No-Reference Objective Quality Metrics for 3D Point Clouds: A Review
<p>The scheme of full-reference (FR), reduced-reference (RR), and no-reference (NR) metrics.</p> "> Figure 2
<p>Examples of distorted PCs from the SJTU-PCQA dataset [<a href="#B13-sensors-24-07383" class="html-bibr">13</a>]. (<b>a</b>) Original Shiva PC. (<b>b</b>) OcTree-based compression (85%). (<b>c</b>) Color noise (70%). (<b>d</b>) Downscaling (90%).</p> "> Figure 3
<p>Examples of distorted PCs from the LS-PCQA dataset [<a href="#B19-sensors-24-07383" class="html-bibr">19</a>]. (<b>a</b>) Original Asterix PC. (<b>b</b>) Gamma noise with parameter 1. (<b>c</b>) Gamma noise with parameter 7. (<b>d</b>) Multiplicative Gaussian noise with parameter 1. (<b>e</b>) Multiplicative Gaussian noise with parameter 7. (<b>f</b>) Poisson Reconstruction with parameter 3. (<b>g</b>) Poisson Reconstruction with parameter 7. (<b>h</b>) Original Aya PC. (<b>i</b>) Poisson noise with parameter 3. (<b>j</b>) Poisson noise with parameter 7. (<b>k</b>) GPCC-Lossless geometry and lossy attributes with parameter 3. (<b>l</b>) GPCC-Lossless geometry and lossy attributes with parameter 7. (<b>m</b>) AVS-Limited lossy geometry and lossy attributes with parameter 3. (<b>n</b>) AVS-Limited lossy geometry and lossy attributes with parameter 7.</p> "> Figure 4
<p>The scheme of model-based, projection-based and hybrid NR PCQA approaches.</p> "> Figure 5
<p>Performance comparison of six SOTA NR PCQA models on the SJTU-PCQA dataset as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>]. (<b>a</b>) PLCC, SRCC, and KRCC. (<b>b</b>) RMSE.</p> "> Figure 6
<p>Performance comparison of six SOTA NR PCQA models, in terms of PLCC, on the various distortion types on the SJTU-PCQA dataset, as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>].</p> "> Figure 7
<p>Performance comparison of six SOTA NR PCQA models, in terms of SRCC, on the various distortion types on the SJTU-PCQA dataset, as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>].</p> "> Figure 8
<p>Performance comparison of most SOTA NR PCQA models on the WPC dataset as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>]. (<b>a</b>) PLCC, SRCC, and KRCC. (<b>b</b>) RMSE.</p> "> Figure 9
<p>Performance comparison of most of the SOTA NR PCQA models, in terms of PLCC, on the various distortion types on the WPC dataset, as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>].</p> "> Figure 10
<p>Performance comparison of most of the SOTA NR PCQA models, in terms of SRCC, on the various distortion types on the WPC dataset, as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>].</p> "> Figure 11
<p>Performance comparison of most SOTA NR PCQA models on the SIAT-PCQD dataset as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>]. (<b>a</b>) PLCC, SRCC, and KRCC. (<b>b</b>) RMSE.</p> "> Figure 12
<p>Performance comparison of most of the SOTA NR PCQA models in terms of PLCC and SRCC on the M-PCCD (<b>a</b>) and LS-PCQA (<b>b</b>) datasets as provided in [<a href="#B25-sensors-24-07383" class="html-bibr">25</a>].</p> ">
Abstract
:1. Introduction
2. Background
2.1. Point Cloud Quality Assessment
2.2. PCQA Datasets
3. No-Reference PCQA Models
3.1. Model-Based Approach
3.2. Projection-Based Approach
3.3. Hybrid Approach
4. Discussion
4.1. Performance Comparison
4.1.1. SJTU-PCQA Dataset
4.1.2. WPC Dataset
4.1.3. SIAT-PCQD
4.1.4. M-PCCD and LS-PCQA Datasets
4.1.5. Cross-Dataset Performance
4.2. Challenges and Future Directions
- The identification of features specifically related to PC compression distortions.
- Focusing on projection-based or hybrid-based approaches, which have been demonstrated to achieve the best performance. In particular, these models should consider multiview projections, mini-patch map sampling, and multiscale-based techniques, which have a relevant role in extracting features significant for quality estimation.
