Enhancing Direction-of-Arrival Estimation with Multi-Task Learning
<p>Uniform Linear Array (ULA); <span class="html-italic">d</span> is the distance between the sensors; <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>i</mi> </msub> </semantics></math> is the angle of arrival of the impinging signal, and <span class="html-italic">M</span> is the number of sensor array antennas.</p> "> Figure 2
<p>Architecture of the proposed multi-task CNN for DOA estimation. The network processes the signal covariance matrix through the backbone. The resulting feature vector is passed to two branches: the Number-of-Source estimator predicts the Number of Sources <math display="inline"><semantics> <mi mathvariant="bold-italic">b</mi> </semantics></math> (i.e., a binarized version of the logits <math display="inline"><semantics> <mi mathvariant="bold-italic">s</mi> </semantics></math>); the Direction-of-Arrival estimator provides multiple angles of arrival, denoted as <math display="inline"><semantics> <mi mathvariant="bold-italic">d</mi> </semantics></math>, corresponding to the number of angles <math display="inline"><semantics> <mi mathvariant="bold-italic">b</mi> </semantics></math> predicted by the other branch. A compound loss <math display="inline"><semantics> <mi mathvariant="script">L</mi> </semantics></math> is used to optimize the model based on the two task-specific losses.</p> "> Figure 3
<p>Ball chart reporting the RMSE versus accuracy. The size of each ball corresponds to the number of model parameters.</p> "> Figure 4
<p>The DOA estimation performance for the T1 test set at varying SNRs divided by (<b>a</b>) one signal only, (<b>b</b>) two signals, and (<b>c</b>) three signals.</p> "> Figure 5
<p>Boxplots showing CRLB index distributions for (<b>a</b>) test sets T1, T3, and T4, (<b>b</b>) various snapshots within T2, and (<b>c</b>) various snapshots within T5.</p> "> Figure 6
<p>Scenario-independent total performance comparison.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Signal Model
4. The Proposed Method
4.1. Preprocessing
4.2. Architecture
4.2.1. Backbone
4.2.2. Number-of-Source Estimator
4.2.3. Direction-of-Arrival Estimator
4.3. Training Procedure
5. Simulations and Analysis of the Results
5.1. Simulation Settings
- T1.
- Same characteristics as the training set
- T2.
- Different number of snapshots
- T3.
- Various SNRs
- T4.
- Off-grid angles
- T5.
- Combination of T2, T3 and T4
- T6.
- Various phases
- T7.
- Various frequencies
- T8.
- Modulation types
5.2. Results
5.3. Ablation Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Van Trees, H. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Yadav, S.K.; George, N.V. Coarray MUSIC-group delay: High-resolution source localization using non-uniform arrays. IEEE Trans. Veh. Technol. 2021, 70, 9597–9601. [Google Scholar] [CrossRef]
- Liao, B.; Zhang, Z.G.; Chan, S.C. DOA estimation and tracking of ULAs with mutual coupling. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 891–905. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022. [Google Scholar] [CrossRef]
- Terabayashi, K.; Natsuaki, R.; Hirose, A. Ultrawideband Direction-of-Arrival Estimation Using Complex-Valued Spatiotemporal Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1727–1732. [Google Scholar] [CrossRef]
