-Samsøe, B. Test-Retest Reliability of Trunk Accelerometric Gait Analysis. Gait Posture 2004, 19, 288–297. [Google Scholar] [CrossRef]
- Auvinet, B.; Chaleil, D.; Barrey, E. Accelerometric Gait Analysis for Use in Hospital Outpatients. Rev. Rhum. Engl. Ed. 1999, 66, 389–397. [Google Scholar]
- Reynard, F.; Vuadens, P.; Deriaz, O.; Terrier, P. Could Local Dynamic Stability Serve as an Early Predictor of Falls in Patients with Moderate Neurological Gait Disorders? A Reliability and Comparison Study in Healthy Individuals and in Patients with Paresis of the Lower Extremities. PLoS ONE 2014, 9, e100550. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Galecki, B.T.W.; Kathleen, B.W.; Andrzej, T.G. Linear Mixed Models: A Practical Guide Using Statistical Software, 3rd ed.; Chapman and Hall/CRC: New York, NY, USA, 2022; ISBN 978-1-00-318106-4. [Google Scholar]
- Hausdorff, J.M.; Mitchell, S.L.; Firtion, R.; Peng, C.K.; Cudkowicz, M.E.; Wei, J.Y.; Goldberger, A.L. Altered Fractal Dynamics of Gait: Reduced Stride-Interval Correlations with Aging and Huntington’s Disease. J. Appl. Physiol. 1997, 82, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Roume, C.; Ezzina, S.; Blain, H.; Delignières, D. Biases in the Simulation and Analysis of Fractal Processes. Comput. Math. Methods Med. 2019, 2019, 4025305. [Google Scholar] [CrossRef] [PubMed]
- Schielzeth, H.; Dingemanse, N.J.; Nakagawa, S.; Westneat, D.F.; Allegue, H.; Teplitsky, C.; Réale, D.; Dochtermann, N.A.; Garamszegi, L.Z.; Araya-Ajoy, Y.G. Robustness of Linear Mixed-Effects Models to Violations of Distributional Assumptions. Methods Ecol. Evol. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Jordan, K.; Challis, J.H.; Cusumano, J.P.; Newell, K.M. Stability and the Time-Dependent Structure of Gait Variability in Walking and Running. Hum. Mov. Sci. 2009, 28, 113–128. [Google Scholar] [CrossRef]
- Sejdic, E.; Fu, Y.; Pak, A.; Fairley, J.A.; Chau, T. The Effects of Rhythmic Sensory Cues on the Temporal Dynamics of Human Gait. PLoS ONE 2012, 7, e43104. [Google Scholar] [CrossRef]
- Leon, A.C.; Heo, M. Sample Sizes Required to Detect Interactions between Two Binary Fixed-Effects in a Mixed-Effects Linear Regression Model. Comput. Stat. Data Anal. 2009, 53, 603–608. [Google Scholar] [CrossRef]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking Speed: The Functional Vital Sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, H.-C.; Hsu, N.-W.; Chou, P. Using Hand Grip Strength to Detect Slow Walking Speed in Older Adults: The Yilan Study. BMC Geriatr. 2021, 21, 428. [Google Scholar] [CrossRef]
- Malatesta, D.; Simar, D.; Dauvilliers, Y.; Candau, R.; Ben Saad, H.; Préfaut, C.; Caillaud, C. Aerobic Determinants of the Decline in Preferred Walking Speed in Healthy, Active 65-and 80-Year-Olds. Pflug. Arch. Eur. J. Physiol. 2004, 447, 915–921. [Google Scholar] [CrossRef]
- Schrack, J.A.; Zipunnikov, V.; Simonsick, E.M.; Studenski, S.; Ferrucci, L. Rising Energetic Cost of Walking Predicts Gait Speed Decline With Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 947–953. [Google Scholar] [CrossRef]
- Tian, Q.; Mitchell, B.A.; Zampino, M.; Fishbein, K.W.; Spencer, R.G.; Ferrucci, L. Muscle Mitochondrial Energetics Predicts Mobility Decline in Well-Functioning Older Adults: The Baltimore Longitudinal Study of Aging. Aging Cell 2022, 21, e13552. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, D.C.; Lee, L.W.; Collins, J.J.; Riley, P.O.; Lipsitz, L.A. Reduced Hip Extension during Walking: Healthy Elderly and Fallers versus Young Adults. Arch. Phys. Med. Rehabil. 2001, 82, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Riva, D.; Mamo, C.; Fanì, M.; Saccavino, P.; Rocca, F.; Momenté, M.; Fratta, M. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences. J. Aging Res. 2013, 2013, 561695. [Google Scholar] [CrossRef] [PubMed]