- Training the models on larger datasets including different types and levels of distortions. The lower performance achieved by all models on the LS-PCQA dataset is evidence that much still has to be carried out to enhance the robustness and generalization of models’ performance on larger datasets including diverse distortions.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Macchi, G.; De Pisapia, N. Virtual Reality, Face-To-Face, and 2D Video Conferencing in Group Work: A Comparative Study on Fatigue, Creativity, Flow, and Interactions. Sci. Rep. 2024, 14, 10260. [Google Scholar] [CrossRef] [PubMed]
- Dumic, E.; Duarte, C.R.; da Silva Cruz, L.A. Subjective evaluation and objective measures for point clouds—State of the art. In Proceedings of the 2018 First International Colloquium on Smart Grid Metrology (SmaGriMet), Split, Croatia, 24–27 April 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Tious, A.; Vigier, T.; Ricordel, V. New challenges in point cloud visual quality assessment: A systematic review. Front. Signal Process. 2024, 4, 1420060. [Google Scholar] [CrossRef]
- Porcu, S.; Floris, A.; Atzori, L. Quality of Experience in the Metaverse: An Initial Analysis on Quality Dimensions and Assessment. In Proceedings of the 2022 14th International Conference on Quality of Multimedia Experience (QoMEX), Lippstadt, Germany, 5–7 September 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Xu, Y.; Li, Z.; Sun, J. Inferring Point Cloud Quality via Graph Similarity. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, E.; Ebrahimi, T. Towards a Point Cloud Structural Similarity Metric. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Meynet, G.; Nehmé, Y.; Digne, J.; Lavoué, G. PCQM: A Full-Reference Quality Metric for Colored 3D Point Clouds. In Proceedings of the 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), Athlone, Ireland, 26–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Cignoni, P.; Rocchini, C.; Scopigno, R. Metro: Measuring Error on Simplified Surfaces. Comput. Graph. Forum 1998, 17, 167–174. [Google Scholar] [CrossRef]
- Mekuria, R.; Cesar, P. MP3DG-PCC, Open Source Software Framework for Implementation and Evaluation of Point Cloud Compression. In Proceedings of the 24th ACM International Conference on Multimedia, New York, NY, USA, 15–19 October 2016; MM ’16. pp. 1222–1226. [Google Scholar] [CrossRef]
- Tian, D.; Ochimizu, H.; Feng, C.; Cohen, R.; Vetro, A. Geometric distortion metrics for point cloud compression. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3460–3464. [Google Scholar] [CrossRef]
- Viola, I.; Cesar, P. A Reduced Reference Metric for Visual Quality Evaluation of Point Cloud Contents. IEEE Signal Process. Lett. 2020, 27, 1660–1664. [Google Scholar] [CrossRef]
- Liu, Q.; Yuan, H.; Hamzaoui, R.; Su, H.; Hou, J.; Yang, H. Reduced Reference Perceptual Quality Model With Application to Rate Control for Video-Based Point Cloud Compression. IEEE Trans. Image Process. 2021, 30, 6623–6636. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Chen, H.; Ma, Z.; Xu, Y.; Tang, R.; Sun, J. Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration. IEEE Trans. Multimed. 2021, 23, 3877–3891. [Google Scholar] [CrossRef]
- Liu, Q.; Su, H.; Duanmu, Z.; Liu, W.; Wang, Z. Perceptual Quality Assessment of Colored 3D Point Clouds. IEEE Trans. Vis. Comput. Graph. 2023, 29, 3642–3655. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Duanmu, Z.; Liu, W.; Liu, Q.; Wang, Z. Perceptual quality assessment of 3D point clouds. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3182–3186. [Google Scholar] [CrossRef]
- Liu, Q.; Su, H.; Chen, T.; Yuan, H.; Hamzaoui, R. No-Reference Bitstream-Layer Model for Perceptual Quality Assessment of V-PCC Encoded Point Clouds. IEEE Trans. Multimed. 2023, 25, 4533–4546. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Fan, C.; Hou, J.; Kwong, S. Subjective Quality Database and Objective Study of Compressed Point Clouds with 6DoF Head-Mounted Display. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4630–4644. [Google Scholar] [CrossRef]