- Yao, Y.; Lei, H.; He, W. A-CRNN-Based Method for Coherent DOA Estimation with Unknown Source Number. Sensors 2020, 20, 2296. [Google Scholar] [CrossRef]
- Liu, Z.M.; Zhang, C.; Philip, S.Y. Direction-of-Arrival Estimation Based on Deep Neural Networks with Robustness to Array Imperfections. IEEE Trans. Antennas Propag. 2018, 66, 7315–7327. [Google Scholar] [CrossRef]
- Wu, L.L.; Huang, Z.T. Coherent SVR Learning for Wideband Direction-of-Arrival Estimation. IEEE Signal Process. Lett. 2019, 26, 642–646. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, D.; Chen, Y.; Ma, Y. Gridless 1-b DOA Estimation Exploiting SVM Approach. IEEE Commun. Lett. 2017, 21, 2210–2213. [Google Scholar] [CrossRef]
- El Zooghby, A.; Christodoulou, C.; Georgiopoulos, M. A neural network-based smart antenna for multiple source tracking. IEEE Trans. Antennas Propag. 2000, 48, 768–776. [Google Scholar] [CrossRef]
- Agatonović, M.; Stanković, Z.; Milovanović, B.; Dončov, N. DOA estimation using radial basis function neural networks as uniform circular antenna array signal processor. In Proceedings of the International Conference on Telecommunication in Modern Satellite Cable and Broadcasting Services (TELSIKS), Nis, Serbia, 5–8 October 2011; Volume 2, pp. 544–547. [Google Scholar] [CrossRef]
- Ge, S.; Li, K.; Rum, S.N.B.M. Deep learning approach in DOA estimation: A systematic literature review. Mob. Inf. Syst. 2021, 2021, 6392875. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Huang, Y.; Zhang, P. DOA Estimation Method Based on Cascaded Neural Network for Two Closely Spaced Sources. IEEE Signal Process. Lett. 2020, 27, 570–574. [Google Scholar] [CrossRef]
- Barthelme, A.; Utschick, W. A Machine Learning Approach to DoA Estimation and Model Order Selection for Antenna Arrays with Subarray Sampling. IEEE Trans. Signal Process. 2021, 69, 3075–3087. [Google Scholar] [CrossRef]
- Wu, L.; Liu, Z.M.; Huang, Z.T. Deep Convolution Network for Direction of Arrival Estimation with Sparse Prior. IEEE Signal Process. Lett. 2019, 26, 1688–1692. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Sellathurai, M.; Eldar, Y. Deep Networks for Direction-of-Arrival Estimation in Low SNR. IEEE Trans. Signal Process. 2021, 69, 3714–3729. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Habets, E.A.P. Multi-Speaker DOA Estimation Using Deep Convolutional Networks Trained with Noise Signals. IEEE J. Sel. Top. Signal Process. 2019, 13, 8–21. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.; Jia, X.; Tian, F. A gridless DOA estimation method based on convolutional neural network with Toeplitz prior. IEEE Signal Process. Lett. 2022, 29, 1247–1251. [Google Scholar] [CrossRef]
- Kokkinis, G.; Zaharis, Z.D.; Lazaridis, P.I.; Kantartzis, N.V. Direction of arrival estimation applied to antenna arrays using convolutional neural networks. In Proceedings of the URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain, 29 May–3 June 2022; pp. 1–4. [Google Scholar]
- Xiang, H.; Chen, B.; Yang, M.; Xu, S.; Li, Z. Improved direction-of-arrival estimation method based on LSTM neural networks with robustness to array imperfections. Appl. Intell. 2021, 51, 1–14. [Google Scholar] [CrossRef]
- Ünlerşen, M.F.; Yaldiz, E. Direction of Arrival Estimation by Using Artificial Neural Networks. In Proceedings of the European Modelling Symposium (EMS), Pisa, Italy, 28–30 November 2016; pp. 242–245. [Google Scholar] [CrossRef]