- Dapp, U.; Vinyard, D.; Golgert, S.; Krumpoch, S.; Freiberger, E. Reference Values of Gait Characteristics in Community-Dwelling Older Persons with Different Physical Functional Levels. BMC Geriatr. 2022, 22, 713. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Williams Andrews, A. Normal Walking Speed: A Descriptive Meta-Analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef]
- Zijlstra, W.; Hof, A.L. Assessment of Spatio-Temporal Gait Parameters from Trunk Accelerations during Human Walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef]
- Schutz, Y.; Weinsier, S.; Terrier, P.; Durrer, D. A New Accelerometric Method to Assess the Daily Walking Practice. Int. J. Obes. 2002, 26, 111. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Acceleration Patterns of the Head and Pelvis When Walking on Level and Irregular Surfaces. Gait Posture 2003, 18, 35–46. [Google Scholar] [CrossRef]
- Scaglioni-Solano, P.; Aragón-Vargas, L.F. Age-Related Differences When Walking Downhill on Different Sloped Terrains. Gait Posture 2015, 41, 153–158. [Google Scholar] [CrossRef]
- Crowley, P.; Vuillerme, N.; Samani, A.; Madeleine, P. The Effects of Walking Speed and Mobile Phone Use on the Walking Dynamics of Young Adults. Sci. Rep. 2021, 11, 1237. [Google Scholar] [CrossRef]
- Castiglia, S.F.; Trabassi, D.; Tatarelli, A.; Ranavolo, A.; Varrecchia, T.; Fiori, L.; Di Lenola, D.; Cioffi, E.; Raju, M.; Coppola, G.; et al. Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. Cerebellum 2023, 22, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Kobsar, D.; Olson, C.; Paranjape, R.; Hadjistavropoulos, T.; Barden, J.M. Evaluation of Age-Related Differences in the Stride-to-Stride Fluctuations, Regularity and Symmetry of Gait Using a Waist-Mounted Tri-Axial Accelerometer. Gait Posture 2014, 39, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Kakihana, W.; Kimura, T. Combined Effects of Age and Gender on Gait Symmetry and Regularity Assessed by Autocorrelation of Trunk Acceleration. J. Neuroeng. Rehabil. 2014, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Auvinet, B.; Berrut, G.; Touzard, C.; Moutel, L.; Collet, N.; Chaleil, D.; Barrey, E. Reference Data for Normal Subjects Obtained with an Accelerometric Device. Gait Posture 2002, 16, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Dingwell, J.B. Dynamic Stability of Superior vs. Inferior Segments during Walking in Young and Older Adults. Gait Posture 2009, 30, 260–263. [Google Scholar] [CrossRef]
- Bruijn, S.M.; Van Impe, A.; Duysens, J.; Swinnen, S.P. White Matter Microstructural Organization and Gait Stability in Older Adults. Front. Aging Neurosci. 2014, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- Hamacher, D.; Hamacher, D.; Singh, N.B.; Taylor, W.R.; Schega, L. Towards the Assessment of Local Dynamic Stability of Level-Grounded Walking in an Older Population. Med. Eng. Phys. 2015, 37, 1152–1155. [Google Scholar] [CrossRef]
- Bizovska, L.; Svoboda, Z.; Kubonova, E.; Vuillerme, N.; Hirjakova, Z.; Janura, M. The Differences between Overground and Treadmill Walking in Nonlinear, Entropy-Based and Frequency Variables Derived from Accelerometers in Young and Older Women—Preliminary Report. Acta Bioeng. Biomech. 2018, 20, 93–100. [Google Scholar] [CrossRef]
- Lin, X.; Meijer, O.G.; Lin, J.; Wu, W.; Lin, X.; Liang, B.; van Dieën, J.H.; Bruijn, S.M. Frontal Plane Kinematics in Walking with Moderate Hip Osteoarthritis: Stability and Fall Risk. Clin. Biomech. 2015, 30, 874–880. [Google Scholar] [CrossRef]