- Alexiou, E.; Viola, I.; Borges, T.M.; Fonseca, T.A.; de Queiroz, R.L.; Ebrahimi, T. A comprehensive study of the rate-distortion performance in MPEG point cloud compression. APSIPA Trans. Signal Inf. Process. 2019, 8, e27. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Q.; Xu, Y.; Yang, L. Point Cloud Quality Assessment: Dataset Construction and Learning-based No-reference Metric. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 19, 1–16. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, W.; Min, X.; Wang, T.; Lu, W.; Zhai, G. No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7618–7631. [Google Scholar] [CrossRef]
- Shan, Z.; Yang, Q.; Ye, R.; Zhang, Y.; Xu, Y.; Xu, X.; Liu, S. GPA-Net:No-Reference Point Cloud Quality Assessment With Multi-Task Graph Convolutional Network. IEEE Trans. Vis. Comput. Graph. 2024, 30, 4955–4967. [Google Scholar] [CrossRef] [PubMed]
- Chetouani, A.; Quach, M.; Valenzise, G.; Dufaux, F. Deep Learning-Based Quality Assessment Of 3d Point Clouds Without Reference. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al. Emerging MPEG Standards for Point Cloud Compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 133–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, W.; Zhu, Y.; Min, X.; Wu, W.; Chen, Y.; Zhai, G. Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric. IEEE Trans. Multimed. 2023, 1–13. [Google Scholar] [CrossRef]
- Chai, X.; Shao, F. MS-PCQE: Efficient No-Reference Point Cloud Quality Evaluation via Multi-Scale Interaction Module in Immersive Communications. IEEE Trans. Consum. Electron. 2024, 1. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Chen, S.; Xu, Y.; Sun, J. No-reference point cloud quality assessment via domain adaptation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 21179–21188. [Google Scholar] [CrossRef]
- Liu, Q.; Yuan, H.; Su, H.; Liu, H.; Wang, Y.; Yang, H.; Hou, J. PQA-Net: Deep no reference point cloud quality assessment via multi-view projection. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 4645–4660. [Google Scholar] [CrossRef]
- Damme, S.V.; Vega, M.T.; van der Hooft, J.; Turck, F.D. Clustering-based Psychometric No-Reference Quality Model for Point Cloud Video. In Proceedings of the 2022 International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 1866–1870. [Google Scholar] [CrossRef]
- Weil, J.; Alkhalili, Y.; Tahir, A.; Gruczyk, T.; Meuser, T.; Mu, M.; Koeppl, H.; Mauthe, A. Modeling Quality of Experience for Compressed Point Cloud Sequences based on a Subjective Study. In Proceedings of the 2023 15th International Conference on Quality of Multimedia Experience (QoMEX), Ghent, Belgium, 20–22 June 2023; pp. 135–140. [Google Scholar] [CrossRef]
- Nguyen, M.; Vats, S.; Hellwagner, H. No-Reference Quality of Experience Model for Dynamic Point Clouds in Augmented Reality. In Proceedings of the MHV. Association for Computing Machinery (ACM), Denver, CO, USA, 11–14 February 2024; pp. 90–91. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Jin, L.; Ieremeiev, O.; Lukin, V.; Egiazarian, K.; Astola, J.; Vozel, B.; Chehdi, K.; Carli, M.; Battisti, F.; et al. Image database TID2013: Peculiarities, results and perspectives. Signal Process. Image Commun. 2015, 30, 57–77. [Google Scholar] [CrossRef]
- Sheikh, H.R. Image and Video Quality Assessment Research at LIVE. 2003. Available online: http://live.ece.utexas.edu/research/quality/ (accessed on 15 October 2024).
- Van Damme, S.; Vega, M.T.; De Turck, F. A full-and no-reference metrics accuracy analysis for volumetric media streaming. In Proceedings of the 2021 13th International Conference on Quality of Multimedia Experience (QoMEX), Montreal, QC, Canada, 14–17 June 2021; pp. 225–230. [Google Scholar] [CrossRef]
- d’Eon, E.; Harrison, B.; Myers, T.; Chou, P.A. 8i Voxelized Full Bodies—A Voxelized Point Cloud Dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input Document WG11M40059/WG1M74006, Geneva, January 2017. Available online: https://plenodb.jpeg.org/pc/8ilabs (accessed on 15 October 2024).
- Xu, Y.; Lu, Y.; Wen, Z. Owlii Dynamic Human Mesh Sequence Dataset. ISO/IEC JTC1/SC29/WG11 m41658, 120th MPEG Meeting, Macau, October 2017. Available online: https://mpeg-pcc.org/index.php/pcc-content-database/owlii-dynamic-human-textured-mesh-sequence-dataset/ (accessed on 15 October 2024).
- International Telecommunication Union. Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport. In Recommendation ITU-T P.1203; ITU: 2017; Available online: https://www.itu.int/rec/T-REC-P.1203 (accessed on 15 October 2024).