- Kase, Y.; Nishimura, T.; Ohgane, T.; Ogawa, Y.; Kitayama, D.; Kishiyama, Y. DOA estimation of two targets with deep learning. In Proceedings of the Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 25–26 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, M.; Li, P.; Wu, C. Two-Dimensional DOA Estimation via Deep Ensemble Learning. IEEE Access 2020, 8, 124544–124552. [Google Scholar] [CrossRef]
- Bialer, O.; Garnett, N.; Tirer, T. Performance Advantages of Deep Neural Networks for Angle of Arrival Estimation. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 3907–3911. [Google Scholar]
- Izacard, G.; Bernstein, B.; Fernandez-Granda, C. A learning-based framework for line-spectra super-resolution. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 3632–3636. [Google Scholar]
- Barthelme, A.; Wiesmayr, R.; Utschick, W. Model Order Selection in DoA Scenarios via Cross-entropy Based Machine Learning Techniques. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Virtual, 4–9 May 2020; pp. 4622–4626. [Google Scholar]
- Yang, Y.; Gao, F.; Qian, C.; Liao, G. Model-Aided Deep Neural Network for Source Number Detection. IEEE Signal Process. Lett. 2020, 27, 91–95. [Google Scholar] [CrossRef]
- Bianco, S.; Napoletano, P.; Raimondi, A.; Feo, M.; Petraglia, G.; Vinetti, P. AESA adaptive beamforming using deep learning. In Proceedings of the IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar]
- Miller, M.I.; Fuhrmann, D.R. Maximum-likelihood narrow-band direction finding and the EM algorithm. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1560–1577. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Parian, M.A.; Ghofrani, S. Using l1, 2 mixed-norm MUSIC based on compressive sampling for direction of arrival estimation. In Proceedings of the International Symposium on Signal Processing and Information Technology (ISSPIT), Abu Dhabi, United Arab Emirates, 7–10 December 2015; pp. 258–263. [Google Scholar]
- Haardt, M.; Ali-Hackl, M.E. Unitary esprit: How to exploit additional information inherent in the relational invariance structure. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing, Adelaide, SA, Australia, 19–22 April 1994; Volume 4, p. IV-229. [Google Scholar]
- Wu, Y.W.; Rhodes, S.; Satorius, E.H. Direction of arrival estimation via extended phase interferometry. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 375–381. [Google Scholar]
- BniLam, N.; Nasser, S.; Weyn, M. Angle of arrival estimation system for LoRa technology based on phase detectors. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar]
- Florio, A.; Avitabile, G.; Talarico, C.; Coviello, G. A Reconfigurable Full-Digital Architecture for Angle of Arrival Estimation. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 71, 1443–1455. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Massa, A.; Rocca, P.; Oliveri, G. Compressive sensing in electromagnetics-a review. IEEE Antennas Propag. Mag. 2015, 57, 224–238. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. A discretization-free sparse and parametric approach for linear array signal processing. IEEE Trans. Signal Process. 2014, 62, 4959–4973. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Wei, F.; Zheng, S.; Zhou, X.; Zhang, L.; Lou, C.; Zhao, Z.; Yang, X. Detection of direct sequence spread spectrum signals based on deep learning. IEEE Trans. Cogn. Commun. Netw. 2022, 8, 1399–1410. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, S.; Qi, P.; Zhou, H.; Yang, X. Spectrum sensing based on deep learning classification for cognitive radios. China Commun. 2020, 17, 138–148. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, X.; Zhang, L.; Qi, P.; Qiu, K.; Zhu, J.; Yang, X. Toward next-generation signal intelligence: A hybrid knowledge and data-driven deep learning framework for radio signal classification. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 564–579. [Google Scholar] [CrossRef]
- Liu, R.; Ma, Y.; Zhang, X.; Gao, Y. Deep learning-based spectrum sensing in space-air-ground integrated networks. J. Commun. Inf. Netw. 2021, 6, 82–90. [Google Scholar] [CrossRef]
- Peng, S.; Sun, S.; Yao, Y.D. A survey of modulation classification using deep learning: Signal representation and data preprocessing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7020–7038. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, S.; Ma, J.; Dobre, O.A. Deep learning-based time-varying channel estimation for RIS assisted communication. IEEE Commun. Lett. 2021, 26, 94–98. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, S.; Yang, X. DeepReceiver: A deep learning-based intelligent receiver for wireless communications in the physical layer. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 5–20. [Google Scholar] [CrossRef]
- Kase, Y.; Nishimura, T.; Ohgane, T.; Ogawa, Y.; Kitayama, D.; Kishiyama, Y. Performance analysis of DOA estimation of two targets using deep learning. In Proceedings of the 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon, Portugal, 24–27 November 2019; pp. 1–6. [Google Scholar]
- Elbir, A.M. DeepMUSIC: Multiple signal classification via deep learning. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Li, H. Online direction of arrival estimation based on deep learning. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2616–2620. [Google Scholar]
- Li, J.; Shao, X.; Li, J.; Ge, L. Direction of arrival estimation of array defects based on deep neural network. Circ. Syst. Signal Process. 2022, 41, 4906–4927. [Google Scholar] [CrossRef]
- Pavel, S.R.; Zhang, Y.D. Neural network-based compression framework for DoA estimation exploiting distributed array. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 4943–4947. [Google Scholar]
- Zheng, S.; Yang, Z.; Shen, W.; Zhang, L.; Zhu, J.; Zhao, Z.; Yang, X. Deep learning-based DOA estimation. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 819–835. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna theory: A review. Proc. IEEE 1992, 80, 7–23. [Google Scholar] [CrossRef]
- Cao, W.; Mirjalili, V.; Raschka, S. Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recognit. Lett. 2020, 140, 325–331. [Google Scholar] [CrossRef]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Molaei, A.M.; Zakeri, B.; Andargoli, S.M.H.; Abbasi, M.A.B.; Fusco, V.; Yurduseven, O. A Comprehensive Review of Direction-of-Arrival Estimation and Localization Approaches in Mixed-Field Sources Scenario. IEEE Access 2024, 12, 65883–65918. [Google Scholar] [CrossRef]
- Nyquist, H. Certain factors affecting telegraph speed. Trans. Am. Inst. Electr. Eng. 1924, 43, 412–422. [Google Scholar] [CrossRef]