- Lim, M.R.; Huang, R.C.; Wu, A.; Girardi, F.P.; Cammisa, F.P. Evaluation of the Elderly Patient with an Abnormal Gait. J. Am. Acad. Orthop. Surg. 2007, 15, 107–117. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; van der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H.; et al. World Guidelines for Falls Prevention and Management for Older Adults: A Global Initiative. Age Ageing 2022, 51, afac205. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Lang, S.; Liang, J.; Jiang, Y.; Zhao, B.; Chen, H.; Huang, D.; Li, Q.; Liu, H.; Chen, S.; et al. Effects of Motor-Cognitive Interaction Based on Dual-Task Gait Analysis Recognition in Middle Age to Aging People with Normal Cognition and Mild Cognitive Impairment. Front. Aging Neurosci. 2022, 14, 969822. [Google Scholar] [CrossRef] [PubMed]
- Nanhoe-Mahabier, W.; Delval, A.; Snijders, A.H.; Weerdesteyn, V.; Overeem, S.; Bloem, B.R. The Possible Price of Auditory Cueing: Influence on Obstacle Avoidance in Parkinson’s Disease. Mov. Disord. 2012, 27, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Reynard, F.; Terrier, P. Local Dynamic Stability of Treadmill Walking: Intrasession and Week-to-Week Repeatability. J. Biomech. 2014, 47, 74–80. [Google Scholar] [CrossRef]
- Gigonzac, M.; Terrier, P. Restoring Walking Ability in Older Adults with Arm-in-Arm Gait Training: Study Protocol for the AAGaTT Randomized Controlled Trial. BMC Geriatr. 2023, 23, 542. [Google Scholar] [CrossRef]
Gait Metrics | Principles and Methodology | Applications in Free-Living Conditions | |
---|---|---|---|
Basic gait parameters | Walking speed | Natural pace measured by timing over the 200 m corridor. | N/A |
Step frequency (SF) | Mean number of steps per second. Computed from the vertical acceleration spectrum via fast Fourier transform (FFT) [59]. | [31,32,60] | |
Variability parameters (lumbar accelerometer) | Movement intensity (RMS) | RMS quantifies the magnitude of a varying signal as the square root of the average of the squared values over a period. Representative of the average amplitude of the acceleration during walking. Calculated using the vector magnitude of the 3D acceleration signals [61]. | [31,32,60] |
Lateral stability (RMS ratio) | RMS ratio represents the ratio between RMS in the mediolateral direction and the RMS vector magnitude [62]. It attenuates the dependence of RMS to speed and is thought to be sensitive to impaired dynamic balance [56,62]. | [63] | |
Step regularity (ACF) | Autocorrelation function (ACF) analyzes cyclic patterns in acceleration signals by comparing values with time-shifted versions, with peak values indicating dominant periods. Higher peaks indicate a pronounced similarity across successive cycles. Step regularity corresponds to the first dominant period. Stride regularity corresponds to the second dominant period [64]. | [25,31,32,33] | |
Stride regularity (ACF) | |||
Local dynamic stability (LDS) | LDS assesses the resilience of gait to perturbations. It is determined by calculating the logarithmic divergence rate between adjacent trajectories within a reconstructed attractor that reflects the gait dynamics (Rosenstein’s algorithm) [65,66,67]. | [31,32,60] | |
Attractor complexity index (ACI) | ACI has been empirically validated as a surrogate measure for the correlation structure between successive strides. Its calculation follows the same principles as LDS [34,52,53]. | [60] | |
Foot accelerometer | Scaling exponent α (DFA) | Detrended fluctuation analysis (DFA) of stride interval time series provides the scaling exponent (alpha, α), a measure of the correlation structure of gait [68]. | N/A |
Normal Walking | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Older Participants | Young Participants | Effect Size | Confidence Intervals | |||||||
N | Mean | SD | N | Mean | SD | g | CI Low | CI High | ||
Basic gait parameters | Walking speed (m/s) | 58 | 1.27 | 0.24 | 42 | 1.43 | 0.15 | −0.80 | −1.25 | −0.36 |
Step frequency (Hz) | 59 | 1.89 | 0.15 | 42 | 1.90 | 0.09 | −0.11 | −0.60 | 0.38 | |
Variability measures | Movement intensity (g) | 59 | 0.29 | 0.10 | 42 | 0.35 | 0.09 | −0.58 | −1.12 | −0.08 |
RMS ratio | 59 | 0.66 | 0.14 | 42 | 0.65 | 0.13 | 0.08 | −0.39 | 0.6 | |
Step regularity | 59 | 1.11 | 0.29 | 42 | 1.37 | 0.22 | −0.97 | −1.49 | −0.54 | |