- Nguyen, M.; Vats, S.; Van Damme, S.; Van Der Hooft, J.; Vega, M.T.; Wauters, T.; Timmerer, C.; Hellwagner, H. Impact of quality and distance on the perception of point clouds in mixed reality. In Proceedings of the 2023 15th International Conference on Quality of Multimedia Experience (QoMEX), Ghent, Belgium, 20–22 June 2023; pp. 87–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, W.; Min, X.; Zhou, Q.; He, J.; Wang, Q.; Zhai, G. MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality Assessment. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23), Macao, China, 19–25 August 2023; Volume 195. [Google Scholar] [CrossRef]
Dataset | Number of Reference Samples | Number of Distortions | Number of Distorted Samples | Distortion Types |
---|---|---|---|---|
SJTU-PCQA [13] | 9 | 7 | 378 | Compression, downsampling, geometry noise, color noise. |
WPC [14,15] | 20 | 5 | 740 | Compression, downsampling, noise. |
WPC2.0 [12] | 16 | 25 | 400 | Compression. |
WPC3.0 [16] | 14 | 25 | 350 | Compression. |
SIAT-PCQD [17] | 20 | 17 | 340 | Compression. |
M-PCCD [18] | 9 | 25 | 225 | Compression. |
LS-PCQA [19] | 104 | 31 | 22,568 | Compression, color noise, geometry noise, downsampling. |
Ref. | Distortion | Geometry Features | Color Features | Feature Statistics | Quality Prediction Model |
---|---|---|---|---|---|
[19] | Compression, downsampling, geometry noise, color noise | 3D coordinates, occupation index | R, G, B color channels | - | Sparse CNN |
[20] | Compression, downsampling, geometry noise, color noise | Point-level: curvature, anisotropy, linearity, planarity, and sphericity | L, A, B color channels | Mean, standard deviation, entropy, GGD, AGGD, Gamma | SVR |
[21] | Compression, downsampling, geometry noise, color noise | PC structure | PC texture | - | Graph convolutional network |
[22] | Compression, downsampling, geometry noise, color noise | Geometric distance, mean curvature | Gray-level features | - | CNN |
Ref. | Distortion | Features | Quality Prediction Model |
---|---|---|---|
[16] | Compression | Geometry QP, Texture QP, Texture bitrate per pixel (TBPP) | Mathematical Model |
[24] | Compression, donwsampling, geometry noise, color noise | Video spatial and temporal information | CNN and DNN |
[25] | Compression | Geometry QP, Texture QP | Dual-branch Transformer |
[26] | Compression, downsampling, geometry noise, color noise | H-SCNN generated features | DNN |
[27] | Compression, downsampling, geometry noise, color noise | CNN generated features | CNN and DNN |
[28] | Compression, bandwidth, resolution, buffer length, allocation algorithm | Blockiness, noise, noise ratio, spatial information, and bandwidth, blur, blur ratio | KNN, LR and Sigmoidal Fitting |
[29] | Compression, frame rate, viewing distance | Geometry and attribute QPs, occupancy precision, frame rate, and viewing distance | Gradient Boost Regression |
[30] | Compression, quality switch, viewing distance | ITU-T P.1203 model features | Fine-tuned ITU-T P.1203 model |
Model | LS-PCQA→WPC | LS-PCQA→SJTU-PCQA | ||
---|---|---|---|---|
PLCC | SRCC | PLCC | SRCC | |
MM-PCQA | 0.6219 | 0.6149 | 0.7539 | 0.6987 |
MS-PCQE | 0.6653 | 0.6698 | 0.8210 | 0.7612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcu, S.; Marche, C.; Floris, A. No-Reference Objective Quality Metrics for 3D Point Clouds: A Review. Sensors 2024, 24, 7383. https://doi.org/10.3390/s24227383
Porcu S, Marche C, Floris A. No-Reference Objective Quality Metrics for 3D Point Clouds: A Review. Sensors. 2024; 24(22):7383. https://doi.org/10.3390/s24227383
Chicago/Turabian StylePorcu, Simone, Claudio Marche, and Alessandro Floris. 2024. "No-Reference Objective Quality Metrics for 3D Point Clouds: A Review" Sensors 24, no. 22: 7383. https://doi.org/10.3390/s24227383
APA StylePorcu, S., Marche, C., & Floris, A. (2024). No-Reference Objective Quality Metrics for 3D Point Clouds: A Review. Sensors, 24(22), 7383. https://doi.org/10.3390/s24227383