- Barabell, A. Improving the resolution performance of eigenstructure-based direction-finding algorithms. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Boston, MA, USA, 14–16 April 1983; Volume 8, pp. 336–339. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar]
- Zhu, J.; Han, L.; Blum, R.S.; Xu, Z. Multi-snapshot Newtonized orthogonal matching pursuit for line spectrum estimation with multiple measurement vectors. Signal Process. 2019, 165, 175–185. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1783–1795. [Google Scholar] [CrossRef]
Input | Operator | c | s | Output |
---|---|---|---|---|
Conv2d | 128 | 2 | ||
BatchNorm2d | - | - | ||
ReLU | - | - | ||
Conv2d | 64 | 1 | ||
BatchNorm2d | - | - | ||
ReLU | - | - | ||
Conv2d | 64 | 1 | ||
BatchNorm2d | - | - | ||
ReLU | - | - | ||
Flatten | - | - |
Case | Direction | RMSE |
---|---|---|
Method | RMSE (↓) | Accuracy (↑) | Inference Time (↓) | Computational Complexity (↓) |
---|---|---|---|---|
DNNDOA [18] | 6.56 ± 15.55 | 64.10 | 40.46 | 2.43 |
MNOMP [63] | 13.76 ± 18.39 | 53.37 | 1.92 | 0.01 |
MTAPC [9] | 1.91 ± 7.36 | 73.87 | 40.27 | 1.61 |
MUSIC [5] | 1.32 ± 2.56 | 91.20 | 1.45 | 0.02 |
R-MUSIC [61] | 0.60 ± 1.37 | 93.45 | 0.74 | 0.02 |
Our | 0.27± 0.21 | 99.58 | 40.22 | 1.11 |
Method | 5 | 100 | 200 | 500 | 1000 | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | |
DNNDOA [18] | 30.71 ± 17.32 | 6.41 | 14.65 ± 19.53 | 40.64 | 11.17 ± 18.28 | 49.60 | 8.07 ± 16.61 | 58.30 | 7.05 ± 15.92 | 61.87 |
MNOMP [63] | 48.56 ± 25.25 | 6.76 | 38.05 ± 24.54 | 42.27 | 36.07 ± 24.30 | 55.40 | 35.92 ± 23.93 | 59.70 | 31.73 ± 22.18 | 66.31 |
MTAPC [9] | 16.19 ± 10.02 | 32.51 | 2.40 ± 7.49 | 63.23 | 2.23 ± 7.53 | 68.76 | 2.07 ± 7.49 | 72.45 | 1.98 ± 7.42 | 73.44 |
MUSIC [5] | 19.42 ± 20.85 | 2.01 | 3.05 ± 1.27 | 0.00 | 1.73 ± 0.96 | 0.01 | 0.61 ± 1.74 | 11.75 | 1.30 ± 1.66 | 85.34 |
R-MUSIC [61] | 19.72 ± 21.29 | 1.03 | 3.12 ± 2.10 | 0.00 | 1.79 ± 0.86 | 0.01 | 0.56 ± 0.51 | 11.75 | 1.25 ± 1.42 | 85.45 |
Our | 11.81 ± 9.59 | 47.04 | 2.24 ± 3.29 | 91.46 | 1.13 ± 0.86 | 97.57 | 0.47 ± 0.45 | 99.46 | 0.32 ± 0.31 | 99.58 |
Method | Various SNRs | Off-Grid Angles | ||
---|---|---|---|---|
RMSE (↓) | Accuracy (↑) | RMSE (↓) | Accuracy (↑) | |
DNNDOA [18] | 29.82 ± 15.46 | 4.52 | 8.31 ± 16.90 | 51.17 |
MNOMP [63] | 34.69 ± 31.16 | 12.62 | 9.98 ± 7.51 | 56.20 |
MTAPC [9] | 2.24 ± 7.18 | 61.52 | 1.72 ± 6.39 | 73.66 |
MUSIC [5] | 6.02 ± 14.55 | 74.67 | 0.34 ± 0.68 | 90.81 |
R-MUSIC [61] | 6.02 ± 14.62 | 74.73 | 0.32 ± 0.39 | 92.34 |
Our | 8.47 ± 14.04 | 87.77 | 0.26 ± 0.23 | 99.57 |
Method | 5 | 100 | 200 | 500 | 1000 | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | |
DNNDOA [18] | 32.60 ± 14.31 | 1.94 | 29.91 ± 15.46 | 4.35 | 29.68 ± 15.31 | 4.46 | 29.60 ± 15.27 | 4.47 | 29.59 ± 15.26 | 4.46 |
MNOMP [63] | 46.28 ± 25.24 | 9.02 | 32.54 ± 23.70 | 37.07 | 30.84 ± 23.33 | 44.93 | 30.18 ± 23.28 | 48.45 | 28.38 ± 16.75 | 54.19 |
MTAPC [9] | 17.16 ± 12.53 | 31.82 | 13.61 ± 11.70 | 50.60 | 13.08 ± 11.15 | 51.90 | 12.54 ± 10.61 | 54.82 | 12.23 ± 10.37 | 57.95 |
MUSIC [5] | 20.34 ± 21.47 | 1.03 | 18.83 ± 18.44 | 0.00 | 18.48 ± 16.17 | 0.00 | 20.02 ± 15.98 | 14.93 | 15.76 ± 14.11 | 70.26 |
R-MUSIC [61] | 20.91 ± 18.39 | 0.02 | 18.71 ± 16.02 | 0.00 | 18.44 ± 16.95 | 0.00 | 20.31 ± 15.84 | 14.69 | 15.81 ± 14.43 | 70.32 |
Our | 12.20 ± 9.78 | 44.68 | 8.74 ± 13.90 | 65.78 | 8.39 ± 13.23 | 66.23 | 7.90 ± 12.73 | 76.69 | 6.31 ± 11.61 | 85.44 |
Method | 0 | 45 | 90 | 180 | ||||
---|---|---|---|---|---|---|---|---|
RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | |
DNNDOA [18] | 6.56 ± 15.55 | 64.10 | 27.78 ± 17.86 | 46.25 | 32.79 ± 17.87 | 49.29 | 22.77 ± 15.82 | 42.36 |
MNOMP [63] | 13.76 ± 18.39 | 53.37 | 62.67 ± 20.12 | 34.67 | 58.91 ± 18.29 | 32.02 | 71.01 ± 18.09 | 38.02 |
MTAPC [9] | 1.91 ± 7.36 | 73.87 | 22.97 ± 15.29 | 56.59 | 29.10 ± 12.29 | 51.42 | 18.91 ± 11.01 | 58.12 |
MUSIC [5] | 1.32 ± 2.56 | 91.20 | 21.87 ± 15.20 | 91.71 | 24.09 ± 12.09 | 92.01 | 18.83 ± 12.51 | 90.98 |
R-MUSIC [61] | 0.60 ± 1.37 | 93.45 | 27.38 ± 11.05 | 91.71 | 29.12 ± 11.42 | 92.61 | 34.10 ± 15.21 | 89.08 |
Our | 0.27 ± 0.21 | 99.58 | 7.12 ± 9.12 | 92.18 | 15.91 ± 14.61 | 92.61 | 19.06 ± 13.24 | 90.49 |
Method | 1 GHz | 2.4 GHz | 3 GHz | 5 GHz | 10 GHz | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | |
DNNDOA [18] | 6.56 ± 15.55 | 64.10 | 28.57 ± 16.89 | 47.01 | 27.39 ± 17.69 | 45.28 | 26.97 ± 18.02 | 47.86 | 27.20 ± 17.83 | 45.35 |
MNOMP [63] | 13.76 ± 18.39 | 53.37 | 34.91 ± 21.21 | 49.12 | 34.20 ± 18.91 | 51.21 | 32.00 ± 23.11 | 48.03 | 31.93 ± 21.43 | 39.55 |
MTAPC [9] | 1.91 ± 7.36 | 73.87 | 21.12 ± 15.22 | 52.86 | 19.78 ± 13.17 | 52.57 | 20.55 ± 13.00 | 52.00 | 20.44 ± 13.47 | 49.88 |
MUSIC [5] | 1.32 ± 2.56 | 91.20 | 22.76 ± 14.64 | 92.88 | 23.11 ± 16.37 | 91.56 | 24.52 ± 16.45 | 90.63 | 24.80 ± 17.13 | 91.38 |
R-MUSIC [61] | 0.60 ± 1.37 | 93.45 | 31.43 ± 11.56 | 92.22 | 30.92 ± 9.76 | 91.56 | 31.81 ± 9.64 | 90.63 | 32.53 ± 9.63 | 91.52 |
Our | 0.27 ± 0.21 | 99.58 | 24.52 ± 13.78 | 92.45 | 21.46 ± 12.80 | 93.01 | 19.91 ± 12.46 | 94.63 | 18.56 ± 10.82 | 92.74 |
Method | AM | FM | PSK | |||
---|---|---|---|---|---|---|
RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | RMSE (↓) | Acc. (↑) | |
DNNDOA [18] | 22.22 ± 12.83 | 48.38 | 26.02 ± 17.82 | 45.41 | 49.11 ± 21.82 | 43.34 |
MNOMP [63] | 36.82 ± 23.60 | 44.12 | 31.69 ± 29.14 | 47.23 | 51.11 ± 11.29 | 49.92 |
MTAPC [9] | 19.43 ± 8.48 | 62.88 | 22.91 ± 10.17 | 49.89 | 29.08 ± 15.22 | 53.24 |
MUSIC [5] | 18.42 ± 11.15 | 91.37 | 22.84 ± 13.02 | 93.92 | 29.83 ± 17.12 | 91.38 |
R-MUSIC [61] | 26.53 ± 9.63 | 91.37 | 27.91 ± 11.01 | 92.82 | 32.53 ± 9.63 | 91.38 |
Our | 16.57 ± 11.76 | 92.74 | 19.82 ± 10.05 | 92.22 | 23.57 ± 12.97 | 91.43 |
Model Version | RMSE | Accuracy |
---|---|---|
Two-step training | 32.99 ± 9.61 | 98.86 |
Loss function with and | 0.75 ± 0.40 | 98.64 |
Loss function with and | 0.68 ± 0.38 | 99.13 |
Our | 0.27 ± 0.21 | 99.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, S.; Celona, L.; Crotti, P.; Napoletano, P.; Petraglia, G.; Vinetti, P. Enhancing Direction-of-Arrival Estimation with Multi-Task Learning. Sensors 2024, 24, 7390. https://doi.org/10.3390/s24227390
Bianco S, Celona L, Crotti P, Napoletano P, Petraglia G, Vinetti P. Enhancing Direction-of-Arrival Estimation with Multi-Task Learning. Sensors. 2024; 24(22):7390. https://doi.org/10.3390/s24227390
Chicago/Turabian StyleBianco, Simone, Luigi Celona, Paolo Crotti, Paolo Napoletano, Giovanni Petraglia, and Pietro Vinetti. 2024. "Enhancing Direction-of-Arrival Estimation with Multi-Task Learning" Sensors 24, no. 22: 7390. https://doi.org/10.3390/s24227390
APA StyleBianco, S., Celona, L., Crotti, P., Napoletano, P., Petraglia, G., & Vinetti, P. (2024). Enhancing Direction-of-Arrival Estimation with Multi-Task Learning. Sensors, 24(22), 7390. https://doi.org/10.3390/s24227390