Stride regularity | 59 | 1.17 | 0.30 | 42 | 1.42 | 0.24 | −0.91 | −1.39 | −0.47 | |
Local dynamic stability | LDS-ML | 59 | 1.29 | 0.32 | 42 | 1.15 | 0.42 | 0.38 | −0.15 | 0.99 |
Attractor complexity index | ACI-N | 59 | 0.028 | 0.010 | 42 | 0.033 | 0.006 | −0.53 | −1.06 | −0.07 |
ACI-AP | 59 | 0.022 | 0.009 | 42 | 0.028 | 0.006 | −0.77 | −1.33 | −0.31 | |
ACI-V | 59 | 0.027 | 0.010 | 42 | 0.033 | 0.006 | −0.69 | −1.23 | −0.24 | |
Foot accelerometer | Scaling exponent (DFA) | 60 | 0.74 | 0.17 | 42 | 0.77 | 0.17 | −0.19 | −0.73 | 0.31 |
Metronome Walking | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Older Participants | Young Participants | Effect Size | Confidence Intervals | |||||||
N | Mean | SD | N | Mean | SD | g | CI Low | CI High | ||
Basic gait parameters | Walking speed (m/s) | 58 | 1.26 | 0.24 | 42 | 1.42 | 0.14 | −0.77 | −1.23 | −0.34 |
Step frequency (Hz) | 59 | 1.90 | 0.15 | 42 | 1.90 | 0.09 | −0.06 | −0.55 | 0.46 | |
Variability measures | Movement intensity (g) | 58 | 0.31 | 0.11 | 42 | 0.35 | 0.09 | −0.46 | −1.03 | 0.03 |
RMS ratio (%) | 58 | 0.65 | 0.15 | 42 | 0.64 | 0.12 | 0.11 | −0.41 | 0.64 | |
Step regularity (N/A) | 58 | 1.09 | 0.27 | 42 | 1.35 | 0.21 | −1.02 | −1.57 | −0.57 | |
Stride regularity (N/A) | 58 | 1.15 | 0.28 | 42 | 1.41 | 0.20 | −1.01 | −1.51 | −0.57 | |
Local dynamic stability | LDS-ML | 58 | 1.25 | 0.34 | 42 | 1.16 | 0.38 | 0.25 | −0.26 | 0.81 |
Attractor complexity index | ACI-N | 58 | 0.020 | 0.010 | 42 | 0.029 | 0.010 | −0.87 | −1.37 | −0.38 |
ACI-AP | 58 | 0.016 | 0.008 | 42 | 0.024 | 0.01 | −0.95 | −1.47 | −0.46 | |
ACI-V | 58 | 0.020 | 0.010 | 42 | 0.028 | 0.01 | −0.92 | −1.46 | −0.42 | |
Foot accelerometer | Scaling exponent (DFA) | 60 | 0.39 | 0.22 | 42 | 0.46 | 0.18 | −0.33 | −0.91 | 0.18 |
Multiple Mixed-Effects Regression Models (Fixed Effects) | |||||||
---|---|---|---|---|---|---|---|
Group (Older vs. Young) | Condition (Normal vs. Metronome) | ||||||
Coef. | CI Low | CI High | Coef. | CI Low | CI High | ||
Basic gait parameters | Walking speed | −0.167 | −0.28 | −0.06 | 0.000 | −0.015 | 0.016 |
Step frequency | −0.012 | −0.078 | 0.054 | 0.002 | −0.006 | 0.010 | |
Variability measures | Movement intensity | −0.056 | −0.104 | −0.007 | 0.013 | 0.003 | 0.023 |
RMS ratio | 0.013 | −0.057 | 0.083 | −0.001 | −0.021 | 0.008 | |
Step regularity | −0.253 | −0.379 | −0.118 | −0.013 | −0.043 | 0.025 | |
Stride regularity | −0.249 | −0.295 | −0.109 | −0.009 | −0.051 | 0.010 | |
Local dynamic stability | LDS-ML | 0.111 | −0.068 | 0.290 | −0.017 | −0.076 | 0.043 |
Attractor complexity index | ACI-N | −0.0063 | −0.0102 | −0.0024 | −0.0067 | −0.0095 | −0.0038 |
ACI-AP | −0.0069 | −0.0102 | −0.0035 | −0.0055 | −0.0079 | −0.0030 | |
ACI-V | −0.0071 | −0.0110 | −0.0033 | −0.0067 | −0.0094 | −0.0039 | |
Foot accelerometer | Scaling exponent (DFA) | −0.047 | −0.113 | 0.018 | −0.335 | −0.406 | −0.264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piergiovanni, S.; Terrier, P. Validity of Linear and Nonlinear Measures of Gait Variability to Characterize Aging Gait with a Single Lower Back Accelerometer. Sensors 2024, 24, 7427. https://doi.org/10.3390/s24237427
Piergiovanni S, Terrier P. Validity of Linear and Nonlinear Measures of Gait Variability to Characterize Aging Gait with a Single Lower Back Accelerometer. Sensors. 2024; 24(23):7427. https://doi.org/10.3390/s24237427
Chicago/Turabian StylePiergiovanni, Sophia, and Philippe Terrier. 2024. "Validity of Linear and Nonlinear Measures of Gait Variability to Characterize Aging Gait with a Single Lower Back Accelerometer" Sensors 24, no. 23: 7427. https://doi.org/10.3390/s24237427
APA StylePiergiovanni, S., & Terrier, P. (2024). Validity of Linear and Nonlinear Measures of Gait Variability to Characterize Aging Gait with a Single Lower Back Accelerometer. Sensors, 24(23), 7427. https://doi.org/10.3390/s24237427